raze-gles/source/libxmp-lite/src/player.c

1900 lines
44 KiB
C
Raw Normal View History

/* Extended Module Player
* Copyright (C) 1996-2016 Claudio Matsuoka and Hipolito Carraro Jr
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/*
* Sat, 18 Apr 1998 20:23:07 +0200 Frederic Bujon <lvdl@bigfoot.com>
* Pan effect bug fixed: In Fastracker II the track panning effect erases
* the instrument panning effect, and the same should happen in xmp.
*/
/*
* Fri, 26 Jun 1998 13:29:25 -0400 (EDT)
* Reported by Jared Spiegel <spieg@phair.csh.rit.edu>
* when the volume envelope is not enabled (disabled) on a sample, and a
* notoff is delivered to ft2 (via either a noteoff in the note column or
* command Kxx [where xx is # of ticks into row to give a noteoff to the
* sample]), ft2 will set the volume of playback of the sample to 00h.
*
* Claudio's fix: implementing effect K
*/
#include <stdlib.h>
#include <string.h>
#include "virtual.h"
#include "period.h"
#include "effects.h"
#include "player.h"
#include "mixer.h"
#ifndef LIBXMP_CORE_PLAYER
#include "extras.h"
#endif
/* Values for multi-retrig */
static const struct retrig_control rval[] = {
{ 0, 1, 1 }, { -1, 1, 1 }, { -2, 1, 1 }, { -4, 1, 1 },
{ -8, 1, 1 }, { -16, 1, 1 }, { 0, 2, 3 }, { 0, 1, 2 },
{ 0, 1, 1 }, { 1, 1, 1 }, { 2, 1, 1 }, { 4, 1, 1 },
{ 8, 1, 1 }, { 16, 1, 1 }, { 0, 3, 2 }, { 0, 2, 1 },
{ 0, 0, 1 } /* Note cut */
};
/*
* "Anyway I think this is the most brilliant piece of crap we
* have managed to put up!"
* -- Ice of FC about "Mental Surgery"
*/
/* Envelope */
static int check_envelope_end(struct xmp_envelope *env, int x)
{
int16 *data = env->data;
int index;
if (~env->flg & XMP_ENVELOPE_ON || env->npt <= 0)
return 0;
index = (env->npt - 1) * 2;
/* last node */
if (x >= data[index] || index == 0) {
if (~env->flg & XMP_ENVELOPE_LOOP) {
return 1;
}
}
return 0;
}
static int get_envelope(struct xmp_envelope *env, int x, int def)
{
int x1, x2, y1, y2;
int16 *data = env->data;
int index;
if (x < 0 || ~env->flg & XMP_ENVELOPE_ON || env->npt <= 0)
return def;
index = (env->npt - 1) * 2;
x1 = data[index]; /* last node */
if (x >= x1 || index == 0) {
return data[index + 1];
}
do {
index -= 2;
x1 = data[index];
} while (index > 0 && x1 > x);
/* interpolate */
y1 = data[index + 1];
x2 = data[index + 2];
y2 = data[index + 3];
return x2 == x1 ? y2 : ((y2 - y1) * (x - x1) / (x2 - x1)) + y1;
}
static int update_envelope_xm(struct xmp_envelope *env, int x, int release)
{
int16 *data = env->data;
int has_loop, has_sus;
int lpe, lps, sus;
has_loop = env->flg & XMP_ENVELOPE_LOOP;
has_sus = env->flg & XMP_ENVELOPE_SUS;
lps = env->lps << 1;
lpe = env->lpe << 1;
sus = env->sus << 1;
/* FT2 and IT envelopes behave in a different way regarding loops,
* sustain and release. When the sustain point is at the end of the
* envelope loop end and the key is released, FT2 escapes the loop
* while IT runs another iteration. (See EnvLoops.xm in the OpenMPT
* test cases.)
*/
if (has_loop && has_sus && sus == lpe) {
if (!release)
has_sus = 0;
}
/* If the envelope point is set to somewhere after the sustain point
* or sustain loop, enable release to prevent the envelope point to
* return to the sustain point or loop start. (See Filip Skutela's
* farewell_tear.xm.)
