raze-gles/wadsrc/static/shaders_gles/glsl/main.fp
2021-09-18 13:03:36 +02:00

566 lines
14 KiB
GLSL

varying vec4 vTexCoord;
varying vec4 vColor;
varying vec4 pixelpos;
varying vec3 glowdist;
varying vec3 gradientdist;
varying vec4 vWorldNormal;
varying vec4 vEyeNormal;
#ifdef NO_CLIPDISTANCE_SUPPORT
varying vec4 ClipDistanceA;
varying vec4 ClipDistanceB;
#endif
struct Material
{
vec4 Base;
vec4 Bright;
vec4 Glow;
vec3 Normal;
vec3 Specular;
float Glossiness;
float SpecularLevel;
};
vec4 Process(vec4 color);
vec4 ProcessTexel();
Material ProcessMaterial(); // note that this is deprecated. Use SetupMaterial!
void SetupMaterial(inout Material mat);
vec4 ProcessLight(Material mat, vec4 color);
vec3 ProcessMaterialLight(Material material, vec3 color);
vec2 GetTexCoord();
// These get Or'ed into uTextureMode because it only uses its 3 lowermost bits.
//const int TEXF_Brightmap = 0x10000;
//const int TEXF_Detailmap = 0x20000;
//const int TEXF_Glowmap = 0x40000;
//===========================================================================
//
// Color to grayscale
//
//===========================================================================
float grayscale(vec4 color)
{
return dot(color.rgb, vec3(0.3, 0.56, 0.14));
}
//===========================================================================
//
// Desaturate a color
//
//===========================================================================
vec4 dodesaturate(vec4 texel, float factor)
{
if (factor != 0.0)
{
float gray = grayscale(texel);
return mix (texel, vec4(gray,gray,gray,texel.a), factor);
}
else
{
return texel;
}
}
//===========================================================================
//
// Desaturate a color
//
//===========================================================================
vec4 desaturate(vec4 texel)
{
#if (DEF_DO_DESATURATE == 1)
return dodesaturate(texel, uDesaturationFactor);
#else
return texel;
#endif
}
//===========================================================================
//
// Texture tinting code originally from JFDuke but with a few more options
//
//===========================================================================
const int Tex_Blend_Alpha = 1;
const int Tex_Blend_Screen = 2;
const int Tex_Blend_Overlay = 3;
const int Tex_Blend_Hardlight = 4;
vec4 ApplyTextureManipulation(vec4 texel)
{
// Step 1: desaturate according to the material's desaturation factor.
texel = dodesaturate(texel, uTextureModulateColor.a);
// Step 2: Invert if requested // TODO FIX
//if ((blendflags & 8) != 0)
//{
// texel.rgb = vec3(1.0 - texel.r, 1.0 - texel.g, 1.0 - texel.b);
//}
// Step 3: Apply additive color
texel.rgb += uTextureAddColor.rgb;
// Step 4: Colorization, including gradient if set.
texel.rgb *= uTextureModulateColor.rgb;
// Before applying the blend the value needs to be clamped to [0..1] range.
texel.rgb = clamp(texel.rgb, 0.0, 1.0);
// Step 5: Apply a blend. This may just be a translucent overlay or one of the blend modes present in current Build engines.
#if (DEF_BLEND_FLAGS != 0)
vec3 tcol = texel.rgb * 255.0; // * 255.0 to make it easier to reuse the integer math.
