mirror of
https://github.com/ZDoom/raze-gles.git
synced 2025-01-18 13:21:38 +00:00
f7dd0ec4a2
As it turned out, the triangulator only works fine for regular polygons, but creates incomplete meshes for sectors with multiple sections or some degenerate areas, which are quite common with swinging doors. The node builder is more costly and creates wall splits, of course, but it does not create broken output for degenerate sectors so it's a good fallback.
397 lines
11 KiB
C++
397 lines
11 KiB
C++
/*
|
|
** nodebuild_gl.cpp
|
|
**
|
|
** Extra functions for the node builder to create minisegs.
|
|
**
|
|
**---------------------------------------------------------------------------
|
|
** Copyright 2002-2006 Randy Heit
|
|
** All rights reserved.
|
|
**
|
|
** Redistribution and use in source and binary forms, with or without
|
|
** modification, are permitted provided that the following conditions
|
|
** are met:
|
|
**
|
|
** 1. Redistributions of source code must retain the above copyright
|
|
** notice, this list of conditions and the following disclaimer.
|
|
** 2. Redistributions in binary form must reproduce the above copyright
|
|
** notice, this list of conditions and the following disclaimer in the
|
|
** documentation and/or other materials provided with the distribution.
|
|
** 3. The name of the author may not be used to endorse or promote products
|
|
** derived from this software without specific prior written permission.
|
|
** 4. When not used as part of ZDoom or a ZDoom derivative, this code will be
|
|
** covered by the terms of the GNU General Public License as published by
|
|
** the Free Software Foundation; either version 2 of the License, or (at
|
|
** your option) any later version.
|
|
**
|
|
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
**---------------------------------------------------------------------------
|
|
**
|
|
*/
|
|
|
|
#include "nodebuild.h"
|
|
|
|
static inline void Warn (const char *format, ...)
|
|
{
|
|
}
|
|
|
|
static const angle_t ANGLE_EPSILON = 5000;
|
|
|
|
#if 0
|
|
#define D(x) x
|
|
#else
|
|
#define D(x) do{}while(0)
|
|
#endif
|
|
|
|
double FNodeBuilder::AddIntersection (const node_t &node, int vertex)
|
|
{
|
|
static const FEventInfo defaultInfo =
|
|
{
|
|
-1, UINT_MAX
|
|
};
|
|
|
|
// Calculate signed distance of intersection vertex from start of splitter.
|
|
// Only ordering is important, so we don't need a sqrt.
|
|
FPrivVert *v = &Vertices[vertex];
|
|
double dist = (double(v->x) - node.x)*(node.dx) + (double(v->y) - node.y)*(node.dy);
|
|
|
|
FEvent *event = Events.FindEvent (dist);
|
|
if (event == NULL)
|
|
{
|
|
event = Events.GetNewNode ();
|
|
event->Distance = dist;
|
|
event->Info = defaultInfo;
|
|
event->Info.Vertex = vertex;
|
|
Events.Insert (event);
|
|
}
|
|
return dist;
|
|
}
|
|
|
|
// If there are any segs on the splitter that span more than two events, they
|
|
// must be split. Alien Vendetta is one example wad that is quite bad about
|
|
// having overlapping lines. If we skip this step, these segs will still be
|
|
// split later, but minisegs will erroneously be added for them, and partner
|
|
// seg information will be messed up in the generated tree.
