raze-gles/source/common/rendering/gl/gl_renderstate.cpp
Christoph Oelckers 49e0c461c2 - Backend update from GZDoom.
This is mainly bringing the GLES backend up to date.
2021-10-07 22:46:45 +02:00

596 lines
16 KiB
C++

//
//---------------------------------------------------------------------------
//
// Copyright(C) 2009-2016 Christoph Oelckers
// All rights reserved.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program. If not, see http://www.gnu.org/licenses/
//
//--------------------------------------------------------------------------
//
/*
** gl_renderstate.cpp
** Render state maintenance
**
*/
#include "templates.h"
#include "gl_system.h"
#include "gl_interface.h"
#include "hw_cvars.h"
#include "flatvertices.h"
#include "gl_shader.h"
#include "gl_renderer.h"
#include "hw_lightbuffer.h"
#include "gl_renderbuffers.h"
#include "gl_hwtexture.h"
#include "gl_buffers.h"
#include "hw_clock.h"
#include "hwrenderer/data/hw_viewpointbuffer.h"
namespace OpenGLRenderer
{
FGLRenderState gl_RenderState;
static VSMatrix identityMatrix(1);
static void matrixToGL(const VSMatrix &mat, int loc)
{
glUniformMatrix4fv(loc, 1, false, (float*)&mat);
}
//==========================================================================
//
// This only gets called once upon setup.
// With OpenGL the state is persistent and cannot be cleared, once set up.
//
//==========================================================================
void FGLRenderState::Reset()
{
FRenderState::Reset();
mVertexBuffer = mCurrentVertexBuffer = nullptr;
mGlossiness = 0.0f;
mSpecularLevel = 0.0f;
mShaderTimer = 0.0f;
stRenderStyle = DefaultRenderStyle();
stSrcBlend = stDstBlend = -1;
stBlendEquation = -1;
stAlphaTest = 0;
mLastDepthClamp = true;
mEffectState = 0;
activeShader = nullptr;
mCurrentVertexBuffer = nullptr;
mCurrentVertexOffsets[0] = mVertexOffsets[0] = 0;
mCurrentIndexBuffer = nullptr;
}
//==========================================================================
//
// Apply shader settings
//
//==========================================================================
bool FGLRenderState::ApplyShader()
{
static const float nulvec[] = { 0.f, 0.f, 0.f, 0.f };
if (mSpecialEffect > EFF_NONE)
{
activeShader = GLRenderer->mShaderManager->BindEffect(mSpecialEffect, mPassType);
}
else
{
activeShader = GLRenderer->mShaderManager->Get(mTextureEnabled ? mEffectState : SHADER_NoTexture, mAlphaThreshold >= 0.f, mPassType);
activeShader->Bind();
}
int fogset = 0;
if (mFogEnabled)
{
if (mFogEnabled == 2)
{
fogset = -3; // 2D rendering with 'foggy' overlay.
}
else if ((GetFogColor() & 0xffffff) == 0)
{
fogset = gl_fogmode;
}
else
{
fogset = -gl_fogmode;
}
}
glVertexAttrib4fv(VATTR_COLOR, &mStreamData.uVertexColor.X);
glVertexAttrib4fv(VATTR_NORMAL, &mStreamData.uVertexNormal.X);
activeShader->muDesaturation.Set(mStreamData.uDesaturationFactor);
activeShader->muFogEnabled.Set(fogset);
activeShader->muTextureMode.Set(GetTextureModeAndFlags(mTempTM));
activeShader->muLightParms.Set(mLightParms);
activeShader->muFogColor.Set(mStreamData.uFogColor);
activeShader->muObjectColor.Set(mStreamData.uObjectColor);
activeShader->muDynLightColor.Set(&mStreamData.uDynLightColor.X);
activeShader->muInterpolationFactor.Set(mStreamData.uInterpolationFactor);
activeShader->muTimer.Set((double)(screen->FrameTime - firstFrame) * (double)mShaderTimer / 1000.);
activeShader->muAlphaThreshold.Set(mAlphaThreshold);
activeShader->muLightIndex.Set(-1);
activeShader->muClipSplit.Set(mClipSplit);
activeShader->muSpecularMaterial.Set(mGlossiness, mSpecularLevel);
activeShader->muAddColor.Set(mStreamData.uAddColor);
activeShader->muTextureAddColor.Set(mStreamData.uTextureAddColor);
activeShader->muTextureModulateColor.Set(mStreamData.uTextureModulateColor);
activeShader->muTextureBlendColor.Set(mStreamData.uTextureBlendColor);
activeShader->muDetailParms.Set(&mStreamData.uDetailParms.X);
#ifdef NPOT_EMULATION
activeShader->muNpotEmulation.Set(&mStreamData.uNpotEmulation.X);
#endif
if (mGlowEnabled || activeShader->currentglowstate)
{
activeShader->muGlowTopColor.Set(&mStreamData.uGlowTopColor.X);
activeShader->muGlowBottomColor.Set(&mStreamData.uGlowBottomColor.X);
activeShader->muGlowTopPlane.Set(&mStreamData.uGlowTopPlane.X);
