0
0
Fork 0
mirror of https://github.com/ZDoom/raze-gles.git synced 2025-01-22 15:11:09 +00:00
raze-gles/source/common/thirdparty/math/sin.c
2020-04-12 08:30:39 +02:00

411 lines
9.3 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* sin.c
*
* Circular sine
*
*
*
* SYNOPSIS:
*
* double x, y, sin();
*
* y = sin( x );
*
*
*
* DESCRIPTION:
*
* Range reduction is into intervals of pi/4. The reduction
* error is nearly eliminated by contriving an extended precision
* modular arithmetic.
*
* Two polynomial approximating functions are employed.
* Between 0 and pi/4 the sine is approximated by
* x + x**3 P(x**2).
* Between pi/4 and pi/2 the cosine is represented as
* 1 - x**2 Q(x**2).
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* DEC 0, 10 150000 3.0e-17 7.8e-18
* IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17
*
* ERROR MESSAGES:
*
* message condition value returned
* sin total loss x > 1.073741824e9 0.0
*
* Partial loss of accuracy begins to occur at x = 2**30
* = 1.074e9. The loss is not gradual, but jumps suddenly to
* about 1 part in 10e7. Results may be meaningless for
* x > 2**49 = 5.6e14. The routine as implemented flags a
* TLOSS error for x > 2**30 and returns 0.0.
*/
/* cos.c
*
* Circular cosine
*
*
*
* SYNOPSIS:
*
* double x, y, cos();
*
* y = cos( x );
*
*
*
* DESCRIPTION:
*
* Range reduction is into intervals of pi/4. The reduction
* error is nearly eliminated by contriving an extended precision
* modular arithmetic.
*
* Two polynomial approximating functions are employed.
* Between 0 and pi/4 the cosine is approximated by
* 1 - x**2 Q(x**2).
* Between pi/4 and pi/2 the sine is represented as
* x + x**3 P(x**2).
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17
* DEC 0,+1.07e9 17000 3.0e-17 7.2e-18
*/
/* sin.c */
/*
Cephes Math Library Release 2.8: June, 2000
Copyright 1985, 1995, 2000 by Stephen L. Moshier
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the <ORGANIZATION> nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#include "mconf.h"
#ifdef UNK
static double sincof[] = {
1.58962301576546568060E-10,
-2.50507477628578072866E-8,
2.75573136213857245213E-6,
-1.98412698295895385996E-4,
8.33333333332211858878E-3,
-1.66666666666666307295E-1,
};
static double coscof[6] = {
-1.13585365213876817300E-11,
2.08757008419747316778E-9,
-2.75573141792967388112E-7,
2.48015872888517045348E-5,
-1.38888888888730564116E-3,
4.16666666666665929218E-2,
};
static double DP1 = 7.85398125648498535156E-1;
static double DP2 = 3.77489470793079817668E-8;
static double DP3 = 2.69515142907905952645E-15;
/* static double lossth = 1.073741824e9; */
#endif
#ifdef DEC
static unsigned short sincof[] = {
0030056,0143750,0177214,0163153,
0131727,0027455,0044510,0175352,
0033470,0167432,0131752,0042414,
0135120,0006400,0146776,0174027,
0036410,0104210,0104207,0137202,
0137452,0125252,0125252,0125103,
};
static unsigned short coscof[24] = {
0127107,0151115,0002060,0152325,
0031017,0072353,0155161,0174053,
0132623,0171173,0172542,0057056,
0034320,0006400,0147102,0023652,
0135666,0005540,0133012,0076213,
0037052,0125252,0125252,0125126,
};
/* 7.853981629014015197753906250000E-1 */
static unsigned short P1[] = {0040111,0007732,0120000,0000000,};
/* 4.960467869796758577649598009884E-10 */
static unsigned short P2[] = {0030410,0055060,0100000,0000000,};
/* 2.860594363054915898381331279295E-18 */
static unsigned short P3[] = {0021523,0011431,0105056,0001560,};
#define DP1 *(double *)P1
#define DP2 *(double *)P2
#define DP3 *(double *)P3
#endif
#ifdef IBMPC
static unsigned short sincof[] = {
0x9ccd,0x1fd1,0xd8fd,0x3de5,
0x1f5d,0xa929,0xe5e5,0xbe5a,
0x48a1,0x567d,0x1de3,0x3ec7,
0xdf03,0x19bf,0x01a0,0xbf2a,
0xf7d0,0x1110,0x1111,0x3f81,
0x5548,0x5555,0x5555,0xbfc5,
};
static unsigned short coscof[24] = {
0x1a9b,0xa086,0xfa49,0xbda8,
0x3f05,0x7b4e,0xee9d,0x3e21,
0x4bc6,0x7eac,0x7e4f,0xbe92,
0x44f5,0x19c8,0x01a0,0x3efa,
0x4f91,0x16c1,0xc16c,0xbf56,
0x554b,0x5555,0x5555,0x3fa5,
};
