raze-gles/source/common/models/models_obj.cpp

701 lines
17 KiB
C++
Raw Normal View History

//
//---------------------------------------------------------------------------
//
// Copyright(C) 2018 Kevin Caccamo
// All rights reserved.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program. If not, see http://www.gnu.org/licenses/
//
//--------------------------------------------------------------------------
#include "filesystem.h"
#include "model_obj.h"
#include "texturemanager.h"
#include "modelrenderer.h"
#include "printf.h"
#include "textureid.h"
/**
* Load an OBJ model
*
* @param fn The path to the model file
* @param lumpnum The lump index in the wad collection
* @param buffer The contents of the model file
* @param length The size of the model file
* @return Whether or not the model was parsed successfully
*/
bool FOBJModel::Load(const char* fn, int lumpnum, const char* buffer, int length)
{
FString objName = fileSystem.GetFileFullPath(lumpnum);
FString objBuf(buffer, length);
// Do some replacements before we parse the OBJ string
{
// Ensure usemtl statements remain intact
TArray<FString> mtlUsages;
TArray<long> mtlUsageIdxs;
long bpos = 0, nlpos = 0, slashpos = 0;
while (1)
{
bpos = objBuf.IndexOf("\nusemtl", bpos);
if (bpos == -1) break;
slashpos = objBuf.IndexOf('/', bpos);
nlpos = objBuf.IndexOf('\n', ++bpos);
if (slashpos > nlpos || slashpos == -1)
{
continue;
}
if (nlpos == -1)
{
nlpos = (long)objBuf.Len();
}
FString lineStr(objBuf.GetChars() + bpos, nlpos - bpos);
mtlUsages.Push(lineStr);
mtlUsageIdxs.Push(bpos);
}
// Replace forward slashes with percent signs so they aren't parsed as line comments
objBuf.ReplaceChars('/', *newSideSep);
char* wObjBuf = objBuf.LockBuffer();
// Substitute broken usemtl statements with old ones
for (size_t i = 0; i < mtlUsages.Size(); i++)
{
bpos = mtlUsageIdxs[i];
nlpos = objBuf.IndexOf('\n', bpos);
if (nlpos == -1)
{
nlpos = (long)objBuf.Len();
}
memcpy(wObjBuf + bpos, mtlUsages[i].GetChars(), nlpos - bpos);
}
bpos = 0;
// Find each OBJ line comment, and convert each to a C-style line comment
while (1)
{
bpos = objBuf.IndexOf('#', bpos);
if (bpos == -1) break;
if (objBuf[(unsigned int)bpos + 1] == '\n')
{
wObjBuf[bpos] = ' ';
}
else
{
wObjBuf[bpos] = '/';
wObjBuf[bpos+1] = '/';
}
bpos += 1;
}
wObjBuf = nullptr;
objBuf.UnlockBuffer();
}
sc.OpenString(objName, objBuf);
FTextureID curMtl = FNullTextureID();
OBJSurface *curSurface = nullptr;
unsigned int aggSurfFaceCount = 0;
unsigned int curSurfFaceCount = 0;
unsigned int curSmoothGroup = 0;
while(sc.GetString())
{
if (sc.Compare("v")) // Vertex
{
ParseVector<FVector3, 3>(this->verts);
}
else if (sc.Compare("vn")) // Vertex normal
{
ParseVector<FVector3, 3>(this->norms);
}
else if (sc.Compare("vt")) // UV Coordinates
{
ParseVector<FVector2, 2>(this->uvs);
}
else if (sc.Compare("usemtl"))
{
// Get material name and try to load it
sc.MustGetString();
curMtl = LoadSkin("", sc.String);
if (!curMtl.isValid())
{
// Relative to model file path?
curMtl = LoadSkin(fn, sc.String);
}
if (!curMtl.isValid())
{
sc.ScriptMessage("Material %s (#%u) not found.", sc.String, surfaces.Size());
}
// Build surface...