activeShader->muGlowBottomPlane.Set(&mStreamData.uGlowBottomPlane.X);
activeShader->currentglowstate = mGlowEnabled;
}
if (mGradientEnabled || activeShader->currentgradientstate)
{
activeShader->muObjectColor2.Set(mStreamData.uObjectColor2);
activeShader->muGradientTopPlane.Set(&mStreamData.uGradientTopPlane.X);
activeShader->muGradientBottomPlane.Set(&mStreamData.uGradientBottomPlane.X);
activeShader->currentgradientstate = mGradientEnabled;
}
if (mSplitEnabled || activeShader->currentsplitstate)
{
activeShader->muSplitTopPlane.Set(&mStreamData.uSplitTopPlane.X);
activeShader->muSplitBottomPlane.Set(&mStreamData.uSplitBottomPlane.X);
activeShader->currentsplitstate = mSplitEnabled;
}
if (mTextureMatrixEnabled)
{
matrixToGL(mTextureMatrix, activeShader->texturematrix_index);
activeShader->currentTextureMatrixState = true;
}
else if (activeShader->currentTextureMatrixState)
{
activeShader->currentTextureMatrixState = false;
matrixToGL(identityMatrix, activeShader->texturematrix_index);
}
if (mModelMatrixEnabled)
{
matrixToGL(mModelMatrix, activeShader->modelmatrix_index);
VSMatrix norm;
norm.computeNormalMatrix(mModelMatrix);
matrixToGL(norm, activeShader->normalmodelmatrix_index);
activeShader->currentModelMatrixState = true;
}
else if (activeShader->currentModelMatrixState)
{
activeShader->currentModelMatrixState = false;
matrixToGL(identityMatrix, activeShader->modelmatrix_index);
matrixToGL(identityMatrix, activeShader->normalmodelmatrix_index);
}
int index = mLightIndex;
// Mess alert for crappy AncientGL!
if (!screen->mLights->GetBufferType() && index >= 0)
{
size_t start, size;
index = screen->mLights->GetBinding(index, &start, &size);
if (start != mLastMappedLightIndex || screen->mPipelineNbr > 1) // If multiple buffers always bind
{
mLastMappedLightIndex = start;
static_cast<GLDataBuffer*>(screen->mLights->GetBuffer())->BindRange(nullptr, start, size);
}
}
activeShader->muLightIndex.Set(index);
return true;
}
//==========================================================================
//
// Apply State
//
//==========================================================================
void FGLRenderState::ApplyState()
{
if (mRenderStyle != stRenderStyle)
{
ApplyBlendMode();
stRenderStyle = mRenderStyle;
}
if (mSplitEnabled != stSplitEnabled)
{
if (mSplitEnabled)
{
glEnable(GL_CLIP_DISTANCE3);
glEnable(GL_CLIP_DISTANCE4);
}
else
{
glDisable(GL_CLIP_DISTANCE3);
glDisable(GL_CLIP_DISTANCE4);
}
stSplitEnabled = mSplitEnabled;
}
if (mMaterial.mChanged)
{
ApplyMaterial(mMaterial.mMaterial, mMaterial.mClampMode, mMaterial.mTranslation, mMaterial.mOverrideShader);
mMaterial.mChanged = false;
}
if (mBias.mChanged)
{
if (mBias.mFactor == 0 && mBias.mUnits == 0)
{
glDisable(GL_POLYGON_OFFSET_FILL);
}
else
{
glEnable(GL_POLYGON_OFFSET_FILL);
}
glPolygonOffset(mBias.mFactor, mBias.mUnits);
mBias.mChanged = false;
}
}
void FGLRenderState::ApplyBuffers()
{
if (mVertexBuffer != mCurrentVertexBuffer || mVertexOffsets[0] != mCurrentVertexOffsets[0] || mVertexOffsets[1] != mCurrentVertexOffsets[1])
{
assert(mVertexBuffer != nullptr);
static_cast<GLVertexBuffer*>(mVertexBuffer)->Bind(mVertexOffsets);
mCurrentVertexBuffer = mVertexBuffer;
mCurrentVertexOffsets[0] = mVertexOffsets[0];
mCurrentVertexOffsets[1] = mVertexOffsets[1];
}
if (mIndexBuffer != mCurrentIndexBuffer)
{
if (mIndexBuffer) static_cast<GLIndexBuffer*>(mIndexBuffer)->Bind();
mCurrentIndexBuffer = mIndexBuffer;
}
}
void FGLRenderState::Apply()
{
ApplyState();
ApplyBuffers();
ApplyShader();
}
//===========================================================================
//
// Binds a texture to the renderer
//
//===========================================================================
void FGLRenderState::ApplyMaterial(FMaterial *mat, int clampmode, int translation, int overrideshader)
{
if (mat->Source()->isHardwareCanvas())
{
mTempTM = TM_OPAQUE;
}
else
{
mTempTM = TM_NORMAL;
}
auto tex = mat->Source();
mEffectState = overrideshader >= 0 ? overrideshader : mat->GetShaderIndex();
mShaderTimer = tex->GetShaderSpeed();
SetSpecular(tex->GetGlossiness(), tex->GetSpecularLevel());
if (tex->isHardwareCanvas()) static_cast<FCanvasTexture*>(tex->GetTexture())->NeedUpdate();
clampmode = tex->GetClampMode(clampmode);
// avoid rebinding the same texture multiple times.