vec4 tint = uTextureBlendColor * 255.0;
#if (DEF_BLEND_FLAGS == 1)
tcol.b = tcol.b * (1.0 - uTextureBlendColor.a) + tint.b * uTextureBlendColor.a;
tcol.g = tcol.g * (1.0 - uTextureBlendColor.a) + tint.g * uTextureBlendColor.a;
tcol.r = tcol.r * (1.0 - uTextureBlendColor.a) + tint.r * uTextureBlendColor.a;
#elif (DEF_BLEND_FLAGS == 2) // Tex_Blend_Screen:
tcol.b = 255.0 - (((255.0 - tcol.b) * (255.0 - tint.r)) / 256.0);
tcol.g = 255.0 - (((255.0 - tcol.g) * (255.0 - tint.g)) / 256.0);
tcol.r = 255.0 - (((255.0 - tcol.r) * (255.0 - tint.b)) / 256.0);
#elif (DEF_BLEND_FLAGS == 3) // Tex_Blend_Overlay:
tcol.b = tcol.b < 128.0? (tcol.b * tint.b) / 128.0 : 255.0 - (((255.0 - tcol.b) * (255.0 - tint.b)) / 128.0);
tcol.g = tcol.g < 128.0? (tcol.g * tint.g) / 128.0 : 255.0 - (((255.0 - tcol.g) * (255.0 - tint.g)) / 128.0);
tcol.r = tcol.r < 128.0? (tcol.r * tint.r) / 128.0 : 255.0 - (((255.0 - tcol.r) * (255.0 - tint.r)) / 128.0);
#elif (DEF_BLEND_FLAGS == 4) // Tex_Blend_Hardlight:
tcol.b = tint.b < 128.0 ? (tcol.b * tint.b) / 128.0 : 255.0 - (((255.0 - tcol.b) * (255.0 - tint.b)) / 128.0);
tcol.g = tint.g < 128.0 ? (tcol.g * tint.g) / 128.0 : 255.0 - (((255.0 - tcol.g) * (255.0 - tint.g)) / 128.0);
tcol.r = tint.r < 128.0 ? (tcol.r * tint.r) / 128.0 : 255.0 - (((255.0 - tcol.r) * (255.0 - tint.r)) / 128.0);
#endif
texel.rgb = tcol / 255.0;
#endif
return texel;
}
//===========================================================================
//
// This function is common for all (non-special-effect) fragment shaders
//
//===========================================================================
vec4 getTexel(vec2 st)
{
vec4 texel = texture2D(tex, st);
#if (DEF_TEXTURE_MODE == 1)
texel.rgb = vec3(1.0,1.0,1.0);
#elif (DEF_TEXTURE_MODE == 2)// TM_OPAQUE
texel.a = 1.0;
#elif (DEF_TEXTURE_MODE == 3)// TM_INVERSE
texel = vec4(1.0-texel.r, 1.0-texel.b, 1.0-texel.g, texel.a);
#elif (DEF_TEXTURE_MODE == 4)// TM_ALPHATEXTURE
float gray = grayscale(texel);
texel = vec4(1.0, 1.0, 1.0, gray*texel.a);
#elif (DEF_TEXTURE_MODE == 5)// TM_CLAMPY
if (st.t < 0.0 || st.t > 1.0)
{
texel.a = 0.0;
}
#elif (DEF_TEXTURE_MODE == 6)// TM_OPAQUEINVERSE
texel = vec4(1.0-texel.r, 1.0-texel.b, 1.0-texel.g, 1.0);
#elif (DEF_TEXTURE_MODE == 7)//TM_FOGLAYER
return texel;
#endif
// Apply the texture modification colors.
#if (DEF_BLEND_FLAGS != 0)
// only apply the texture manipulation if it contains something.
texel = ApplyTextureManipulation(texel, DEF_BLEND_FLAGS);
#endif
// Apply the Doom64 style material colors on top of everything from the texture modification settings.
// This may be a bit redundant in terms of features but the data comes from different sources so this is unavoidable.
texel.rgb += uAddColor.rgb;
#if (DEF_USE_OBJECT_COLOR_2 == 1)
texel *= mix(uObjectColor, uObjectColor2, gradientdist.z);
#else
texel *= uObjectColor;
#endif
// Last but not least apply the desaturation from the sector's light.
return desaturate(texel);
}
//===========================================================================
//
// Doom software lighting equation
//
//===========================================================================
#define DOOMLIGHTFACTOR 232.0
float R_DoomLightingEquation_OLD(float light)
{
// z is the depth in view space, positive going into the screen
float z = pixelpos.w;
/* L in the range 0 to 63 */
float L = light * 63.0/31.0;
float min_L = clamp(36.0/31.0 - L, 0.0, 1.0);
// Fix objects getting totally black when close.
if (z < 0.0001)
z = 0.0001;
float scale = 1.0 / z;
float index = (59.0/31.0 - L) - (scale * DOOMLIGHTFACTOR/31.0 - DOOMLIGHTFACTOR/31.0);
// Result is the normalized colormap index (0 bright .. 1 dark)
return clamp(index, min_L, 1.0) / 32.0;
}
//===========================================================================
//
// zdoom colormap equation
//
//===========================================================================
float R_ZDoomColormap(float light, float z)
{
float L = light * 255.0;
float vis = min(uGlobVis / z, 24.0 / 32.0);
float shade = 2.0 - (L + 12.0) / 128.0;
float lightscale = shade - vis;
return lightscale * 31.0;
}
//===========================================================================
//
// Doom software lighting equation
//
//===========================================================================
float R_DoomLightingEquation(float light)
{
// z is the depth in view space, positive going into the screen
float z;
#if (DEF_FOG_RADIAL == 1)
z = distance(pixelpos.xyz, uCameraPos.xyz);
#else
z = pixelpos.w;
#endif
#if (DEF_BUILD_LIGHTING == 1) // gl_lightmode 5: Build software lighting emulation.