if (curSurface == nullptr)
{
// First surface
curSurface = new OBJSurface(curMtl);
}
else
{
if (curSurfFaceCount > 0)
{
// Add previous surface
curSurface->numFaces = curSurfFaceCount;
curSurface->faceStart = aggSurfFaceCount;
surfaces.Push(*curSurface);
delete curSurface;
// Go to next surface
curSurface = new OBJSurface(curMtl);
aggSurfFaceCount += curSurfFaceCount;
}
else
{
curSurface->skin = curMtl;
}
}
curSurfFaceCount = 0;
}
else if (sc.Compare("f"))
{
FString sides[4];
OBJFace face;
for (int i = 0; i < 3; i++)
{
// A face must have at least 3 sides
sc.MustGetString();
sides[i] = sc.String;
if (!ParseFaceSide(sides[i], face, i)) return false;
}
face.sideCount = 3;
if (sc.GetString())
{
if (!sc.Compare("f") && FString(sc.String).IndexOfAny("-0123456789") == 0)
{
sides[3] = sc.String;
face.sideCount += 1;
if (!ParseFaceSide(sides[3], face, 3)) return false;
}
else
{
sc.UnGet(); // No 4th side, move back
}
}
face.smoothGroup = curSmoothGroup;
faces.Push(face);
curSurfFaceCount += 1;
}
else if (sc.Compare("s"))
{
sc.MustGetString();
if (sc.Compare("off"))
{
curSmoothGroup = 0;
}
else
{
sc.UnGet();
sc.MustGetNumber();
curSmoothGroup = sc.Number;
hasSmoothGroups = hasSmoothGroups || curSmoothGroup > 0;
}
}
}
sc.Close();
if (curSurface == nullptr)
{ // No valid materials detected
FTextureID dummyMtl = LoadSkin("", "-NOFLAT-"); // Built-in to GZDoom
curSurface = new OBJSurface(dummyMtl);
}
curSurface->numFaces = curSurfFaceCount;
curSurface->faceStart = aggSurfFaceCount;
surfaces.Push(*curSurface);
delete curSurface;
if (uvs.Size() == 0)
{ // Needed so that OBJs without UVs can work
uvs.Push(FVector2(0.0, 0.0));
}
return true;
}
/**
* Parse an x-Dimensional vector
*
* @tparam T A subclass of TVector2 to be used
* @tparam L The length of the vector to parse
* @param[out] array The array to append the parsed vector to
*/
template<typename T, size_t L> void FOBJModel::ParseVector(TArray<T> &array)
{
float coord[L];
for (size_t axis = 0; axis < L; axis++)
{
sc.MustGetFloat();
coord[axis] = (float)sc.Float;
}
T vec(coord);
array.Push(vec);
}
/**
* Parse a side of a face
*
* @param[in] sideStr The side definition string
* @param[out] face The face to assign the parsed side data to
* @param sidx The 0-based index of the side
* @return Whether or not the face side was parsed successfully
*/
bool FOBJModel::ParseFaceSide(const FString &sideStr, OBJFace &face, int sidx)
{
OBJFaceSide side;
int origIdx;
if (sideStr.IndexOf(newSideSep) >= 0)
{
TArray<FString> sides = sideStr.Split(newSideSep, FString::TOK_KEEPEMPTY);
if (sides[0].Len() > 0)
{
origIdx = atoi(sides[0].GetChars());
side.vertref = ResolveIndex(origIdx, FaceElement::VertexIndex);
}
else
{
sc.ScriptError("Vertex reference is not optional!");
return false;
}
if (sides[1].Len() > 0)
{
origIdx = atoi(sides[1].GetChars());
side.uvref = ResolveIndex(origIdx, FaceElement::UVIndex);
}
else
{
side.uvref = -1;
}
if (sides.Size() > 2)
{
if (sides[2].Len() > 0)
{
origIdx = atoi(sides[2].GetChars());
side.normref = ResolveIndex(origIdx, FaceElement::VNormalIndex);
}
else
{
side.normref = -1;
hasMissingNormals = true;
}
}
else
{
side.normref = -1;
hasMissingNormals = true;
}
}
else
{
origIdx = atoi(sideStr.GetChars());
side.vertref = ResolveIndex(origIdx, FaceElement::VertexIndex);
side.normref = -1;
hasMissingNormals = true;
side.uvref = -1;
}
face.sides[sidx] = side;
return true;
}
/**
* Resolve an OBJ index to an absolute index
*
* OBJ indices are 1-based, and can also be negative
*
* @param origIndex The original OBJ index to resolve
* @param el What type of element the index references
* @return The absolute index of the element
*/
int FOBJModel::ResolveIndex(int origIndex, FaceElement el)
{
if (origIndex > 0)
{
return origIndex - 1; // OBJ indices start at 1
}
else if (origIndex < 0)
{
if (el == FaceElement::VertexIndex)
{
return verts.Size() + origIndex; // origIndex is negative
}
else if (el == FaceElement::UVIndex)
{
return uvs.Size() + origIndex;
}
else if (el == FaceElement::VNormalIndex)
{
return norms.Size() + origIndex;
}
}
return -1;
}
/**
* Construct the vertex buffer for this model
*
* @param renderer A pointer to the model renderer. Used to allocate the vertex buffer.