*/
if (has_loop && x > data[lpe] + 1) {
release = 1;
} else if (has_sus && x > data[sus] + 1) {
release = 1;
}
/* If enabled, stay at the sustain point */
if (has_sus && !release) {
if (x >= data[sus]) {
x = data[sus];
}
}
/* Envelope loops */
if (has_loop && x >= data[lpe]) {
if (!(release && has_sus && sus == lpe))
x = data[lps];
}
return x;
}
#ifndef LIBXMP_CORE_DISABLE_IT
static int update_envelope_it(struct xmp_envelope *env, int x, int release, int key_off)
{
int16 *data = env->data;
int has_loop, has_sus;
int lpe, lps, sus, sue;
has_loop = env->flg & XMP_ENVELOPE_LOOP;
has_sus = env->flg & XMP_ENVELOPE_SUS;
lps = env->lps << 1;
lpe = env->lpe << 1;
sus = env->sus << 1;
sue = env->sue << 1;
/* Release at the end of a sustain loop, run another loop */
if (has_sus && key_off && x == data[sue] + 1) {
x = data[sus];
} else
/* If enabled, stay in the sustain loop */
if (has_sus && !release) {
if (x == data[sue] + 1) {
x = data[sus];
}
} else
/* Finally, execute the envelope loop */
if (has_loop) {
if (x > data[lpe]) {
x = data[lps];
}
}
return x;
}
#endif
static int update_envelope(struct xmp_envelope *env, int x, int release, int key_off, int it_env)
{
if (x < 0xffff) { /* increment tick */
x++;
}
if (x < 0) {
return -1;
}
if (~env->flg & XMP_ENVELOPE_ON || env->npt <= 0) {
return x;
}
#ifndef LIBXMP_CORE_DISABLE_IT
return it_env ?
update_envelope_it(env, x, release, key_off) :
update_envelope_xm(env, x, release);
#else
return update_envelope_xm(env, x, release);
#endif
}
/* Returns: 0 if do nothing, <0 to reset channel, >0 if has fade */
static int check_envelope_fade(struct xmp_envelope *env, int x)
{
int16 *data = env->data;
int index;
if (~env->flg & XMP_ENVELOPE_ON)
return 0;
index = (env->npt - 1) * 2; /* last node */
if (x > data[index]) {
if (data[index + 1] == 0)
return -1;
else
return 1;
}
return 0;
}
#ifndef LIBXMP_CORE_PLAYER
/* From http://www.un4seen.com/forum/?topic=7554.0
*
* "Invert loop" effect replaces (!) sample data bytes within loop with their
* bitwise complement (NOT). The parameter sets speed of altering the samples.
* This effectively trashes the sample data. Because of that this effect was
* supposed to be removed in the very next ProTracker versions, but it was
* never removed.
*
* Prior to [Protracker 1.1A] this effect is called "Funk Repeat" and it moves
* loop of the instrument (just the loop information - sample data is not
* altered). The parameter is the speed of moving the loop.
*/
static const int invloop_table[] = {
0, 5, 6, 7, 8, 10, 11, 13, 16, 19, 22, 26, 32, 43, 64, 128
};
static void update_invloop(struct module_data *m, struct channel_data *xc)
{
struct xmp_sample *xxs = &m->mod.xxs[xc->smp];
int len;
xc->invloop.count += invloop_table[xc->invloop.speed];
if ((xxs->flg & XMP_SAMPLE_LOOP) && xc->invloop.count >= 128) {
xc->invloop.count = 0;
len = xxs->lpe - xxs->lps;
if (++xc->invloop.pos > len) {
xc->invloop.pos = 0;
}
if (~xxs->flg & XMP_SAMPLE_16BIT) {
xxs->data[xxs->lps + xc->invloop.pos] ^= 0xff;
}
}
}
#endif
/*
* From OpenMPT Arpeggio.xm test:
*
* "[FT2] Arpeggio behavior is very weird with more than 16 ticks per row. This
* comes from the fact that Fasttracker 2 uses a LUT for computing the arpeggio
* note (instead of doing something like tick%3 or similar). The LUT only has
* 16 entries, so when there are more than 16 ticks, it reads beyond array
* boundaries. The vibrato table happens to be stored right after arpeggio
* table. The tables look like this in memory:
*
* ArpTab: 0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0
* VibTab: 0,24,49,74,97,120,141,161,180,197,...
*
* All values except for the first in the vibrato table are greater than 1, so
* they trigger the third arpeggio note. Keep in mind that Fasttracker 2 counts
* downwards, so the table has to be read from back to front, i.e. at 16 ticks
* per row, the 16th entry in the LUT is the first to be read. This is also the
* reason why Arpeggio is played 'backwards' in Fasttracker 2."
