raze-gles/polymer/eduke32/source/lunatic/xmath.lua

113 lines
2.3 KiB
Lua
Raw Normal View History

-- "Extended" math module for Lunatic.
local ffi = require("ffi")
local bit = require("bit")
local math = require("math")
local geom = require("geom")
local assert = assert
module(...)
local BANG2RAD = math.pi/1024
local isintab = ffi.new("int16_t [?]", 2048)
local dsintab = ffi.new("double [?]", 2048)
for a=0,511 do
local s = math.sin(a*BANG2RAD)
isintab[a] = 16384*s
dsintab[a] = s
end
isintab[512] = 16384
dsintab[512] = 1
for i=513,1023 do
isintab[i] = isintab[1024-i];
dsintab[i] = dsintab[1024-i];
end
for i=1024,2047 do
isintab[i] = -isintab[i-1024];
dsintab[i] = -dsintab[i-1024];
end
local band = bit.band
local function ksc_common(ang)
ang = band(ang, 2047)
assert(ang < 2048+0ULL) -- might have been passed NaN
return ang
end
-- k{sin,cos}: 16384-scaled output, 2048-based angle input
function ksin(ang)
return isintab[ksc_common(ang)]
end
function kcos(ang)
return isintab[ksc_common(ang+512)]
end
local sin, cos = math.sin, math.cos
-- {sin,cos}b: [-1..1] output, 2048-based angle input
function sinb(ang)
return dsintab[ksc_common(ang)]
end
function cosb(ang)
return dsintab[ksc_common(ang+512)]
end
-- Approximations to 2D and 3D Euclidean distances (also see common.c)
local abs = math.abs
local arshift = bit.arshift
local function dist_common(pos1, pos2)
local x = abs(pos1.x - pos2.x)
local y = abs(pos1.y - pos2.y)
if (x < y) then
x, y = y, x
end
return x, y
end
function ldist(pos1, pos2)
local x, y = dist_common(pos1, pos2)
local t = y + arshift(y,1)
return x - arshift(x,5) - arshift(x,7) + arshift(t,2) + arshift(t,6)
end
function dist(pos1, pos2)
local x, y = dist_common(pos1, pos2)
local z = abs(arshift(pos1.z - pos2.z, 4))
if (x < z) then
x, z = z, x
end
local t = y + z
return x - arshift(x,4) + arshift(t,2) + arshift(t,3)
end
-- Point rotation. Note the different order of arguments from engine function.
-- XXX: passing mixed vec2/vec3 is problematic. Get rid of geom.vec2?
-- <ang>: BUILD angle (0-2047 based)
function rotate(pos, pivot, ang)
local p = geom.tovec3(pos)-pivot
local c, s = cosb(ang), sinb(ang)
p.x = pivot.x + (c*p.x - s*p.y)
p.y = pivot.y + (c*p.y + s*p.x)
return p
end