*/
void FOBJModel::BuildVertexBuffer(FModelRenderer *renderer)
{
if (GetVertexBuffer(renderer->GetType()))
{
return;
}
unsigned int vbufsize = 0;
for (size_t i = 0; i < surfaces.Size(); i++)
{
ConstructSurfaceTris(surfaces[i]);
surfaces[i].vbStart = vbufsize;
vbufsize += surfaces[i].numTris * 3;
}
// Initialize/populate vertFaces
if (hasMissingNormals && hasSmoothGroups)
{
AddVertFaces();
}
auto vbuf = renderer->CreateVertexBuffer(false,true);
SetVertexBuffer(renderer->GetType(), vbuf);
FModelVertex *vertptr = vbuf->LockVertexBuffer(vbufsize);
for (unsigned int i = 0; i < surfaces.Size(); i++)
{
for (unsigned int j = 0; j < surfaces[i].numTris; j++)
{
for (size_t side = 0; side < 3; side++)
{
FModelVertex *mdv = vertptr +
side + j * 3 + // Current surface and previous triangles
surfaces[i].vbStart; // Previous surfaces
OBJFaceSide &curSide = surfaces[i].tris[j].sides[2 - side];
int vidx = curSide.vertref;
int uvidx = (curSide.uvref >= 0 && (unsigned int)curSide.uvref < uvs.Size()) ? curSide.uvref : 0;
int nidx = curSide.normref;
FVector3 curVvec = RealignVector(verts[vidx]);
FVector2 curUvec = FixUV(uvs[uvidx]);
FVector3 nvec;
mdv->Set(curVvec.X, curVvec.Y, curVvec.Z, curUvec.X, curUvec.Y);
if (nidx >= 0 && (unsigned int)nidx < norms.Size())
{
nvec = RealignVector(norms[nidx]);
}
else
{
if (surfaces[i].tris[j].smoothGroup == 0)
{
nvec = CalculateNormalFlat(i, j);
}
else
{
nvec = CalculateNormalSmooth(vidx, surfaces[i].tris[j].smoothGroup);
}
}
mdv->SetNormal(nvec.X, nvec.Y, nvec.Z);
}
}
delete[] surfaces[i].tris;
}
// Destroy vertFaces
if (hasMissingNormals && hasSmoothGroups)
{
for (size_t i = 0; i < verts.Size(); i++)
{
vertFaces[i].Clear();
}
delete[] vertFaces;
}
vbuf->UnlockVertexBuffer();
}
/**
* Fill in the triangle data for a surface
*
* @param[in,out] surf The surface to fill in the triangle data for
*/
void FOBJModel::ConstructSurfaceTris(OBJSurface &surf)
{
unsigned int triCount = 0;
size_t start = surf.faceStart;
size_t end = start + surf.numFaces;
for (size_t i = start; i < end; i++)
{
triCount += faces[i].sideCount - 2;
}
surf.numTris = triCount;
surf.tris = new OBJFace[triCount];
for (size_t i = start, triIdx = 0; i < end; i++, triIdx++)
{
surf.tris[triIdx].sideCount = 3;
if (faces[i].sideCount == 3)
{
surf.tris[triIdx].smoothGroup = faces[i].smoothGroup;
memcpy(surf.tris[triIdx].sides, faces[i].sides, sizeof(OBJFaceSide) * 3);
}
else if (faces[i].sideCount == 4) // Triangulate face
{
OBJFace *triangulated = new OBJFace[2];
TriangulateQuad(faces[i], triangulated);
memcpy(surf.tris[triIdx].sides, triangulated[0].sides, sizeof(OBJFaceSide) * 3);
memcpy(surf.tris[triIdx+1].sides, triangulated[1].sides, sizeof(OBJFaceSide) * 3);
delete[] triangulated;
triIdx += 1; // Filling out two faces
}
DPrintf(DMSG_SPAMMY, "Smooth group: %d\n", surf.tris[triIdx].smoothGroup);