*/
static int ft2_arpeggio(struct context_data *ctx, struct channel_data *xc)
{
struct player_data *p = &ctx->p;
int i;
if (xc->arpeggio.val[1] == 0 && xc->arpeggio.val[2] == 0) {
return 0;
}
if (p->frame == 0) {
return 0;
}
i = p->speed - (p->frame % p->speed);
if (i == 16) {
return 0;
} else if (i > 16) {
return xc->arpeggio.val[2];
}
return xc->arpeggio.val[i % 3];
}
static int is_first_frame(struct context_data *ctx)
{
struct player_data *p = &ctx->p;
struct module_data *m = &ctx->m;
switch (m->read_event_type) {
#ifndef LIBXMP_CORE_DISABLE_IT
case READ_EVENT_IT:
/* fall through */
#endif
case READ_EVENT_ST3:
return p->frame % p->speed == 0;
default:
return p->frame == 0;
}
}
static void reset_channels(struct context_data *ctx)
{
struct player_data *p = &ctx->p;
struct module_data *m = &ctx->m;
struct xmp_module *mod = &m->mod;
struct smix_data *smix = &ctx->smix;
struct channel_data *xc;
int i;
#ifndef LIBXMP_CORE_PLAYER
for (i = 0; i < p->virt.virt_channels; i++) {
void *extra;
xc = &p->xc_data[i];
extra = xc->extra;
memset(xc, 0, sizeof (struct channel_data));
xc->extra = extra;
libxmp_reset_channel_extras(ctx, xc);
xc->ins = -1;
xc->old_ins = 1; /* raw value */
xc->key = -1;
xc->volume = m->volbase;
}
#else
for (i = 0; i < p->virt.virt_channels; i++) {
xc = &p->xc_data[i];
memset(xc, 0, sizeof (struct channel_data));
xc->ins = -1;
xc->old_ins = 1; /* raw value */
xc->key = -1;
xc->volume = m->volbase;
}
#endif
for (i = 0; i < p->virt.num_tracks; i++) {
xc = &p->xc_data[i];
if (i >= mod->chn && i < mod->chn + smix->chn) {
xc->mastervol = 0x40;
xc->pan.val = 0x80;
} else {
xc->mastervol = mod->xxc[i].vol;
xc->pan.val = mod->xxc[i].pan;
}
#ifndef LIBXMP_CORE_DISABLE_IT
xc->filter.cutoff = 0xff;
/* Amiga split channel */
if (mod->xxc[i].flg & XMP_CHANNEL_SPLIT) {
int j;
xc->split = ((mod->xxc[i].flg & 0x30) >> 4) + 1;
/* Connect split channel pairs */
for (j = 0; j < i; j++) {
if (mod->xxc[j].flg & XMP_CHANNEL_SPLIT) {
if (p->xc_data[j].split == xc->split) {
p->xc_data[j].pair = i;
xc->pair = j;
}
}
}
} else {
xc->split = 0;
}
#endif
/* Surround channel */
if (mod->xxc[i].flg & XMP_CHANNEL_SURROUND) {
xc->pan.surround = 1;
}
}
}
static int check_delay(struct context_data *ctx, struct xmp_event *e, int chn)
{
struct player_data *p = &ctx->p;
struct channel_data *xc = &p->xc_data[chn];
struct module_data *m = &ctx->m;
/* Tempo affects delay and must be computed first */
if ((e->fxt == FX_SPEED && e->fxp < 0x20) || e->fxt == FX_S3M_SPEED) {
if (e->fxp) {
p->speed = e->fxp;
}
}
if ((e->f2t == FX_SPEED && e->f2p < 0x20) || e->f2t == FX_S3M_SPEED) {
if (e->f2p) {
p->speed = e->f2p;
}
}
/* Delay event read */
if (e->fxt == FX_EXTENDED && MSN(e->fxp) == EX_DELAY && LSN(e->fxp)) {
xc->delay = LSN(e->fxp) + 1;
goto do_delay;
}
if (e->f2t == FX_EXTENDED && MSN(e->f2p) == EX_DELAY && LSN(e->f2p)) {
xc->delay = LSN(e->f2p) + 1;
goto do_delay;
}
return 0;
do_delay:
memcpy(&xc->delayed_event, e, sizeof (struct xmp_event));
if (e->ins) {
xc->delayed_ins = e->ins;
}
if (HAS_QUIRK(QUIRK_RTDELAY)) {
if (e->vol == 0 && e->f2t == 0 && e->ins == 0 && e->note != XMP_KEY_OFF)
xc->delayed_event.vol = xc->volume + 1;
if (e->note == 0)
xc->delayed_event.note = xc->key + 1;
if (e->ins == 0)
xc->delayed_event.ins = xc->old_ins;
}
return 1;
}
static inline void read_row(struct context_data *ctx, int pat, int row)
{