/*
7.85398125648498535156E-1,
3.77489470793079817668E-8,
2.69515142907905952645E-15,
*/
static unsigned short P1[] = {0x0000,0x4000,0x21fb,0x3fe9};
static unsigned short P2[] = {0x0000,0x0000,0x442d,0x3e64};
static unsigned short P3[] = {0x5170,0x98cc,0x4698,0x3ce8};
#define DP1 *(double *)P1
#define DP2 *(double *)P2
#define DP3 *(double *)P3
#endif
#ifdef MIEEE
static unsigned short sincof[] = {
0x3de5,0xd8fd,0x1fd1,0x9ccd,
0xbe5a,0xe5e5,0xa929,0x1f5d,
0x3ec7,0x1de3,0x567d,0x48a1,
0xbf2a,0x01a0,0x19bf,0xdf03,
0x3f81,0x1111,0x1110,0xf7d0,
0xbfc5,0x5555,0x5555,0x5548,
};
static unsigned short coscof[24] = {
0xbda8,0xfa49,0xa086,0x1a9b,
0x3e21,0xee9d,0x7b4e,0x3f05,
0xbe92,0x7e4f,0x7eac,0x4bc6,
0x3efa,0x01a0,0x19c8,0x44f5,
0xbf56,0xc16c,0x16c1,0x4f91,
0x3fa5,0x5555,0x5555,0x554b,
};
static unsigned short P1[] = {0x3fe9,0x21fb,0x4000,0x0000};
static unsigned short P2[] = {0x3e64,0x442d,0x0000,0x0000};
static unsigned short P3[] = {0x3ce8,0x4698,0x98cc,0x5170};
#define DP1 *(double *)P1
#define DP2 *(double *)P2
#define DP3 *(double *)P3
#endif
#ifdef ANSIPROT
extern double polevl ( double, void *, int );
extern double p1evl ( double, void *, int );
extern double floor ( double );
extern double ldexp ( double, int );
extern int isnan ( double );
extern int isfinite ( double );
#else
double polevl(), floor(), ldexp();
int isnan(), isfinite();
#endif
extern double PIO4;
static double lossth = 1.073741824e9;
#ifdef NANS
extern double NAN;
#endif
#ifdef INFINITIES
extern double INFINITY;
#endif
double c_sin(x)
double x;
{
double y, z, zz;
int j, sign;
#ifdef MINUSZERO
if( x == 0.0 )
return(x);
#endif
#ifdef NANS
if( isnan(x) )
return(x);
if( !isfinite(x) )
{
mtherr( "sin", DOMAIN );
return(NAN);
}
#endif
/* make argument positive but save the sign */
sign = 1;
if( x < 0 )
{
x = -x;
sign = -1;
}
if( x > lossth )
{
mtherr( "sin", TLOSS );
return(0.0);
}
y = floor( x/PIO4 ); /* integer part of x/PIO4 */
/* strip high bits of integer part to prevent integer overflow */
z = ldexp( y, -4 );
z = floor(z); /* integer part of y/8 */
z = y - ldexp( z, 4 ); /* y - 16 * (y/16) */
j = (int)z; /* convert to integer for tests on the phase angle */
/* map zeros to origin */
if( j & 1 )
{
j += 1;
y += 1.0;
}
j = j & 07; /* octant modulo 360 degrees */
/* reflect in x axis */
if( j > 3)
{
sign = -sign;
j -= 4;
}
/* Extended precision modular arithmetic */
z = ((x - y * DP1) - y * DP2) - y * DP3;
zz = z * z;
if( (j==1) || (j==2) )
{
y = 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 );
}
else
{
/* y = z + z * (zz * polevl( zz, sincof, 5 ));*/
y = z + z * z * z * polevl( zz, sincof, 5 );
}
if(sign < 0)
y = -y;
return(y);
}
double c_cos(x)
double x;
{
double y, z, zz;
int i;
int j, sign;
#ifdef NANS
if( isnan(x) )
return(x);
if( !isfinite(x) )
{
mtherr( "cos", DOMAIN );
return(NAN);
}
#endif
/* make argument positive */
sign = 1;
if( x < 0 )
x = -x;
if( x > lossth )
{
mtherr( "cos", TLOSS );
return(0.0);
}
y = floor( x/PIO4 );
z = ldexp( y, -4 );
z = floor(z); /* integer part of y/8 */
z = y - ldexp( z, 4 ); /* y - 16 * (y/16) */
/* integer and fractional part modulo one octant */
i = (int)z;
if( i & 1 ) /* map zeros to origin */
{
i += 1;
y += 1.0;
}
j = i & 07;
if( j > 3)
{
j -=4;
sign = -sign;
}
if( j > 1 )
sign = -sign;
/* Extended precision modular arithmetic */
z = ((x - y * DP1) - y * DP2) - y * DP3;
zz = z * z;
if( (j==1) || (j==2) )
{
/* y = z + z * (zz * polevl( zz, sincof, 5 ));*/
y = z + z * z * z * polevl( zz, sincof, 5 );
}
else
{
y = 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 );
}
if(sign < 0)
y = -y;
return(y);
}
/* Degrees, minutes, seconds to radians: */
/* 1 arc second, in radians = 4.8481368110953599358991410e-5 */
#ifdef DEC
static unsigned short P648[] = {034513,054170,0176773,0116043,};
#define P64800 *(double *)P648
#else
static double P64800 = 4.8481368110953599358991410e-5;
#endif
double radian(d,m,s)
double d,m,s;
{
return( ((d*60.0 + m)*60.0 + s)*P64800 );
}