|
|
void FNodeBuilder::FixSplitSharers (const node_t &node)
|
|
{
|
|
D(Printf(PRINT_LOG, "events:\n"));
|
|
D(Events.PrintTree());
|
|
for (unsigned int i = 0; i < SplitSharers.Size(); ++i)
|
|
{
|
|
uint32_t seg = SplitSharers[i].Seg;
|
|
int v2 = Segs[seg].v2;
|
|
FEvent *event = Events.FindEvent (SplitSharers[i].Distance);
|
|
FEvent *next;
|
|
|
|
if (event == NULL)
|
|
{ // Should not happen
|
|
continue;
|
|
}
|
|
|
|
// Use the CRT's printf so the formatting matches ZDBSP's
|
|
D(char buff[200]);
|
|
D(sprintf(buff, "Considering events on seg %d(%d[%d,%d]->%d[%d,%d]) [%g:%g]\n", seg,
|
|
Segs[seg].v1,
|
|
Vertices[Segs[seg].v1].x>>16,
|
|
Vertices[Segs[seg].v1].y>>16,
|
|
Segs[seg].v2,
|
|
Vertices[Segs[seg].v2].x>>16,
|
|
Vertices[Segs[seg].v2].y>>16,
|
|
SplitSharers[i].Distance, event->Distance));
|
|
D(Printf(PRINT_LOG, "%s", buff));
|
|
|
|
if (SplitSharers[i].Forward)
|
|
{
|
|
event = Events.GetSuccessor (event);
|
|
if (event == NULL)
|
|
{
|
|
continue;
|
|
}
|
|
next = Events.GetSuccessor (event);
|
|
}
|
|
else
|
|
{
|
|
event = Events.GetPredecessor (event);
|
|
if (event == NULL)
|
|
{
|
|
continue;
|
|
}
|
|
next = Events.GetPredecessor (event);
|
|
}
|
|
|
|
while (event != NULL && next != NULL && event->Info.Vertex != v2)
|
|
{
|
|
D(Printf(PRINT_LOG, "Forced split of seg %d(%d->%d) at %d(%d,%d)\n", seg,
|
|
Segs[seg].v1, Segs[seg].v2,
|
|
event->Info.Vertex,
|
|
Vertices[event->Info.Vertex].x>>16,
|
|
Vertices[event->Info.Vertex].y>>16));
|
|
|
|
uint32_t newseg = SplitSeg (seg, event->Info.Vertex, 1);
|
|
|
|
Segs[newseg].next = Segs[seg].next;
|
|
Segs[seg].next = newseg;
|
|
|
|
uint32_t partner = Segs[seg].partner;
|
|
if (partner != UINT_MAX)
|
|
{
|
|
int endpartner = SplitSeg (partner, event->Info.Vertex, 1);
|
|
|
|
Segs[endpartner].next = Segs[partner].next;
|
|
Segs[partner].next = endpartner;
|
|
|
|
Segs[seg].partner = endpartner;
|
|
Segs[partner].partner = newseg;
|
|
}
|
|
|
|
seg = newseg;
|
|
if (SplitSharers[i].Forward)
|
|
{
|
|
event = next;
|
|
next = Events.GetSuccessor (next);
|
|
}
|
|
else
|
|
{
|
|
event = next;
|
|
next = Events.GetPredecessor (next);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void FNodeBuilder::AddMinisegs (const node_t &node, uint32_t splitseg, uint32_t &fset, uint32_t &bset)
|
|
{
|
|
FEvent *event = Events.GetMinimum (), *prev = NULL;
|
|
|
|
while (event != NULL)
|
|
{
|
|
if (prev != NULL)
|
|
{
|
|
uint32_t fseg1, bseg1, fseg2, bseg2;
|
|
uint32_t fnseg, bnseg;
|
|
|
|
// Minisegs should only be added when they can create valid loops on both the front and
|
|
// back of the splitter. This means some subsectors could be unclosed if their sectors
|
|
// are unclosed, but at least we won't be needlessly creating subsectors in void space.
|
|
// Unclosed subsectors can be closed trivially once the BSP tree is complete.
|
|
|
|
if ((fseg1 = CheckLoopStart (node.dx, node.dy, prev->Info.Vertex, event->Info.Vertex)) != UINT_MAX &&
|
|
(bseg1 = CheckLoopStart (-node.dx, -node.dy, event->Info.Vertex, prev->Info.Vertex)) != UINT_MAX &&
|
|
(fseg2 = CheckLoopEnd (node.dx, node.dy, event->Info.Vertex)) != UINT_MAX &&
|
|
(bseg2 = CheckLoopEnd (-node.dx, -node.dy, prev->Info.Vertex)) != UINT_MAX)
|
|
{
|
|
// Add miniseg on the front side
|
|
fnseg = AddMiniseg (prev->Info.Vertex, event->Info.Vertex, UINT_MAX, fseg1, splitseg);
|
|
Segs[fnseg].next = fset;
|
|
fset = fnseg;
|
|
|
|
// Add miniseg on the back side
|
|
bnseg = AddMiniseg (event->Info.Vertex, prev->Info.Vertex, fnseg, bseg1, splitseg);
|
|
Segs[bnseg].next = bset;
|
|
bset = bnseg;
|
|
|
|
sector_t *fsector, *bsector;
|
|
|
|
fsector = Segs[fseg1].frontsector;
|
|
bsector = Segs[bseg1].frontsector;
|
|
|
|
Segs[fnseg].frontsector = fsector;
|
|
Segs[fnseg].backsector = bsector;
|
|
Segs[bnseg].frontsector = bsector;
|
|
Segs[bnseg].backsector = fsector;
|
|
|
|
// Only print the warning if this might be bad.
