mirror of
https://github.com/ZDoom/raze-gles.git
synced 2025-01-22 15:11:09 +00:00
339 lines
7.6 KiB
C
339 lines
7.6 KiB
C
/* asin.c
|
||
*
|
||
* Inverse circular sine
|
||
*
|
||
*
|
||
*
|
||
* SYNOPSIS:
|
||
*
|
||
* double x, y, asin();
|
||
*
|
||
* y = asin( x );
|
||
*
|
||
*
|
||
*
|
||
* DESCRIPTION:
|
||
*
|
||
* Returns radian angle between -pi/2 and +pi/2 whose sine is x.
|
||
*
|
||
* A rational function of the form x + x**3 P(x**2)/Q(x**2)
|
||
* is used for |x| in the interval [0, 0.5]. If |x| > 0.5 it is
|
||
* transformed by the identity
|
||
*
|
||
* asin(x) = pi/2 - 2 asin( sqrt( (1-x)/2 ) ).
|
||
*
|
||
*
|
||
* ACCURACY:
|
||
*
|
||
* Relative error:
|
||
* arithmetic domain # trials peak rms
|
||
* DEC -1, 1 40000 2.6e-17 7.1e-18
|
||
* IEEE -1, 1 10^6 1.9e-16 5.4e-17
|
||
*
|
||
*
|
||
* ERROR MESSAGES:
|
||
*
|
||
* message condition value returned
|
||
* asin domain |x| > 1 NAN
|
||
*
|
||
*/
|
||
/* acos()
|
||
*
|
||
* Inverse circular cosine
|
||
*
|
||
*
|
||
*
|
||
* SYNOPSIS:
|
||
*
|
||
* double x, y, acos();
|
||
*
|
||
* y = acos( x );
|
||
*
|
||
*
|
||
*
|
||
* DESCRIPTION:
|
||
*
|
||
* Returns radian angle between 0 and pi whose cosine
|
||
* is x.
|
||
*
|
||
* Analytically, acos(x) = pi/2 - asin(x). However if |x| is
|
||
* near 1, there is cancellation error in subtracting asin(x)
|
||
* from pi/2. Hence if x < -0.5,
|
||
*
|
||
* acos(x) = pi - 2.0 * asin( sqrt((1+x)/2) );
|
||
*
|
||
* or if x > +0.5,
|
||
*
|
||
* acos(x) = 2.0 * asin( sqrt((1-x)/2) ).
|
||
*
|
||
*
|
||
* ACCURACY:
|
||
*
|
||
* Relative error:
|
||
* arithmetic domain # trials peak rms
|
||
* DEC -1, 1 50000 3.3e-17 8.2e-18
|
||
* IEEE -1, 1 10^6 2.2e-16 6.5e-17
|
||
*
|
||
*
|
||
* ERROR MESSAGES:
|
||
*
|
||
* message condition value returned
|
||
* asin domain |x| > 1 NAN
|
||
*/
|
||
|
||
/* asin.c */
|
||
|
||
/*
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1995, 2000 by Stephen L. Moshier
|
||
|
||
Redistribution and use in source and binary forms, with or without
|
||
modification, are permitted provided that the following conditions are met:
|
||
|
||
1. Redistributions of source code must retain the above copyright notice,
|
||
this list of conditions and the following disclaimer.
|
||
2. Redistributions in binary form must reproduce the above copyright
|
||
notice, this list of conditions and the following disclaimer in the
|
||
documentation and/or other materials provided with the distribution.
|
||
3. Neither the name of the <ORGANIZATION> nor the names of its
|
||
contributors may be used to endorse or promote products derived from
|
||
this software without specific prior written permission.
|
||
|
||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
POSSIBILITY OF SUCH DAMAGE.
