mirror of
https://github.com/ZDoom/raze-gles.git
synced 2025-01-18 21:31:37 +00:00
122 lines
3.3 KiB
C
122 lines
3.3 KiB
C
|
/**
|
||
|
* @file SFMT-sse2.h
|
||
|
* @brief SIMD oriented Fast Mersenne Twister(SFMT) for Intel SSE2
|
||
|
*
|
||
|
* @author Mutsuo Saito (Hiroshima University)
|
||
|
* @author Makoto Matsumoto (Hiroshima University)
|
||
|
*
|
||
|
* @note We assume LITTLE ENDIAN in this file
|
||
|
*
|
||
|
* Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
|
||
|
* University. All rights reserved.
|
||
|
*
|
||
|
* The new BSD License is applied to this software, see LICENSE.txt
|
||
|
*/
|
||
|
|
||
|
#ifndef SFMT_SSE2_H
|
||
|
#define SFMT_SSE2_H
|
||
|
|
||
|
PRE_ALWAYS static __m128i mm_recursion(__m128i *a, __m128i *b, __m128i c,
|
||
|
__m128i d, __m128i mask) ALWAYSINLINE;
|
||
|
|
||
|
/**
|
||
|
* This function represents the recursion formula.
|
||
|
* @param a a 128-bit part of the interal state array
|
||
|
* @param b a 128-bit part of the interal state array
|
||
|
* @param c a 128-bit part of the interal state array
|
||
|
* @param d a 128-bit part of the interal state array
|
||
|
* @param mask 128-bit mask
|
||
|
* @return output
|
||
|
*/
|
||
|
PRE_ALWAYS static __m128i mm_recursion(__m128i *a, __m128i *b,
|
||
|
__m128i c, __m128i d, __m128i mask) {
|
||
|
__m128i v, x, y, z;
|
||
|
|
||
|
x = _mm_load_si128(a);
|
||
|
y = _mm_srli_epi32(*b, SR1);
|
||
|
z = _mm_srli_si128(c, SR2);
|
||
|
v = _mm_slli_epi32(d, SL1);
|
||
|
z = _mm_xor_si128(z, x);
|
||
|
z = _mm_xor_si128(z, v);
|
||
|
x = _mm_slli_si128(x, SL2);
|
||
|
y = _mm_and_si128(y, mask);
|
||
|
z = _mm_xor_si128(z, x);
|
||
|
z = _mm_xor_si128(z, y);
|
||
|
return z;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This function fills the internal state array with pseudorandom
|
||
|
* integers.
|
||
|
*/
|
||
|
inline static void gen_rand_all(void) {
|
||
|
int i;
|
||
|
__m128i r, r1, r2, mask;
|
||
|
mask = _mm_set_epi32(MSK4, MSK3, MSK2, MSK1);
|
||
|
|
||
|
r1 = _mm_load_si128(&sfmt[N - 2].si);
|
||
|
r2 = _mm_load_si128(&sfmt[N - 1].si);
|
||
|
for (i = 0; i < N - POS1; i++) {
|
||
|
r = mm_recursion(&sfmt[i].si, &sfmt[i + POS1].si, r1, r2, mask);
|
||
|
_mm_store_si128(&sfmt[i].si, r);
|
||
|
r1 = r2;
|
||
|
r2 = r;
|
||
|
}
|
||
|
for (; i < N; i++) {
|
||
|
r = mm_recursion(&sfmt[i].si, &sfmt[i + POS1 - N].si, r1, r2, mask);
|
||
|
_mm_store_si128(&sfmt[i].si, r);
|
||
|
r1 = r2;
|
||
|
r2 = r;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This function fills the user-specified array with pseudorandom
|
||
|
* integers.
|
||
|
*
|
||
|
* @param array an 128-bit array to be filled by pseudorandom numbers.
|
||
|
* @param size number of 128-bit pesudorandom numbers to be generated.
|
||
|
*/
|
||
|
inline static void gen_rand_array(w128_t *array, int size) {
|
||
|
int i, j;
|
||
|
__m128i r, r1, r2, mask;
|
||
|
mask = _mm_set_epi32(MSK4, MSK3, MSK2, MSK1);
|
||
|
|
||
|
r1 = _mm_load_si128(&sfmt[N - 2].si);
|
||
|
r2 = _mm_load_si128(&sfmt[N - 1].si);
|
||
|
for (i = 0; i < N - POS1; i++) {
|
||
|
r = mm_recursion(&sfmt[i].si, &sfmt[i + POS1].si, r1, r2, mask);
|
||
|
_mm_store_si128(&array[i].si, r);
|
||
|
r1 = r2;
|
||
|
r2 = r;
|
||
|
}
|
||
|
for (; i < N; i++) {
|
||
|
r = mm_recursion(&sfmt[i].si, &array[i + POS1 - N].si, r1, r2, mask);
|
||
|
_mm_store_si128(&array[i].si, r);
|
||
|
r1 = r2;
|
||
|
r2 = r;
|
||
|
}
|
||
|
/* main loop */
|
||
|
for (; i < size - N; i++) {
|
||
|
r = mm_recursion(&array[i - N].si, &array[i + POS1 - N].si, r1, r2,
|
||
|
mask);
|
||
|
_mm_store_si128(&array[i].si, r);
|
||
|
r1 = r2;
|
||
|
r2 = r;
|
||
|
}
|
||
|
for (j = 0; j < 2 * N - size; j++) {
|
||
|
r = _mm_load_si128(&array[j + size - N].si);
|
||
|
_mm_store_si128(&sfmt[j].si, r);
|
||
|
}
|
||
|
for (; i < size; i++) {
|
||
|
r = mm_recursion(&array[i - N].si, &array[i + POS1 - N].si, r1, r2,
|
||
|
mask);
|
||
|
_mm_store_si128(&array[i].si, r);
|
||
|
_mm_store_si128(&sfmt[j++].si, r);
|
||
|
r1 = r2;
|
||
|
r2 = r;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif
|