}
}
/**
* Triangulate a 4-sided face
*
* @param[in] quad The 4-sided face to triangulate
* @param[out] tris The resultant triangle data
*/
void FOBJModel::TriangulateQuad(const OBJFace &quad, OBJFace *tris)
{
tris[0].sideCount = 3;
tris[0].smoothGroup = quad.smoothGroup;
tris[1].sideCount = 3;
tris[1].smoothGroup = quad.smoothGroup;
int tsidx[2][3] = {{0, 1, 3}, {1, 2, 3}};
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 2; j++)
{
tris[j].sides[i].vertref = quad.sides[tsidx[j][i]].vertref;
tris[j].sides[i].uvref = quad.sides[tsidx[j][i]].uvref;
tris[j].sides[i].normref = quad.sides[tsidx[j][i]].normref;
}
}
}
/**
* Add the vertices of all surfaces' triangles to the array of vertex->triangle references
*/
void FOBJModel::AddVertFaces() {
// Initialize and populate vertFaces - this array stores references to triangles per vertex
vertFaces = new TArray<OBJTriRef>[verts.Size()];
for (unsigned int i = 0; i < surfaces.Size(); i++)
{
for (unsigned int j = 0; j < surfaces[i].numTris; j++)
{
OBJTriRef otr = OBJTriRef(i, j);
for (size_t k = 0; k < surfaces[i].tris[j].sideCount; k++)
{
int vidx = surfaces[i].tris[j].sides[k].vertref;
vertFaces[vidx].Push(otr);
}
}
}
}
/**
* Re-align a vector to match MD3 alignment
*
* @param vecToRealign The vector to re-align
* @return The re-aligned vector
*/
inline FVector3 FOBJModel::RealignVector(FVector3 vecToRealign)
{
vecToRealign.Z *= -1;
return vecToRealign;
}
/**
* Fix UV coordinates of a UV vector
*
* @param vecToRealign The vector to fix
* @return The fixed UV coordinate vector
*/
inline FVector2 FOBJModel::FixUV(FVector2 vecToRealign)
{
vecToRealign.Y *= -1;
return vecToRealign;
}
/**
* Calculate the surface normal for a triangle
*
* @param surfIdx The surface index
* @param triIdx The triangle Index
* @return The surface normal vector
*/
FVector3 FOBJModel::CalculateNormalFlat(unsigned int surfIdx, unsigned int triIdx)
{
// https://www.khronos.org/opengl/wiki/Calculating_a_Surface_Normal
int curVert = surfaces[surfIdx].tris[triIdx].sides[0].vertref;
int nextVert = surfaces[surfIdx].tris[triIdx].sides[2].vertref;
int lastVert = surfaces[surfIdx].tris[triIdx].sides[1].vertref;
// Cross-multiply the U-vector and V-vector
FVector3 curVvec = RealignVector(verts[curVert]);
FVector3 uvec = RealignVector(verts[nextVert]) - curVvec;
FVector3 vvec = RealignVector(verts[lastVert]) - curVvec;
return uvec ^ vvec;
}
/**
* Calculate the surface normal for a triangle
*
* @param otr A reference to the surface, and a triangle within that surface, as an OBJTriRef
* @return The surface normal vector
*/
FVector3 FOBJModel::CalculateNormalFlat(OBJTriRef otr)
{
return CalculateNormalFlat(otr.surf, otr.tri);
}
/**
* Calculate the normal of a vertex in a specific smooth group
*
* @param vidx The index of the vertex in the array of vertices
