0
0
Fork 0
mirror of https://github.com/ZDoom/raze-gles.git synced 2025-01-25 08:21:14 +00:00
raze-gles/source/core/rendering/hw_entrypoint.cpp
2021-04-21 22:32:27 +02:00

400 lines
12 KiB
C++

//
//---------------------------------------------------------------------------
//
// Copyright(C) 2004-2016 Christoph Oelckers
// All rights reserved.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program. If not, see http://www.gnu.org/licenses/
//
//--------------------------------------------------------------------------
//
/*
** gl_scene.cpp
** manages the rendering of the player's view
**
*/
#include "gi.h"
#include "build.h"
#include "v_draw.h"
//#include "a_dynlight.h"
#include "v_video.h"
#include "m_png.h"
#include "i_time.h"
#include "hw_dynlightdata.h"
#include "hw_clock.h"
#include "flatvertices.h"
#include "hw_renderstate.h"
#include "hw_lightbuffer.h"
#include "hw_cvars.h"
#include "hw_viewpointbuffer.h"
#include "hw_clipper.h"
//#include "hwrenderer/scene/hw_portal.h"
#include "hw_vrmodes.h"
#include "hw_drawstructs.h"
#include "hw_drawlist.h"
#include "hw_drawinfo.h"
#include "gamecvars.h"
#include "render.h"
#include "gamestruct.h"
#include "gamehud.h"
EXTERN_CVAR(Bool, cl_capfps)
PalEntry GlobalMapFog;
float GlobalFogDensity = 350.f;
TArray<PortalDesc> allPortals;
#if 0
void CollectLights(FLevelLocals* Level)
{
IShadowMap* sm = &screen->mShadowMap;
int lightindex = 0;
// Todo: this should go through the blockmap in a spiral pattern around the player so that closer lights are preferred.
for (auto light = Level->lights; light; light = light->next)
{
IShadowMap::LightsProcessed++;
if (light->shadowmapped && light->IsActive() && lightindex < 1024)
{
IShadowMap::LightsShadowmapped++;
light->mShadowmapIndex = lightindex;
sm->SetLight(lightindex, (float)light->X(), (float)light->Y(), (float)light->Z(), light->GetRadius());
lightindex++;
}
else
{
light->mShadowmapIndex = 1024;
}
}
for (; lightindex < 1024; lightindex++)
{
sm->SetLight(lightindex, 0, 0, 0, 0);
}
}
#endif
//-----------------------------------------------------------------------------
//
// Renders one viewpoint in a scene
//
//-----------------------------------------------------------------------------
void RenderViewpoint(FRenderViewpoint& mainvp, IntRect* bounds, float fov, float ratio, float fovratio, bool mainview, bool toscreen)
{
auto& RenderState = *screen->RenderState();
/*
if (mainview && toscreen)
{
screen->SetAABBTree(camera->Level->aabbTree);
screen->mShadowMap.SetCollectLights([=] {
CollectLights(camera->Level);
});
screen->UpdateShadowMap();
}
*/
// Render (potentially) multiple views for stereo 3d
// Fixme. The view offsetting should be done with a static table and not require setup of the entire render state for the mode.
auto vrmode = VRMode::GetVRMode(mainview && toscreen);
const int eyeCount = vrmode->mEyeCount;
screen->FirstEye();
hw_int_useindexedcolortextures = eyeCount > 1? false : *hw_useindexedcolortextures;
for (int eye_ix = 0; eye_ix < eyeCount; ++eye_ix)
{
const auto& eye = vrmode->mEyes[eye_ix];
screen->SetViewportRects(bounds);
if (mainview) // Bind the scene frame buffer and turn on draw buffers used by ssao
{
bool useSSAO = (gl_ssao != 0);
screen->SetSceneRenderTarget(useSSAO);
RenderState.SetPassType(useSSAO ? GBUFFER_PASS : NORMAL_PASS);
RenderState.EnableDrawBuffers(RenderState.GetPassDrawBufferCount(), true);
}
auto di = HWDrawInfo::StartDrawInfo(nullptr, mainvp, nullptr);
auto& vp = di->Viewpoint;
vp = mainvp;
di->Set3DViewport(RenderState);
float flash = 1.f;
di->Viewpoint.FieldOfView = fov; // Set the real FOV for the current scene (it's not necessarily the same as the global setting in r_viewpoint)
// Stereo mode specific perspective projection
di->VPUniforms.mProjectionMatrix = eye.GetProjection(fov, ratio, fovratio);
// Stereo mode specific viewpoint adjustment
vp.Pos += eye.GetViewShift(vp.HWAngles.Yaw.Degrees);
di->SetupView(RenderState, vp.Pos.X, vp.Pos.Y, vp.Pos.Z, false, false);
di->ProcessScene(toscreen);
if (mainview)
{
PostProcess.Clock();
if (toscreen) di->EndDrawScene(RenderState); // do not call this for camera textures.
