mirror of
https://github.com/ZDoom/raze-gles.git
synced 2024-12-26 03:30:46 +00:00
e94fa7f70f
Also, add hitscan test to test.lua -- a crosshair-like sprite is spawned and continuously updated to the position of where the player aims at. git-svn-id: https://svn.eduke32.com/eduke32@4059 1a8010ca-5511-0410-912e-c29ae57300e0
357 lines
8.9 KiB
Lua
357 lines
8.9 KiB
Lua
-- "Extended" math module for Lunatic.
|
|
|
|
local ffi = require("ffi")
|
|
|
|
local bit = require("bit")
|
|
local math = require("math")
|
|
|
|
local arshift = bit.arshift
|
|
local abs, sqrt = math.abs, math.sqrt
|
|
|
|
local assert = assert
|
|
local error = error
|
|
local type = type
|
|
|
|
local OUR_REQUIRE_STRING = [[
|
|
local _xm=require'xmath'
|
|
local _v,_iv=_xm.vec3,_xm.ivec3
|
|
]]
|
|
local function our_get_require()
|
|
return OUR_REQUIRE_STRING
|
|
end
|
|
|
|
|
|
module(...)
|
|
|
|
|
|
---=== TRIGONOMETRY ===---
|
|
|
|
local BANG2RAD = math.pi/1024
|
|
local isintab = ffi.new("int16_t [?]", 2048)
|
|
local dsintab = ffi.new("double [?]", 2048)
|
|
|
|
for a=0,511 do
|
|
local s = math.sin(a*BANG2RAD)
|
|
isintab[a] = 16384*s
|
|
dsintab[a] = s
|
|
end
|
|
|
|
isintab[512] = 16384
|
|
dsintab[512] = 1
|
|
|
|
for i=513,1023 do
|
|
isintab[i] = isintab[1024-i];
|
|
dsintab[i] = dsintab[1024-i];
|
|
end
|
|
|
|
for i=1024,2047 do
|
|
isintab[i] = -isintab[i-1024];
|
|
dsintab[i] = -dsintab[i-1024];
|
|
end
|
|
|
|
|
|
local band = bit.band
|
|
|
|
local function ksc_common(ang)
|
|
ang = band(ang, 2047)
|
|
assert(ang >= 0 and ang < 2048) -- might have been passed NaN
|
|
return ang
|
|
end
|
|
|
|
-- k{sin,cos}: 16384-scaled output, 2048-based angle input
|
|
function ksin(ang)
|
|
return isintab[ksc_common(ang)]
|
|
end
|
|
|
|
function kcos(ang)
|
|
return isintab[ksc_common(ang+512)]
|
|
end
|
|
|
|
|
|
local sin, cos = math.sin, math.cos
|
|
|
|
-- {sin,cos}b: [-1..1] output, 2048-based angle input
|
|
function sinb(ang)
|
|
return dsintab[ksc_common(ang)]
|
|
end
|
|
|
|
function cosb(ang)
|
|
return dsintab[ksc_common(ang+512)]
|
|
end
|
|
|
|
local cosb, sinb = cosb, sinb
|
|
|
|
|
|
---=== Approximations to 2D and 3D Euclidean distances ===---
|
|
-- (also see common.c)
|
|
|
|
local function dist_common(pos1, pos2)
|
|
local x = abs(pos1.x - pos2.x)
|
|
local y = abs(pos1.y - pos2.y)
|
|
if (x < y) then
|
|
x, y = y, x
|
|
end
|
|
return x, y
|
|
end
|
|
|
|
function ldist(pos1, pos2)
|
|
local x, y = dist_common(pos1, pos2)
|
|
|
|
local t = y + arshift(y,1)
|
|
return x - arshift(x,5) - arshift(x,7) + arshift(t,2) + arshift(t,6)
|
|
end
|
|
|
|
function dist(pos1, pos2)
|
|
local x, y = dist_common(pos1, pos2)
|
|
local z = abs(arshift(pos1.z - pos2.z, 4))
|
|
|
|
if (x < z) then
|
|
x, z = z, x
|
|
end
|
|
|
|
local t = y + z
|
|
return x - arshift(x,4) + arshift(t,2) + arshift(t,3)
|
|
end
|
|
|
|
|
|
---=== VECTOR TYPES ===---
|
|
|
|
|
|
-- The integer 3-vector can be useful for calculations expecting integer
|
|
-- values, e.g. ivec3(x, y, z) is a reasonable way to round a vec3. It can also
|
|
-- be used as the RHS to the vec2/vec3 arithmetic methods.
|
|
-- NOTE: We must have a typedef with that exact name, because for Lunatic
|
|
-- (i.e. not stand-alone), the type was already declared in defs_common.lua.