|
|
if (fsector != bsector &&
|
|
fsector != Segs[fseg1].backsector &&
|
|
bsector != Segs[bseg1].backsector)
|
|
{
|
|
Warn ("Sectors %d at (%d,%d) and %d at (%d,%d) don't match.\n",
|
|
Segs[fseg1].frontsector,
|
|
Vertices[prev->Info.Vertex].x>>FRACBITS, Vertices[prev->Info.Vertex].y>>FRACBITS,
|
|
Segs[bseg1].frontsector,
|
|
Vertices[event->Info.Vertex].x>>FRACBITS, Vertices[event->Info.Vertex].y>>FRACBITS
|
|
);
|
|
}
|
|
|
|
D(Printf (PRINT_LOG, "**Minisegs** %d/%d added %d(%d,%d)->%d(%d,%d)\n", fnseg, bnseg,
|
|
prev->Info.Vertex,
|
|
Vertices[prev->Info.Vertex].x>>16, Vertices[prev->Info.Vertex].y>>16,
|
|
event->Info.Vertex,
|
|
Vertices[event->Info.Vertex].x>>16, Vertices[event->Info.Vertex].y>>16));
|
|
}
|
|
}
|
|
prev = event;
|
|
event = Events.GetSuccessor (event);
|
|
}
|
|
}
|
|
|
|
uint32_t FNodeBuilder::AddMiniseg (int v1, int v2, uint32_t partner, uint32_t seg1, uint32_t splitseg)
|
|
{
|
|
uint32_t nseg;
|
|
FPrivSeg *seg = &Segs[seg1];
|
|
FPrivSeg newseg;
|
|
|
|
newseg.sidedef = NO_SIDE;
|
|
newseg.linedef = -1;
|
|
newseg.loopnum = 0;
|
|
newseg.next = UINT_MAX;
|
|
newseg.planefront = true;
|
|
newseg.hashnext = NULL;
|
|
newseg.storedseg = UINT_MAX;
|
|
newseg.frontsector = NULL;
|
|
newseg.backsector = NULL;
|
|
|
|
if (splitseg != UINT_MAX)
|
|
{
|
|
newseg.planenum = Segs[splitseg].planenum;
|
|
}
|
|
else
|
|
{
|
|
newseg.planenum = -1;
|
|
}
|
|
|
|
newseg.v1 = v1;
|
|
newseg.v2 = v2;
|
|
newseg.nextforvert = Vertices[v1].segs;
|
|
newseg.nextforvert2 = Vertices[v2].segs2;
|
|
newseg.next = seg->next;
|
|
if (partner != UINT_MAX)
|
|
{
|
|
newseg.partner = partner;
|
|
}
|
|
else
|
|
{
|
|
newseg.partner = UINT_MAX;
|
|
}
|
|
nseg = Segs.Push (newseg);
|
|
if (newseg.partner != UINT_MAX)
|
|
{
|
|
Segs[partner].partner = nseg;
|
|
}
|
|
Vertices[v1].segs = nseg;
|
|
Vertices[v2].segs2 = nseg;
|
|
//Printf ("Between %d and %d::::\n", seg1, seg2);
|
|
return nseg;
|
|
}
|
|
|
|
uint32_t FNodeBuilder::CheckLoopStart (fixed_t dx, fixed_t dy, int vertex, int vertex2)
|
|
{
|
|
FPrivVert *v = &Vertices[vertex];
|
|
angle_t splitAngle = PointToAngle (dx, dy);
|
|
uint32_t segnum;
|
|
angle_t bestang;
|
|
uint32_t bestseg;
|
|
|
|
// Find the seg ending at this vertex that forms the smallest angle
|
|
// to the splitter.