* @param smoothGroup The smooth group number
*/
FVector3 FOBJModel::CalculateNormalSmooth(unsigned int vidx, unsigned int smoothGroup)
{
unsigned int connectedFaces = 0;
TArray<OBJTriRef>& vTris = vertFaces[vidx];
FVector3 vNormal(0,0,0);
for (size_t face = 0; face < vTris.Size(); face++)
{
OBJFace& tri = surfaces[vTris[face].surf].tris[vTris[face].tri];
if (tri.smoothGroup == smoothGroup)
{
FVector3 fNormal = CalculateNormalFlat(vTris[face]);
connectedFaces += 1;
vNormal += fNormal;
}
}
vNormal /= (float)connectedFaces;
return vNormal;
}
/**
* Find the index of the frame with the given name
*
* OBJ models are not animated, so this always returns 0
*
* @param name The name of the frame
* @return The index of the frame
*/
int FOBJModel::FindFrame(const char* name)
{
return 0; // OBJs are not animated.
}
/**
* Render the model
*
* @param renderer The model renderer
* @param skin The loaded skin for the surface
* @param frameno Unused
* @param frameno2 Unused
* @param inter Unused
* @param translation The translation for the skin
*/
void FOBJModel::RenderFrame(FModelRenderer *renderer, FGameTexture * skin, int frameno, int frameno2, double inter, int translation)
{
for (unsigned int i = 0; i < surfaces.Size(); i++)
{
OBJSurface *surf = &surfaces[i];
FGameTexture *userSkin = skin;
if (!userSkin)
{
if (i < MD3_MAX_SURFACES && curSpriteMDLFrame->surfaceskinIDs[curMDLIndex][i].isValid())
{
userSkin = TexMan.GetGameTexture(curSpriteMDLFrame->surfaceskinIDs[curMDLIndex][i], true);
}
else if (surf->skin.isValid())
{
userSkin = TexMan.GetGameTexture(surf->skin, true);
}
}
// Still no skin after checking for one?
if (!userSkin)
{
continue;
}
renderer->SetMaterial(userSkin, false, translation);
renderer->SetupFrame(this, surf->vbStart, surf->vbStart, surf->numTris * 3);
renderer->DrawArrays(0, surf->numTris * 3);
}
}
/**
* Pre-cache skins for the model
*
* @param hitlist The list of textures
*/
void FOBJModel::AddSkins(uint8_t* hitlist)
{
for (size_t i = 0; i < surfaces.Size(); i++)
{
if (i < MD3_MAX_SURFACES && curSpriteMDLFrame->surfaceskinIDs[curMDLIndex][i].isValid())
{
// Precache skins manually reassigned by the user.
// On OBJs with lots of skins, such as Doom map OBJs exported from GZDB,
// there may be too many skins for the user to manually change, unless
// the limit is bumped or surfaceskinIDs is changed to a TArray<FTextureID>.
hitlist[curSpriteMDLFrame->surfaceskinIDs[curMDLIndex][i].GetIndex()] |= FTextureManager::HIT_Flat;
return; // No need to precache skin that was replaced
}
OBJSurface * surf = &surfaces[i];
if (surf->skin.isValid())
{
hitlist[surf->skin.GetIndex()] |= FTextureManager::HIT_Flat;
}
}
}
/**
* Remove the data that was loaded
*/
FOBJModel::~FOBJModel()
{
verts.Clear();
norms.Clear();
uvs.Clear();
faces.Clear();
surfaces.Clear();
}