if (mat == lastMaterial && lastClamp == clampmode && translation == lastTranslation) return;
lastMaterial = mat;
lastClamp = clampmode;
lastTranslation = translation;
int usebright = false;
int maxbound = 0;
int numLayers = mat->NumLayers();
MaterialLayerInfo* layer;
auto base = static_cast<FHardwareTexture*>(mat->GetLayer(0, translation, &layer));
if (base->BindOrCreate(tex->GetTexture(), 0, clampmode, translation, layer->scaleFlags))
{
if (!(layer->scaleFlags & CTF_Indexed))
{
for (int i = 1; i < numLayers; i++)
{
auto systex = static_cast<FHardwareTexture*>(mat->GetLayer(i, 0, &layer));
// fixme: Upscale flags must be disabled for certain layers.
systex->BindOrCreate(layer->layerTexture, i, clampmode, 0, layer->scaleFlags);
maxbound = i;
}
}
else
{
for (int i = 1; i < 3; i++)
{
auto systex = static_cast<FHardwareTexture*>(mat->GetLayer(i, translation, &layer));
systex->Bind(i, false);
maxbound = i;
}
}
}
// unbind everything from the last texture that's still active
for (int i = maxbound + 1; i <= maxBoundMaterial; i++)
{
FHardwareTexture::Unbind(i);
maxBoundMaterial = maxbound;
}
}
//==========================================================================
//
// Apply blend mode from RenderStyle
//
//==========================================================================
void FGLRenderState::ApplyBlendMode()
{
static int blendstyles[] = { GL_ZERO, GL_ONE, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_DST_COLOR, GL_ONE_MINUS_DST_COLOR, GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA };
static int renderops[] = { 0, GL_FUNC_ADD, GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1 };
int srcblend = blendstyles[mRenderStyle.SrcAlpha%STYLEALPHA_MAX];
int dstblend = blendstyles[mRenderStyle.DestAlpha%STYLEALPHA_MAX];
int blendequation = renderops[mRenderStyle.BlendOp & 15];
if (blendequation == -1) // This was a fuzz style.
{
srcblend = GL_DST_COLOR;
dstblend = GL_ONE_MINUS_SRC_ALPHA;
blendequation = GL_FUNC_ADD;
}
// Checks must be disabled until all draw code has been converted.