|
||
*/
|
||
|
||
#include "mconf.h"
|
||
|
||
/* arcsin(x) = x + x^3 P(x^2)/Q(x^2)
|
||
0 <= x <= 0.625
|
||
Peak relative error = 1.2e-18 */
|
||
#if UNK
|
||
static double P[6] = {
|
||
4.253011369004428248960E-3,
|
||
-6.019598008014123785661E-1,
|
||
5.444622390564711410273E0,
|
||
-1.626247967210700244449E1,
|
||
1.956261983317594739197E1,
|
||
-8.198089802484824371615E0,
|
||
};
|
||
static double Q[5] = {
|
||
/* 1.000000000000000000000E0, */
|
||
-1.474091372988853791896E1,
|
||
7.049610280856842141659E1,
|
||
-1.471791292232726029859E2,
|
||
1.395105614657485689735E2,
|
||
-4.918853881490881290097E1,
|
||
};
|
||
#endif
|
||
#if DEC
|
||
static short P[24] = {
|
||
0036213,0056330,0057244,0053234,
|
||
0140032,0015011,0114762,0160255,
|
||
0040656,0035130,0136121,0067313,
|
||
0141202,0014616,0170474,0101731,
|
||
0041234,0100076,0151674,0111310,
|
||
0141003,0025540,0033165,0077246,
|
||
};
|
||
static short Q[20] = {
|
||
/* 0040200,0000000,0000000,0000000, */
|
||
0141153,0155310,0055360,0072530,
|
||
0041614,0177001,0027764,0101237,
|
||
0142023,0026733,0064653,0133266,
|
||
0042013,0101264,0023775,0176351,
|
||
0141504,0140420,0050660,0036543,
|
||
};
|
||
#endif
|
||
#if IBMPC
|
||
static short P[24] = {
|
||
0x8ad3,0x0bd4,0x6b9b,0x3f71,
|
||
0x5c16,0x333e,0x4341,0xbfe3,
|
||
0x2dd9,0x178a,0xc74b,0x4015,
|
||
0x907b,0xde27,0x4331,0xc030,
|
||
0x9259,0xda77,0x9007,0x4033,
|
||
0xafd5,0x06ce,0x656c,0xc020,
|
||
};
|
||
static short Q[20] = {
|
||
/* 0x0000,0x0000,0x0000,0x3ff0, */
|
||
0x0eab,0x0b5e,0x7b59,0xc02d,
|
||
0x9054,0x25fe,0x9fc0,0x4051,
|
||
0x76d7,0x6d35,0x65bb,0xc062,
|
||
0xbf9d,0x84ff,0x7056,0x4061,
|
||
0x07ac,0x0a36,0x9822,0xc048,
|
||
};
|
||
#endif
|
||
#if MIEEE
|
||
static short P[24] = {
|
||
0x3f71,0x6b9b,0x0bd4,0x8ad3,
|
||
0xbfe3,0x4341,0x333e,0x5c16,
|
||
0x4015,0xc74b,0x178a,0x2dd9,
|
||
0xc030,0x4331,0xde27,0x907b,
|
||
0x4033,0x9007,0xda77,0x9259,
|
||
0xc020,0x656c,0x06ce,0xafd5,
|
||
};
|
||
static short Q[20] = {
|
||
/* 0x3ff0,0x0000,0x0000,0x0000, */
|
||
0xc02d,0x7b59,0x0b5e,0x0eab,
|
||
0x4051,0x9fc0,0x25fe,0x9054,
|
||
0xc062,0x65bb,0x6d35,0x76d7,
|
||
0x4061,0x7056,0x84ff,0xbf9d,
|
||
0xc048,0x9822,0x0a36,0x07ac,
|
||
};
|
||
#endif
|
||
|
||
/* arcsin(1-x) = pi/2 - sqrt(2x)(1+R(x))
|
||
0 <= x <= 0.5
|
||
Peak relative error = 4.2e-18 */
|
||
#if UNK
|
||
static double R[5] = {
|
||
2.967721961301243206100E-3,
|
||
-5.634242780008963776856E-1,
|
||
6.968710824104713396794E0,
|
||
-2.556901049652824852289E1,
|
||
2.853665548261061424989E1,
|
||
};
|
||
static double S[4] = {
|
||
/* 1.000000000000000000000E0, */
|
||
-2.194779531642920639778E1,
|
||
1.470656354026814941758E2,
|
||
-3.838770957603691357202E2,
|
||
3.424398657913078477438E2,
|
||
};
|
||
#endif
|
||
#if DEC
|
||
static short R[20] = {
|
||