|
|
segnum = v->segs2;
|
|
bestang = ANGLE_MAX;
|
|
bestseg = UINT_MAX;
|
|
while (segnum != UINT_MAX)
|
|
{
|
|
FPrivSeg *seg = &Segs[segnum];
|
|
angle_t segAngle = PointToAngle (Vertices[seg->v1].x - v->x, Vertices[seg->v1].y - v->y);
|
|
angle_t diff = splitAngle - segAngle;
|
|
|
|
if (diff < ANGLE_EPSILON &&
|
|
PointOnSide (Vertices[seg->v1].x, Vertices[seg->v1].y, v->x, v->y, dx, dy) == 0)
|
|
{
|
|
// If a seg lies right on the splitter, don't count it
|
|
}
|
|
else
|
|
{
|
|
if (diff <= bestang)
|
|
{
|
|
bestang = diff;
|
|
bestseg = segnum;
|
|
}
|
|
}
|
|
segnum = seg->nextforvert2;
|
|
}
|
|
if (bestseg == UINT_MAX)
|
|
{
|
|
return UINT_MAX;
|
|
}
|
|
// Now make sure there are no segs starting at this vertex that form
|
|
// an even smaller angle to the splitter.
|
|
segnum = v->segs;
|
|
while (segnum != UINT_MAX)
|
|
{
|
|
FPrivSeg *seg = &Segs[segnum];
|
|
if (seg->v2 == vertex2)
|
|
{
|
|
return UINT_MAX;
|
|
}
|
|
angle_t segAngle = PointToAngle (Vertices[seg->v2].x - v->x, Vertices[seg->v2].y - v->y);
|
|
angle_t diff = splitAngle - segAngle;
|
|
if (diff < bestang && seg->partner != bestseg)
|
|
{
|
|
return UINT_MAX;
|
|
}
|
|
segnum = seg->nextforvert;
|
|
}
|
|
return bestseg;
|
|
}
|
|
|
|
uint32_t FNodeBuilder::CheckLoopEnd (fixed_t dx, fixed_t dy, int vertex)
|
|
{
|
|
FPrivVert *v = &Vertices[vertex];
|
|
angle_t splitAngle = PointToAngle (dx, dy) + ANGLE_180;
|
|
uint32_t segnum;
|
|
angle_t bestang;
|
|
uint32_t bestseg;
|
|
|
|
// Find the seg starting at this vertex that forms the smallest angle
|
|
// to the splitter.
|
|
segnum = v->segs;
|
|
bestang = ANGLE_MAX;
|
|
bestseg = UINT_MAX;
|
|
while (segnum != UINT_MAX)
|
|
{
|
|
FPrivSeg *seg = &Segs[segnum];
|
|
angle_t segAngle = PointToAngle (Vertices[seg->v2].x - v->x, Vertices[seg->v2].y - v->y);
|
|
angle_t diff = segAngle - splitAngle;
|
|
|
|
if (diff < ANGLE_EPSILON &&
|
|
PointOnSide (Vertices[seg->v1].x, Vertices[seg->v1].y, v->x, v->y, dx, dy) == 0)
|
|
{
|
|
// If a seg lies right on the splitter, don't count it
|
|
}
|
|
else
|
|
{
|
|
if (diff <= bestang)
|
|
{
|
|
bestang = diff;
|
|
bestseg = segnum;
|
|
}
|
|
}
|
|
segnum = seg->nextforvert;
|
|
}
|
|
if (bestseg == UINT_MAX)
|
|
{
|
|
return UINT_MAX;
|
|
}
|
|
// Now make sure there are no segs ending at this vertex that form
|
|
// an even smaller angle to the splitter.
|
|
segnum = v->segs2;
|
|
while (segnum != UINT_MAX)
|
|
{
|
|
FPrivSeg *seg = &Segs[segnum];
|
|
angle_t segAngle = PointToAngle (Vertices[seg->v1].x - v->x, Vertices[seg->v1].y - v->y);
|
|
angle_t diff = segAngle - splitAngle;
|
|
if (diff < bestang && seg->partner != bestseg)
|
|
{
|
|
return UINT_MAX;
|
|
}
|
|
segnum = seg->nextforvert2;
|
|
}
|
|
return bestseg;
|
|
}
|