if (RenderState.GetPassType() == GBUFFER_PASS) // Turn off ssao draw buffers
{
RenderState.SetPassType(NORMAL_PASS);
RenderState.EnableDrawBuffers(1);
}
screen->PostProcessScene(false, CM_DEFAULT, flash, [&]() { });
PostProcess.Unclock();
}
di->EndDrawInfo();
if (eyeCount - eye_ix > 1)
screen->NextEye(eyeCount);
}
hw_int_useindexedcolortextures = false;
}
//===========================================================================
//
// Set up the view point.
//
//===========================================================================
FRenderViewpoint SetupViewpoint(spritetype* cam, const vec3_t& position, int sectnum, binangle angle, fixedhoriz horizon, binangle rollang)
{
FRenderViewpoint r_viewpoint{};
r_viewpoint.CameraSprite = cam;
r_viewpoint.SectNums = nullptr;
r_viewpoint.SectCount = sectnum;
r_viewpoint.Pos = { position.x / 16.f, position.y / -16.f, position.z / -256.f };
r_viewpoint.HWAngles.Yaw = -90.f + angle.asdeg();
r_viewpoint.HWAngles.Pitch = -horizon.aspitch();
r_viewpoint.HWAngles.Roll = -rollang.asdeg();
r_viewpoint.FieldOfView = (float)r_fov;
r_viewpoint.RotAngle = angle.asbam();
double FocalTangent = tan(r_viewpoint.FieldOfView.Radians() / 2);
DAngle an = 270. - r_viewpoint.HWAngles.Yaw.Degrees;
r_viewpoint.TanSin = FocalTangent * an.Sin();
r_viewpoint.TanCos = FocalTangent * an.Cos();
r_viewpoint.ViewVector = an.ToVector();
return r_viewpoint;
}
void DoWriteSavePic(FileWriter* file, uint8_t* scr, int width, int height, bool upsidedown)
{
int pixelsize = 3;
int pitch = width * pixelsize;
if (upsidedown)
{
scr += ((height - 1) * width * pixelsize);
pitch *= -1;
}
M_CreatePNG(file, scr, nullptr, SS_RGB, width, height, pitch, vid_gamma);
}
//===========================================================================
//
// Render the view to a savegame picture
//
// Currently a bit messy because the game side still needs to be able to
// handle Polymost.
//
//===========================================================================
bool writingsavepic;
FileWriter* savefile;
int savewidth, saveheight;
void PM_WriteSavePic(FileWriter* file, int width, int height);
EXTERN_CVAR(Bool, testnewrenderer);
void WriteSavePic(FileWriter* file, int width, int height)
{
if (!testnewrenderer)
{
PM_WriteSavePic(file, width, height);
return;
}
int oldx = xdim;
int oldy = ydim;
auto oldwindowxy1 = windowxy1;
auto oldwindowxy2 = windowxy2;
xdim = width;
ydim = height;
videoSetViewableArea(0, 0, width - 1, height - 1);
writingsavepic = true;
savefile = file;
savewidth = width;
saveheight = height;
bool didit = gi->GenerateSavePic();
writingsavepic = false;
xdim = oldx;
ydim = oldy;
videoSetViewableArea(oldwindowxy1.x, oldwindowxy1.y, oldwindowxy2.x, oldwindowxy2.y);
}
void RenderToSavePic(FRenderViewpoint& vp, FileWriter* file, int width, int height)
{
IntRect bounds;
bounds.left = 0;
bounds.top = 0;
bounds.width = width;
bounds.height = height;
auto& RenderState = *screen->RenderState();
// we must be sure the GPU finished reading from the buffer before we fill it with new data.