|
|
ffi.cdef "typedef struct { int32_t x, y, z; } vec3_t;"
|
|
local ivec3_t = ffi.typeof("vec3_t")
|
|
|
|
|
|
local dvec2_t = ffi.typeof("struct { double x, y; }")
|
|
local dvec3_t = ffi.typeof("struct { double x, y, z; }")
|
|
|
|
local vec2_mt = {
|
|
__add = function(a, b) return dvec2_t(a.x+b.x, a.y+b.y) end,
|
|
__sub = function(a, b) return dvec2_t(a.x-b.x, a.y-b.y) end,
|
|
__unm = function(a) return dvec2_t(-a.x, -a.y) end,
|
|
|
|
__mul = function(a,b)
|
|
if (type(a)=="number") then
|
|
return dvec2_t(a*b.x, a*b.y)
|
|
end
|
|
|
|
if (type(b)~="number") then
|
|
error("number expected in vec2 multiplication", 2)
|
|
end
|
|
return dvec2_t(a.x*b, a.y*b)
|
|
end,
|
|
|
|
__div = function(a,b)
|
|
if (type(b)~="number") then
|
|
error("number expected in vec2 division", 2)
|
|
end
|
|
return dvec2_t(a.x/b, a.y/b)
|
|
end,
|
|
|
|
__tostring = function(a) return "vec2("..a.x..", "..a.y..")" end,
|
|
|
|
__index = {
|
|
lensq = function(a) return a.x*a.x + a.y*a.y end,
|
|
|
|
mhlen = function(a) return abs(a.x)+abs(a.y) end,
|
|
},
|
|
}
|
|
|
|
local l_rotate -- fwd-decl (XXX: could be the other way around)
|
|
|
|
-- The vec3 metatable is shared between the integer- and double-based 3-vector
|
|
-- types. However, some operations are slightly different.
|
|
local vec3_mt = {
|
|
-- Arithmetic operations. Note that they always return a dvec3.
|
|
__add = function(a, b) return dvec3_t(a.x+b.x, a.y+b.y, a.z+b.z) end,
|
|
__sub = function(a, b) return dvec3_t(a.x-b.x, a.y-b.y, a.z-b.z) end,
|
|
__unm = function(a) return dvec3_t(-a.x, -a.y, -a.z) end,
|
|
|
|
__mul = function(a,b)
|
|
if (type(a)=="number") then
|
|
return dvec3_t(a*b.x, a*b.y, a*b.z)
|
|
end
|
|
|
|
if (type(b)~="number") then
|
|
error("number expected in vec3 multiplication", 2)
|
|
end
|
|
return dvec3_t(a.x*b, a.y*b, a.z*b)
|
|
end,
|
|
|
|
__div = function(a,b)
|
|
if (type(b)~="number") then
|
|
error("number expected in vec3 division", 2)
|
|
end
|
|
return dvec3_t(a.x/b, a.y/b, a.z/b)
|
|
end,
|
|
|
|
-- '^' is the "translate upwards" operator, returns same-typed vector.
|
|
__pow = function(v, zofs)
|
|
return v:_ctor(v.x, v.y, v.z-zofs)
|
|
end,
|
|
|
|
-- Convenience for human-readable display.
|
|
__tostring = function(a)
|
|
return (a:_isi() and "i" or "").."vec3("..a.x..", "..a.y..", "..a.z..")"
|
|
end,
|
|
|
|
__index = {
|
|
-- Euclidean 3D length.
|
|
len = function(a) return sqrt(a.x*a.x + a.y*a.y + a.z*a.z) end,
|
|
-- Euclidean 3D squared length.
|
|
lensq = function(a) return a.x*a.x + a.y*a.y + a.z*a.z end,
|
|
|
|
-- Euclidean 2D length.
|
|
len2 = function(a) return sqrt(a.x*a.x + a.y*a.y) end,
|
|
-- Euclidean 2D squared length.
|
|
len2sq = function(a) return a.x*a.x + a.y*a.y end,
|
|
|
|
-- Manhattan-distance 3D length:
|
|
mhlen = function(a) return abs(a.x)+abs(a.y)+abs(a.z) end,
|
|
|
|
toivec3 = function(v) return ivec3_t(v.x, v.y, v.z) end,
|
|
|
|
-- BUILD-coordinate (z scaled by 16) <-> uniform conversions.
|
|
touniform = function(v)
|
|
return v:_isi()
|
|
and v:_ctor(v.x, v.y, arshift(v.z, 4))
|
|
or v:_ctor(v.x, v.y, v.z/16)
|
|
end,
|
|
|
|
tobuild = function(v) return v:_ctor(v.x, v.y, 16*v.z) end,
|
|
|
|
rotate = function(v, ang, pivot) return l_rotate(v, ang, pivot) end,
|
|
|
|
-- PRIVATE methods --
|
|
|
|
-- Get the type constructor for this vector.
