raze-gles/polymer/eduke32/source/lunatic/geom.lua

142 lines
3.6 KiB
Lua
Raw Normal View History

-- Geometry module for Lunatic.
local ffi = require("ffi")
local math = require("math")
local type = type
local assert = assert
module(...)
ffi.cdef[[
typedef struct { double x, y; } dvec2_t;
typedef struct { double x, y, z; } dvec3_t;
]]
local vec2_
local vec2_mt = {
__add = function(a, b) return vec2_(a.x+b.x, a.y+b.y) end,
__sub = function(a, b) return vec2_(a.x-b.x, a.y-b.y) end,
__unm = function(a) return vec2_(-a.x, -a.x) end,
__mul = function(a,b)
if (type(a)=="number") then
return vec2_(a*b.x, a*b.y)
end
assert(type(b)=="number")
return vec2_(a.x*b, a.y*b)
end,
__div = function(a,b)
assert(type(b)=="number")
return vec2_(a.x/b, a.y/b)
end,
--[[
-- NOTE: metamethods from metatype() are invoken on *any mix of types*
-- This means that we can't check a "maybe-vec2" variable like "v ~= nil".
__eq = function(a,b)
return (a.x==b.x and a.y==b.y)
end,
--]]
__len = function(a) return math.sqrt(a.x*a.x + a.y*a.y) end,
__tostring = function(a) return "vec2("..a.x..", "..a.y..")" end,
__index = {
lensq = function(a) return a.x*a.x + a.y*a.y end,
},
}
local vec3_
local vec3_mt = {
__add = function(a, b) return vec3_(a.x+b.x, a.y+b.y, a.z+b.z) end,
__sub = function(a, b) return vec3_(a.x-b.x, a.y-b.y, a.z-b.z) end,
__unm = function(a) return vec3_(-a.x, -a.x, -a.z) end,
__mul = function(a,b)
if (type(a)=="number") then
return vec3_(a*b.x, a*b.y, a*b.z)
end
assert(type(b)=="number")
return vec2_(a.x*b, a.y*b, a.z*b)
end,
__div = function(a,b)
assert(type(b)=="number")
return vec2_(a.x/b, a.y/b, a.z/b)
end,
--[[
__eq = function(a,b)
return (a.x==b.x and a.y==b.y and a.z==b.z)
end,
--]]
__len = function(a) return math.sqrt(a.x*a.x + a.y*a.y + a.z*a.z) end,
__tostring = function(a) return "vec3("..a.x..", "..a.y..", "..a.z..")" end,
__index = {
lensq = function(a) return a.x*a.x + a.y*a.y + a.z*a.z end,
},
}
-- VEC2 user data constructor.
-- * vec2(<table>), <table> should be indexable with "x" and "y"
-- * vec2(x, y), assuming that x and y are numbers
vec2_ = ffi.metatype("dvec2_t", vec2_mt)
vec2 = vec2_
-- Returns a vec2 from anything indexable with "x" and "y"
-- (vec2(t) works if t is such a table, but not if it's a vec2 or other cdata)
function tovec2(t) return vec2(t.x, t.y) end
-- Same for vec3
vec3_ = ffi.metatype("dvec3_t", vec3_mt)
vec3 = vec3_
function tovec3(t) return vec3(t.x, t.y, t.z) end
-- This has no metamethods, but can be useful for calculations expecting
-- integer values, e.g. geom.ivec3(x, y, z) is a reasonable way to round
-- a vec3. It can be also used as the RHS to the vec2/vec3 arithmetic
-- methods.
ivec3 = ffi.typeof("vec3_t")
-- Two-element vector cross product.
-- Anti-commutative, distributive.
function cross2(v, w)
return v.y*w.x - v.x*w.y
end
-- Finds the intersection point of two lines given by
-- point a and vector v
-- and
-- point b and vector w
--
-- Returns:
-- if <TODO>, nil
-- if retpoint_p evaluates to a non-true value, coefficients cv and cw such that <TODO>
-- else, the intersection point
function intersect(a,v, b,w, retpoint_p)
local vxw = cross2(v,w)
if (vxw ~= 0) then
local btoa = tovec2(a)-tovec2(b)
local cv, cw = cross2(w, btoa)/vxw, cross2(v, btoa)/vxw
if (retpoint_p) then
return tovec2(a)+cv*tovec2(v)
else
return cv, cw
end
end
-- return nil if v and w parallel (or either of them is a point), or if
-- they contain NaNs
end