// This is a lot more primitive than Doom's lighting...
float numShades = float(uPalLightLevels);
float curshade = (1.0 - light) * (numShades - 1.0);
float visibility = max(uGlobVis * uLightFactor * abs(z), 0.0);
float shade = clamp((curshade + visibility), 0.0, numShades - 1.0);
return clamp(shade * uLightDist, 0.0, 1.0);
#endif
float colormap = R_ZDoomColormap(light, z); // ONLY Software mode, vanilla not yet working
#if (DEF_BANDED_SW_LIGHTING == 1)
colormap = floor(colormap) + 0.5;
#endif
// Result is the normalized colormap index (0 bright .. 1 dark)
return clamp(colormap, 0.0, 31.0) / 32.0;
}
float shadowAttenuation(vec4 lightpos, float lightcolorA)
{
return 1.0;
}
float spotLightAttenuation(vec4 lightpos, vec3 spotdir, float lightCosInnerAngle, float lightCosOuterAngle)
{
vec3 lightDirection = normalize(lightpos.xyz - pixelpos.xyz);
float cosDir = dot(lightDirection, spotdir);
return smoothstep(lightCosOuterAngle, lightCosInnerAngle, cosDir);
}
vec3 ApplyNormalMap(vec2 texcoord)
{
return normalize(vWorldNormal.xyz);
}
//===========================================================================
//
// Sets the common material properties.
//
//===========================================================================
void SetMaterialProps(inout Material material, vec2 texCoord)
{
#ifdef NPOT_EMULATION
#if (DEF_NPOT_EMULATION == 1)
float period = floor(texCoord.t / uNpotEmulation.y);
texCoord.s += uNpotEmulation.x * floor(mod(texCoord.t, uNpotEmulation.y));
texCoord.t = period + mod(texCoord.t, uNpotEmulation.y);
#endif
#endif
material.Base = getTexel(texCoord.st);
material.Normal = ApplyNormalMap(texCoord.st);
#if (DEF_TEXTURE_FLAGS & 0x1)
material.Bright = texture2D(brighttexture, texCoord.st);
#endif
#if (DEF_TEXTURE_FLAGS & 0x2)
{
vec4 Detail = texture2D(detailtexture, texCoord.st * uDetailParms.xy) * uDetailParms.z;
material.Base *= Detail;
}
#endif
#if (DEF_TEXTURE_FLAGS & 0x4)
{
material.Glow = texture2D(glowtexture, texCoord.st);
}
#endif
}
//===========================================================================
//
// Calculate light
//
// It is important to note that the light color is not desaturated
// due to ZDoom's implementation weirdness. Everything that's added
// on top of it, e.g. dynamic lights and glows are, though, because
// the objects emitting these lights are also.
//
// This is making this a bit more complicated than it needs to
// because we can't just desaturate the final fragment color.
//
//===========================================================================
vec4 getLightColor(Material material, float fogdist, float fogfactor)
{
vec4 color = vColor;
#if (DEF_USE_U_LIGHT_LEVEL == 1)
{
float newlightlevel = 1.0 - R_DoomLightingEquation(uLightLevel);
color.rgb *= newlightlevel;
}
#else
{
#if (DEF_FOG_ENABLED == 1) && (DEF_FOG_COLOURED == 0)
{
// brightening around the player for light mode 2
if (fogdist < uLightDist)
{
color.rgb *= uLightFactor - (fogdist / uLightDist) * (uLightFactor - 1.0);
}
//
// apply light diminishing through fog equation
//
color.rgb = mix(vec3(0.0, 0.0, 0.0), color.rgb, fogfactor);
}
#endif
}
#endif
//
// handle glowing walls
//
#if (DEF_USE_GLOW_TOP_COLOR)
if (glowdist.x < uGlowTopColor.a)
{
color.rgb += desaturate(uGlowTopColor * (1.0 - glowdist.x / uGlowTopColor.a)).rgb;
}
#endif
#if (DEF_USE_GLOW_BOTTOM_COLOR)
if (glowdist.y < uGlowBottomColor.a)
{
color.rgb += desaturate(uGlowBottomColor * (1.0 - glowdist.y / uGlowBottomColor.a)).rgb;
}
#endif
color = min(color, 1.0);
// these cannot be safely applied by the legacy format where the implementation cannot guarantee that the values are set.