screen->WaitForCommands(false);
// Switch to render buffers dimensioned for the savepic
screen->SetSaveBuffers(true);
screen->ImageTransitionScene(true);
RenderState.SetVertexBuffer(screen->mVertexData);
screen->mVertexData->Reset();
screen->mLights->Clear();
screen->mViewpoints->Clear();
twodpsp.Clear();
RenderViewpoint(vp, &bounds, vp.FieldOfView.Degrees, 1.333f, 1.333f, true, false);
int numpixels = width * height;
uint8_t* scr = (uint8_t*)M_Malloc(numpixels * 3);
screen->CopyScreenToBuffer(width, height, scr);
DoWriteSavePic(file, scr, width, height, screen->FlipSavePic());
M_Free(scr);
// Switch back the screen render buffers
screen->SetViewportRects(nullptr);
screen->SetSaveBuffers(false);
}
//===========================================================================
//
// Renders the main view
//
//===========================================================================
static void CheckTimer(FRenderState &state, uint64_t ShaderStartTime)
{
// if firstFrame is not yet initialized, initialize it to current time
// if we're going to overflow a float (after ~4.6 hours, or 24 bits), re-init to regain precision
if ((state.firstFrame == 0) || (screen->FrameTime - state.firstFrame >= 1 << 24) || ShaderStartTime >= state.firstFrame)
state.firstFrame = screen->FrameTime;
}
void animatecamsprite(double s);
void render_drawrooms(spritetype* playersprite, const vec3_t& position, int sectnum, binangle angle, fixedhoriz horizon, binangle rollang, double smoothratio)
{
checkRotatedWalls();
if (gl_fogmode == 1) gl_fogmode = 2; // still needed?
int16_t sect = sectnum;
updatesector(position.x, position.y, &sect);
if (sect >= 0) sectnum = sect;
if (sectnum < 0) return;
iter_dlightf = iter_dlight = draw_dlight = draw_dlightf = 0;
checkBenchActive();
// reset statistics counters
ResetProfilingData();
// Get this before everything else
FRenderViewpoint r_viewpoint = SetupViewpoint(playersprite, position, sectnum, angle, horizon, rollang);
if (cl_capfps) r_viewpoint.TicFrac = 1.;
else r_viewpoint.TicFrac = smoothratio * (1/65536.);
screen->mLights->Clear();
screen->mViewpoints->Clear();
screen->mVertexData->Reset();
if (writingsavepic) // hack alert! The save code should not go through render_drawrooms, but we can only clean up the game side when Polymost is gone for good.
{
RenderToSavePic(r_viewpoint, savefile, savewidth, saveheight);
return;
}
// Shader start time does not need to be handled per level. Just use the one from the camera to render from.
auto RenderState = screen->RenderState();
CheckTimer(*RenderState, 0/*ShaderStartTime*/);
// prepare all camera textures that have been used in the last frame.
gi->UpdateCameras(r_viewpoint.TicFrac);
RenderState->SetVertexBuffer(screen->mVertexData);
// now render the main view
float fovratio;
float ratio = ActiveRatio(screen->GetWidth(), screen->GetHeight());
if (ratio >= 1.33f)
{
fovratio = 1.33f;
}
else
{
fovratio = ratio;
}
screen->ImageTransitionScene(true); // Only relevant for Vulkan.
RenderViewpoint(r_viewpoint, nullptr, r_viewpoint.FieldOfView.Degrees, ratio, fovratio, true, true);
All.Unclock();
}
void render_camtex(spritetype* playersprite, const vec3_t& position, int sectnum, binangle angle, fixedhoriz horizon, binangle rollang, FGameTexture* camtex, IntRect& rect, double smoothratio)
{
int16_t sect = sectnum;
updatesector(position.x, position.y, &sect);
if (sect >= 0) sectnum = sect;
if (sectnum < 0) return;
screen->RenderState()->SetVertexBuffer(screen->mVertexData);
// now render the main view
float ratio = camtex->GetDisplayWidth() / camtex->GetDisplayHeight();
FRenderViewpoint r_viewpoint = SetupViewpoint(playersprite, position, sectnum, angle, horizon, rollang);
if (cl_capfps) r_viewpoint.TicFrac = smoothratio;
RenderViewpoint(r_viewpoint, &rect, r_viewpoint.FieldOfView.Degrees, ratio, ratio, false, false);
All.Unclock();
}
FSerializer& Serialize(FSerializer& arc, const char* key, PortalDesc& obj, PortalDesc* defval)
{
if (arc.BeginObject(key))
{
arc("type", obj.type)
("dx", obj.dx)
("dy", obj.dy)
("dz", obj.dz)
("targets", obj.targets)
.EndObject();
}
return arc;
}