//if (srcblend != stSrcBlend || dstblend != stDstBlend)
{
stSrcBlend = srcblend;
stDstBlend = dstblend;
glBlendFunc(srcblend, dstblend);
}
//if (blendequation != stBlendEquation)
{
stBlendEquation = blendequation;
glBlendEquation(blendequation);
}
}
//==========================================================================
//
// API dependent draw calls
//
//==========================================================================
static int dt2gl[] = { GL_POINTS, GL_LINES, GL_TRIANGLES, GL_TRIANGLE_FAN, GL_TRIANGLE_STRIP };
void FGLRenderState::Draw(int dt, int index, int count, bool apply)
{
if (apply)
{
Apply();
}
drawcalls.Clock();
glDrawArrays(dt2gl[dt], index, count);
drawcalls.Unclock();
}
void FGLRenderState::DrawIndexed(int dt, int index, int count, bool apply)
{
if (apply)
{
Apply();
}
drawcalls.Clock();
glDrawElements(dt2gl[dt], count, GL_UNSIGNED_INT, (void*)(intptr_t)(index * sizeof(uint32_t)));
drawcalls.Unclock();
}
void FGLRenderState::SetDepthMask(bool on)
{
glDepthMask(on);
}
void FGLRenderState::SetDepthFunc(int func)
{
static int df2gl[] = { GL_LESS, GL_LEQUAL, GL_ALWAYS };
glDepthFunc(df2gl[func]);
}
void FGLRenderState::SetDepthRange(float min, float max)
{
glDepthRange(min, max);
}
void FGLRenderState::SetColorMask(bool r, bool g, bool b, bool a)
{
glColorMask(r, g, b, a);
}
void FGLRenderState::SetStencil(int offs, int op, int flags = -1)
{
static int op2gl[] = { GL_KEEP, GL_INCR, GL_DECR };
glStencilFunc(GL_EQUAL, screen->stencilValue + offs, ~0); // draw sky into stencil
glStencilOp(GL_KEEP, GL_KEEP, op2gl[op]); // this stage doesn't modify the stencil
if (flags != -1)
{
bool cmon = !(flags & SF_ColorMaskOff);
glColorMask(cmon, cmon, cmon, cmon); // don't write to the graphics buffer
glDepthMask(!(flags & SF_DepthMaskOff));
}
}
void FGLRenderState::ToggleState(int state, bool on)
{
if (on)
{
glEnable(state);
}
else
{
glDisable(state);
}
}
void FGLRenderState::SetCulling(int mode)
{
if (mode != Cull_None)
{
glEnable(GL_CULL_FACE);
glFrontFace(mode == Cull_CCW ? GL_CCW : GL_CW);
}
else
{
glDisable(GL_CULL_FACE);
}
}
void FGLRenderState::EnableClipDistance(int num, bool state)
{
// Update the viewpoint-related clip plane setting.
if (!(gl.flags & RFL_NO_CLIP_PLANES))
{
ToggleState(GL_CLIP_DISTANCE0 + num, state);
}
}
void FGLRenderState::Clear(int targets)
{
// This always clears to default values.
int gltarget = 0;
if (targets & CT_Depth)
{
gltarget |= GL_DEPTH_BUFFER_BIT;
glClearDepth(1);
}
if (targets & CT_Stencil)
{
gltarget |= GL_STENCIL_BUFFER_BIT;
glClearStencil(0);
}
if (targets & CT_Color)
{
gltarget |= GL_COLOR_BUFFER_BIT;
glClearColor(screen->mSceneClearColor[0], screen->mSceneClearColor[1], screen->mSceneClearColor[2], screen->mSceneClearColor[3]);
}
glClear(gltarget);
}
void FGLRenderState::EnableStencil(bool on)
{
ToggleState(GL_STENCIL_TEST, on);
}
void FGLRenderState::SetScissor(int x, int y, int w, int h)
{
if (w > -1)
{
glEnable(GL_SCISSOR_TEST);
glScissor(x, y, w, h);
}
else
{
glDisable(GL_SCISSOR_TEST);
}
}
void FGLRenderState::SetViewport(int x, int y, int w, int h)
{
glViewport(x, y, w, h);
}
void FGLRenderState::EnableDepthTest(bool on)
{
ToggleState(GL_DEPTH_TEST, on);
}
void FGLRenderState::EnableMultisampling(bool on)
{
ToggleState(GL_MULTISAMPLE, on);
}
void FGLRenderState::EnableLineSmooth(bool on)
{
ToggleState(GL_LINE_SMOOTH, on);
}
//==========================================================================
//
//
//
//==========================================================================
void FGLRenderState::ClearScreen()
{
bool multi = !!glIsEnabled(GL_MULTISAMPLE);
screen->mViewpoints->Set2D(*this, SCREENWIDTH, SCREENHEIGHT);
SetColor(0, 0, 0);
Apply();
glDisable(GL_MULTISAMPLE);
glDisable(GL_DEPTH_TEST);
glDrawArrays(GL_TRIANGLE_STRIP, FFlatVertexBuffer::FULLSCREEN_INDEX, 4);
glEnable(GL_DEPTH_TEST);
if (multi) glEnable(GL_MULTISAMPLE);
}
//==========================================================================
//
// Below are less frequently altrered state settings which do not get
// buffered by the state object, but set directly instead.
//
//==========================================================================
bool FGLRenderState::SetDepthClamp(bool on)
{
bool res = mLastDepthClamp;
if (!on) glDisable(GL_DEPTH_CLAMP);
else glEnable(GL_DEPTH_CLAMP);
mLastDepthClamp = on;
return res;
}
}