0036102,0077034,0142164,0174103,
|
||
0140020,0036222,0147711,0044173,
|
||
0040736,0177655,0153631,0171523,
|
||
0141314,0106525,0060015,0055474,
|
||
0041344,0045422,0003630,0040344,
|
||
};
|
||
static short S[16] = {
|
||
/* 0040200,0000000,0000000,0000000, */
|
||
0141257,0112425,0132772,0166136,
|
||
0042023,0010315,0075523,0175020,
|
||
0142277,0170104,0126203,0017563,
|
||
0042253,0034115,0102662,0022757,
|
||
};
|
||
#endif
|
||
#if IBMPC
|
||
static short R[20] = {
|
||
0x9f08,0x988e,0x4fc3,0x3f68,
|
||
0x290f,0x59f9,0x0792,0xbfe2,
|
||
0x3e6a,0xbaf3,0xdff5,0x401b,
|
||
0xab68,0xac01,0x91aa,0xc039,
|
||
0x081d,0x40f3,0x8962,0x403c,
|
||
};
|
||
static short S[16] = {
|
||
/* 0x0000,0x0000,0x0000,0x3ff0, */
|
||
0x5d8c,0xb6bf,0xf2a2,0xc035,
|
||
0x7f42,0xaf6a,0x6219,0x4062,
|
||
0x63ee,0x9590,0xfe08,0xc077,
|
||
0x44be,0xb0b6,0x6709,0x4075,
|
||
};
|
||
#endif
|
||
#if MIEEE
|
||
static short R[20] = {
|
||
0x3f68,0x4fc3,0x988e,0x9f08,
|
||
0xbfe2,0x0792,0x59f9,0x290f,
|
||
0x401b,0xdff5,0xbaf3,0x3e6a,
|
||
0xc039,0x91aa,0xac01,0xab68,
|
||
0x403c,0x8962,0x40f3,0x081d,
|
||
};
|
||
static short S[16] = {
|
||
/* 0x3ff0,0x0000,0x0000,0x0000, */
|
||
0xc035,0xf2a2,0xb6bf,0x5d8c,
|
||
0x4062,0x6219,0xaf6a,0x7f42,
|
||
0xc077,0xfe08,0x9590,0x63ee,
|
||
0x4075,0x6709,0xb0b6,0x44be,
|
||
};
|
||
#endif
|
||
|
||
/* pi/2 = PIO2 + MOREBITS. */
|
||
#ifdef DEC
|
||
#define MOREBITS 5.721188726109831840122E-18
|
||
#else
|
||
#define MOREBITS 6.123233995736765886130E-17
|
||
#endif
|
||
|
||
#ifdef ANSIPROT
|
||
extern double polevl ( double, void *, int );
|
||
extern double p1evl ( double, void *, int );
|
||
extern double c_sqrt ( double );
|
||
double c_asin ( double );
|
||
#else
|
||
double c_sqrt(), polevl(), p1evl();
|
||
double c_asin();
|
||
#endif
|
||
extern double PIO2, PIO4, NAN;
|
||
|
||
double c_asin(x)
|
||
double x;
|
||
{
|
||
double a, p, z, zz;
|
||
short sign;
|
||
|
||
if( x > 0 )
|
||
{
|
||
sign = 1;
|
||
a = x;
|
||
}
|
||
else
|
||
{
|
||
sign = -1;
|
||
a = -x;
|
||
}
|
||
|
||
if( a > 1.0 )
|
||
{
|
||
mtherr( "asin", DOMAIN );
|
||
return( NAN );
|
||
}
|
||
|
||
if( a > 0.625 )
|
||
{
|
||
/* arcsin(1-x) = pi/2 - sqrt(2x)(1+R(x)) */
|
||
zz = 1.0 - a;
|
||
p = zz * polevl( zz, R, 4)/p1evl( zz, S, 4);
|
||
zz = c_sqrt(zz+zz);
|
||
z = PIO4 - zz;
|
||
zz = zz * p - MOREBITS;
|
||
z = z - zz;
|
||
z = z + PIO4;
|
||
}
|
||
else
|
||
{
|
||
if( a < 1.0e-8 )
|
||
{
|
||
return(x);
|
||
}
|
||
zz = a * a;
|
||
z = zz * polevl( zz, P, 5)/p1evl( zz, Q, 5);
|
||
z = a * z + a;
|
||
}
|
||
if( sign < 0 )
|
||
z = -z;
|
||
return(z);
|
||
}
|
||
|
||
|
||
|
||
double c_acos(x)
|
||
double x;
|
||
{
|
||
if( (x < -1.0) || (x > 1.0) )
|
||
{
|
||
mtherr( "acos", DOMAIN );
|
||
return( NAN );
|
||
}
|
||
return PIO2 - c_asin(x) + MOREBITS;
|
||
}
|