raze-gles/source/common/models/models_ue1.cpp

314 lines
8.9 KiB
C++
Raw Normal View History

//
//---------------------------------------------------------------------------
//
// Copyright(C) 2018 Marisa Kirisame
// All rights reserved.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program. If not, see http://www.gnu.org/licenses/
//
//--------------------------------------------------------------------------
//
#include "filesystem.h"
#include "cmdlib.h"
#include "model_ue1.h"
#include "texturemanager.h"
#include "modelrenderer.h"
float unpackuvert( uint32_t n, int c )
{
switch( c )
{
case 0:
return ((int16_t)((n&0x7ff)<<5))/128.f;
case 1:
return ((int16_t)(((n>>11)&0x7ff)<<5))/128.f;
case 2:
return ((int16_t)(((n>>22)&0x3ff)<<6))/128.f;
default:
return 0.f;
}
}
bool FUE1Model::Load( const char *filename, int lumpnum, const char *buffer, int length )
{
int lumpnum2;
FString realfilename = fileSystem.GetFileFullName(lumpnum);
if ( (size_t)realfilename.IndexOf("_d.3d") == realfilename.Len()-5 )
{
realfilename.Substitute("_d.3d","_a.3d");
lumpnum2 = fileSystem.CheckNumForFullName(realfilename);
mDataLump = lumpnum;
mAnivLump = lumpnum2;
}
else
{
realfilename.Substitute("_a.3d","_d.3d");
lumpnum2 = fileSystem.CheckNumForFullName(realfilename);
mAnivLump = lumpnum;
mDataLump = lumpnum2;
}
return true;
}
void FUE1Model::LoadGeometry()
{
FileData lump, lump2;
const char *buffer, *buffer2;
lump = fileSystem.ReadFile(mDataLump);
buffer = (char*)lump.GetMem();
lump2 = fileSystem.ReadFile(mAnivLump);
buffer2 = (char*)lump2.GetMem();
// map structures
dhead = (d3dhead*)(buffer);
dpolys = (d3dpoly*)(buffer+sizeof(d3dhead));
ahead = (a3dhead*)(buffer2);
// detect deus ex format
if ( (ahead->framesize/dhead->numverts) == 8 )
{
averts = NULL;
dxverts = (dxvert*)(buffer2+sizeof(a3dhead));
}
else
{
averts = (uint32_t*)(buffer2+sizeof(a3dhead));
dxverts = NULL;
}
// set counters
numVerts = dhead->numverts;
numFrames = ahead->numframes;
numPolys = dhead->numpolys;
numGroups = 0;
// populate vertex arrays
for ( int i=0; i<numFrames; i++ )
{
for ( int j=0; j<numVerts; j++ )
{
UE1Vertex Vert;
if ( dxverts != NULL )
{
// convert padded XYZ16
Vert.Pos = FVector3(dxverts[j+i*numVerts].x,
dxverts[j+i*numVerts].z,
(float)-dxverts[j+i*numVerts].y);
}
else
{
// convert packed XY11Z10
Vert.Pos = FVector3(unpackuvert(averts[j+i*numVerts],0),
unpackuvert(averts[j+i*numVerts],2),
-unpackuvert(averts[j+i*numVerts],1));
}
2020-09-27 08:48:56 +00:00
// refs will be set later
Vert.P.Reset();
Vert.nP = 0;
// push vertex (without normals, will be calculated later)
verts.Push(Vert);
}
}
// populate poly arrays
for ( int i=0; i<numPolys; i++ )
{
UE1Poly Poly;
// set indices
for ( int j=0; j<3; j++ )
Poly.V[j] = dpolys[i].vertices[j];
// unpack coords
for ( int j=0; j<3; j++ )
Poly.C[j] = FVector2(dpolys[i].uv[j][0]/255.f,dpolys[i].uv[j][1]/255.f);
// compute facet normals
for ( int j=0; j<numFrames; j++ )
{
FVector3 dir[2];
dir[0] = verts[Poly.V[1]+numVerts*j].Pos-verts[Poly.V[0]+numVerts*j].Pos;
dir[1] = verts[Poly.V[2]+numVerts*j].Pos-verts[Poly.V[0]+numVerts*j].Pos;
Poly.Normals.Push((dir[0]^dir[1]).Unit());
2020-09-27 08:48:56 +00:00
// since we're iterating frames, also set references for later
for ( int k=0; k<3; k++ )
{
verts[Poly.V[k]+numVerts*j].P.Push(i);
verts[Poly.V[k]+numVerts*j].nP++;
}
}
// push
polys.Push(Poly);
}
2020-09-27 08:48:56 +00:00
// compute normals for vertex arrays (average of all referenced poly normals)
// since we have references listed from before, this saves a lot of time
// without having to loop through the entire model each vertex (especially true for very complex models)
for ( int i=0; i<numFrames; i++ )
{
for ( int j=0; j<numVerts; j++ )
{
FVector3 nsum = FVector3(0,0,0);
2020-09-27 08:48:56 +00:00
for ( int k=0; k<verts[j+numVerts*i].nP; k++ )
nsum += polys[verts[j+numVerts*i].P[k]].Normals[i];
verts[j+numVerts*i].Normal = nsum.Unit();
}
}
// populate poly groups (subdivided by texture number and type)
// this method minimizes searches in the group list as much as possible
// while still doing a single pass through the poly list
int curgroup = -1;
UE1Group Group;