|
|
_ctor = function(v, ...)
|
|
return v:_isi() and ivec3_t(...) or dvec3_t(...)
|
|
end,
|
|
-- Is <v> integer vec3? INTERNAL.
|
|
_isi = function(v)
|
|
return ffi.istype(ivec3_t, v)
|
|
end,
|
|
|
|
--- Serialization ---
|
|
_get_require = our_get_require,
|
|
|
|
_serialize = function(v)
|
|
return (v:_isi() and "_iv" or "_v").."("..v.x..","..v.y..","..v.z..")"
|
|
end,
|
|
},
|
|
}
|
|
|
|
ffi.metatype(dvec2_t, vec2_mt)
|
|
ffi.metatype(dvec3_t, vec3_mt)
|
|
ffi.metatype(ivec3_t, vec3_mt)
|
|
|
|
-- VEC2 user data constructor.
|
|
-- * vec2([x [, y]]), assuming that x and y are numbers. Vacant positions are
|
|
-- assumed to be 0.
|
|
-- * vec2(<compound>), <compound> can be anything indexable with "x" and "y"
|
|
function vec2(...)
|
|
local x, y = ...
|
|
if (type(x)=="number" or x==nil) then
|
|
return dvec2_t(...)
|
|
else
|
|
return dvec2_t(x.x, x.y)
|
|
end
|
|
end
|
|
|
|
-- VEC3 user data constructor.
|
|
-- Analogous to VEC2.
|
|
function vec3(...)
|
|
local x, y, z = ...
|
|
if (type(x)=="number" or x==nil) then
|
|
return dvec3_t(...)
|
|
else
|
|
return dvec3_t(x.x, x.y, x.z)
|
|
end
|
|
end
|
|
|
|
-- IVEC3 user data constructor.
|
|
function ivec3(...)
|
|
local x, y, z = ...
|
|
if (type(x)=="number" or x==nil) then
|
|
return ivec3_t(...)
|
|
else
|
|
return ivec3_t(x.x, x.y, x.z)
|
|
end
|
|
end
|
|
|
|
local vec2, vec3 = vec2, vec3
|
|
|
|
|
|
---=== MISCELLANEOUS MATH ===---
|
|
|
|
local intarg = ffi.new("int32_t [1]")
|
|
function bangvec(bang)
|
|
intarg[0] = bang -- round towards zero
|
|
return dvec3_t(cosb(intarg[0]), sinb(intarg[0]))
|
|
end
|
|
|
|
function kangvec(bang, z)
|
|
intarg[0] = bang -- round towards zero
|
|
return ivec3_t(kcos(intarg[0]), ksin(intarg[0]), z or 0)
|
|
end
|
|
|
|
function angvec(ang)
|
|
return dvec3_t(cos(ang), sin(ang))
|
|
end
|
|
|
|
|
|
local zerovec = vec3()
|
|
-- Point rotation. Note the different order of arguments from engine function.
|
|
-- XXX: passing mixed vec2/vec3 is problematic. Get rid of vec2?
|
|
-- <ang>: BUILD angle (0-2047 based)
|
|
function rotate(pos, ang, pivot)
|
|
pivot = pivot or zerovec
|
|
local p = vec3(pos)-pivot
|
|
local c, s = cosb(ang), sinb(ang)
|
|
local x, y = p.x, p.y
|
|
p.x = pivot.x + (c*x - s*y)
|
|
p.y = pivot.y + (c*y + s*x)
|
|
return p
|
|
end
|
|
|
|
l_rotate = rotate
|
|
|
|
|
|
-- Two-element vector cross product.
|
|
-- Anti-commutative, distributive.
|
|
local function cross2(v, w)
|
|
return v.y*w.x - v.x*w.y
|
|
end
|
|
|
|
|
|
-- Finds the intersection point of two lines given by
|
|
-- point a and vector v
|
|
-- and
|
|
-- point b and vector w
|
|
--
|
|
-- Returns:
|
|
-- if <TODO>, nil
|
|
-- if retpoint_p evaluates to a non-true value, coefficients cv and cw such that <TODO>
|
|
-- else, the intersection point
|
|
function intersect(a,v, b,w, retpoint_p)
|
|
local vxw = cross2(v,w)
|
|
|
|
if (vxw ~= 0) then
|
|
local btoa = vec2(a) - vec2(b)
|
|
local cv, cw = cross2(w, btoa)/vxw, cross2(v, btoa)/vxw
|
|
|
|
if (retpoint_p) then
|
|
return vec2(a) + cv*vec2(v)
|
|
else
|
|
return cv, cw
|
|
end
|
|
end
|
|
|
|
-- return nil if v and w parallel (or either of them is a point), or if
|
|
-- they contain NaNs
|
|
end
|