#ifndef LEGACY_USER_SHADER
//
// apply glow
//
color.rgb = mix(color.rgb, material.Glow.rgb, material.Glow.a);
//
// apply brightmaps
//
color.rgb = min(color.rgb + material.Bright.rgb, 1.0);
#endif
//
// apply other light manipulation by custom shaders, default is a NOP.
//
color = ProcessLight(material, color);
//
// apply dynamic lights
//
return vec4(ProcessMaterialLight(material, color.rgb), material.Base.a * vColor.a);
}
//===========================================================================
//
// Applies colored fog
//
//===========================================================================
vec4 applyFog(vec4 frag, float fogfactor)
{
return vec4(mix(uFogColor.rgb, frag.rgb, fogfactor), frag.a);
}
//===========================================================================
//
// Main shader routine
//
//===========================================================================
void main()
{
//if (ClipDistanceA.x < 0.0 || ClipDistanceA.y < 0.0 || ClipDistanceA.z < 0.0 || ClipDistanceA.w < 0.0 || ClipDistanceB.x < 0.0) discard;
#ifndef LEGACY_USER_SHADER
Material material;
material.Base = vec4(0.0);
material.Bright = vec4(0.0);
material.Glow = vec4(0.0);
material.Normal = vec3(0.0);
material.Specular = vec3(0.0);
material.Glossiness = 0.0;
material.SpecularLevel = 0.0;
SetupMaterial(material);
#else
Material material = ProcessMaterial();
#endif
vec4 frag = material.Base;
#ifndef NO_ALPHATEST
if (frag.a <= uAlphaThreshold) discard;
#endif
#if (DEF_FOG_2D == 0) // check for special 2D 'fog' mode.
{
float fogdist = 0.0;
float fogfactor = 0.0;
//
// calculate fog factor
//
#if (DEF_FOG_ENABLED == 1)
{
#if (DEF_FOG_RADIAL == 0)
fogdist = max(16.0, pixelpos.w);
#else
fogdist = max(16.0, distance(pixelpos.xyz, uCameraPos.xyz));
#endif
fogfactor = exp2 (uFogDensity * fogdist);
}
#endif
#if (DEF_TEXTURE_MODE != 7)
{
frag = getLightColor(material, fogdist, fogfactor);
//
// colored fog
//
#if (DEF_FOG_ENABLED == 1) && (DEF_FOG_COLOURED == 1)
{
frag = applyFog(frag, fogfactor);
}
#endif
}
#else
{
frag = vec4(uFogColor.rgb, (1.0 - fogfactor) * frag.a * 0.75 * vColor.a);
}
#endif
}
#else
{
#if (DEF_TEXTURE_MODE == 7)
{
float gray = grayscale(frag);
vec4 cm = (uObjectColor + gray * (uAddColor - uObjectColor)) * 2;
frag = vec4(clamp(cm.rgb, 0.0, 1.0), frag.a);
}
#endif
frag = frag * ProcessLight(material, vColor);
frag.rgb = frag.rgb + uFogColor.rgb;
}
#endif // (DEF_2D_FOG == 0)
#if (DEF_USE_COLOR_MAP == 1) // This mostly works but doesn't look great because of the blending.
{
frag.rgb = clamp(pow(frag.rgb, vec3(uFixedColormapStart.a)), 0.0, 1.0);
if (uFixedColormapRange.a == 0.0)
{
float gray = (frag.r * 0.3 + frag.g * 0.56 + frag.b * 0.14);
vec4 cm = uFixedColormapStart + gray * uFixedColormapRange;
frag.rgb = clamp(cm.rgb, 0.0, 1.0);
}
}
#endif
gl_FragColor = frag;
//gl_FragColor = vec4(0.8, 0.2, 0.5, 1);
}