for ( int i=0; i<numPolys; i++ )
{
2020-09-27 08:48:56 +00:00
// while we're at it, look for attachment triangles
// technically only one should exist, but we ain't following the specs 100% here
if ( dpolys[i].type&PT_WeaponTriangle ) specialPolys.Push(i);
if ( curgroup == -1 )
{
// no group, create it
Group.P.Reset();
Group.numPolys = 0;
Group.texNum = dpolys[i].texnum;
Group.type = dpolys[i].type;
groups.Push(Group);
curgroup = numGroups++;
}
else if ( (dpolys[i].texnum != groups[curgroup].texNum) || (dpolys[i].type != groups[curgroup].type) )
{
// different attributes than last time
// search for existing group with new attributes, create one if not found
curgroup = -1;
for ( int j=0; j<numGroups; j++ )
{
if ( (groups[j].texNum != dpolys[i].texnum) || (groups[j].type != dpolys[i].type) ) continue;
curgroup = j;
break;
}
// counter the increment that will happen after continuing this loop
// otherwise it'll be skipped over
i--;
continue;
}
groups[curgroup].P.Push(i);
groups[curgroup].numPolys++;
}
// ... and it's finally done
mDataLoaded = true;
}
void FUE1Model::UnloadGeometry()
{
mDataLoaded = false;
2020-09-27 08:48:56 +00:00
specialPolys.Reset();
numVerts = 0;
numFrames = 0;
numPolys = 0;
numGroups = 0;
verts.Reset();
for ( int i=0; i<numPolys; i++ )
polys[i].Normals.Reset();
polys.Reset();
for ( int i=0; i<numGroups; i++ )
groups[i].P.Reset();
groups.Reset();
}
int FUE1Model::FindFrame( const char *name )
{
// unsupported, there are no named frames
return -1;
}
void FUE1Model::RenderFrame( FModelRenderer *renderer, FGameTexture *skin, int frame, int frame2, double inter, int translation )
{
// the moment of magic
if ( (frame >= numFrames) || (frame2 >= numFrames) ) return;
renderer->SetInterpolation(inter);
int vsize, fsize = 0, vofs = 0;
for ( int i=0; i<numGroups; i++ ) fsize += groups[i].numPolys*3;
for ( int i=0; i<numGroups; i++ )
{
vsize = groups[i].numPolys*3;
if ( groups[i].type&PT_WeaponTriangle )
{
// weapon triangle should never be drawn, it only exists to calculate attachment position and orientation
vofs += vsize;
continue;
}
FGameTexture *sskin = skin;
if ( !sskin )
{
if (curSpriteMDLFrame && curSpriteMDLFrame->surfaceskinIDs[curMDLIndex][groups[i].texNum].isValid() )
sskin = TexMan.GetGameTexture(curSpriteMDLFrame->surfaceskinIDs[curMDLIndex][groups[i].texNum], true);
if ( !sskin )
{
vofs += vsize;
continue;
}
}
// TODO: Handle per-group render styles and other flags once functions for it are implemented
// Future note: poly renderstyles should always be enforced unless the actor itself has a style other than Normal
renderer->SetMaterial(sskin,false,translation);
renderer->SetupFrame(this, vofs+frame*fsize,vofs+frame2*fsize,vsize);
renderer->DrawArrays(0,vsize);
vofs += vsize;
}
renderer->SetInterpolation(0.f);
}
void FUE1Model::BuildVertexBuffer( FModelRenderer *renderer )
{
if (GetVertexBuffer(renderer->GetType()))
return;
if ( !mDataLoaded )
LoadGeometry();
int vsize = 0;
for ( int i=0; i<numGroups; i++ )
vsize += groups[i].numPolys*3;
vsize *= numFrames;
auto vbuf = renderer->CreateVertexBuffer(false,numFrames==1);
SetVertexBuffer(renderer->GetType(), vbuf);
FModelVertex *vptr = vbuf->LockVertexBuffer(vsize);
int vidx = 0;
for ( int i=0; i<numFrames; i++ )
{
for ( int j=0; j<numGroups; j++ )
{
for ( int k=0; k<groups[j].numPolys; k++ )
{
for ( int l=0; l<3; l++ )
{
UE1Vertex V = verts[polys[groups[j].P[k]].V[l]+i*numVerts];
FVector2 C = polys[groups[j].P[k]].C[l];
FModelVertex *vert = &vptr[vidx++];
vert->Set(V.Pos.X,V.Pos.Y,V.Pos.Z,C.X,C.Y);
if ( groups[j].type&PT_Curvy ) // use facet normal
{
vert->SetNormal(polys[groups[j].P[k]].Normals[i].X,
polys[groups[j].P[k]].Normals[i].Y,
polys[groups[j].P[k]].Normals[i].Z);
}
else vert->SetNormal(V.Normal.X,V.Normal.Y,V.Normal.Z);
}
}
}
}
vbuf->UnlockVertexBuffer();
}
void FUE1Model::AddSkins( uint8_t *hitlist )
{
for ( int i=0; i<numGroups; i++ )
if (curSpriteMDLFrame && curSpriteMDLFrame->surfaceskinIDs[curMDLIndex][groups[i].texNum].isValid() )
hitlist[curSpriteMDLFrame->surfaceskinIDs[curMDLIndex][groups[i].texNum].GetIndex()] |= FTextureManager::HIT_Flat;
}
FUE1Model::~FUE1Model()
{
UnloadGeometry();
}