int chn;
struct module_data *m = &ctx->m;
struct xmp_module *mod = &m->mod;
struct player_data *p = &ctx->p;
struct flow_control *f = &p->flow;
struct xmp_event ev;
for (chn = 0; chn < mod->chn; chn++) {
const int num_rows = mod->xxt[TRACK_NUM(pat, chn)]->rows;
if (row < num_rows) {
memcpy(&ev, &EVENT(pat, chn, row), sizeof(ev));
} else {
memset(&ev, 0, sizeof(ev));
}
if (ev.note == XMP_KEY_OFF) {
int env_on = 0;
int ins = ev.ins - 1;
if (IS_VALID_INSTRUMENT(ins) &&
(mod->xxi[ins].aei.flg & XMP_ENVELOPE_ON)) {
env_on = 1;
}
if (ev.fxt == FX_EXTENDED && MSN(ev.fxp) == EX_DELAY) {
if (ev.ins && (LSN(ev.fxp) || env_on)) {
if (LSN(ev.fxp)) {
ev.note = 0;
}
ev.fxp = ev.fxt = 0;
}
}
}
if (check_delay(ctx, &ev, chn) == 0) {
if (!f->rowdelay_set || f->rowdelay > 0) {
libxmp_read_event(ctx, &ev, chn);
#ifndef LIBXMP_CORE_PLAYER
libxmp_med_hold_hack(ctx, pat, chn, row);
#endif
}
} else {
if (IS_PLAYER_MODE_IT()) {
/* Reset flags. See SlideDelay.it */
p->xc_data[chn].flags = 0;
}
}
}
}
static inline int get_channel_vol(struct context_data *ctx, int chn)
{
struct player_data *p = &ctx->p;
int root;
/* channel is a root channel */
if (chn < p->virt.num_tracks)
return p->channel_vol[chn];
/* channel is invalid */
if (chn >= p->virt.virt_channels)
return 0;
/* root is invalid */
root = libxmp_virt_getroot(ctx, chn);
if (root < 0)
return 0;
return p->channel_vol[root];
}
static int tremor_ft2(struct context_data *ctx, int chn, int finalvol)
{
struct player_data *p = &ctx->p;
struct channel_data *xc = &p->xc_data[chn];
if (xc->tremor.count & 0x80) {
if (TEST(TREMOR) && p->frame != 0) {
xc->tremor.count &= ~0x20;
if (xc->tremor.count == 0x80) {
/* end of down cycle, set up counter for up */
xc->tremor.count = xc->tremor.up | 0xc0;
} else if (xc->tremor.count == 0xc0) {
/* end of up cycle, set up counter for down */
xc->tremor.count = xc->tremor.down | 0x80;
} else {
xc->tremor.count--;
}
}
if ((xc->tremor.count & 0xe0) == 0x80) {
finalvol = 0;
}
}
return finalvol;
}
static int tremor_s3m(struct context_data *ctx, int chn, int finalvol)
{
struct player_data *p = &ctx->p;
struct channel_data *xc = &p->xc_data[chn];
if (TEST(TREMOR)) {
if (xc->tremor.count == 0) {
/* end of down cycle, set up counter for up */
xc->tremor.count = xc->tremor.up | 0x80;
} else if (xc->tremor.count == 0x80) {
/* end of up cycle, set up counter for down */
xc->tremor.count = xc->tremor.down;
}
xc->tremor.count--;
if (~xc->tremor.count & 0x80) {
finalvol = 0;
}
}
return finalvol;
}
/*
* Update channel data
*/
#define DOENV_RELEASE ((TEST_NOTE(NOTE_RELEASE) || act == VIRT_ACTION_OFF))
static void process_volume(struct context_data *ctx, int chn, int act)
{
struct player_data *p = &ctx->p;
struct module_data *m = &ctx->m;
struct channel_data *xc = &p->xc_data[chn];
struct xmp_instrument *instrument;
int finalvol;
uint16 vol_envelope;
int fade = 0;
instrument = libxmp_get_instrument(ctx, xc->ins);
/* Keyoff and fadeout */
/* Keyoff event in IT doesn't reset fadeout (see jeff93.it)
* In XM it depends on envelope (see graff-strange_land.xm vs
* Decibelter - Cosmic 'Wegian Mamas.xm)
*/
if (HAS_QUIRK(QUIRK_KEYOFF)) {
/* If IT, only apply fadeout on note release if we don't
* have envelope, or if we have envelope loop
*/
if (TEST_NOTE(NOTE_RELEASE) || act == VIRT_ACTION_OFF) {
if ((~instrument->aei.flg & XMP_ENVELOPE_ON) ||
(instrument->aei.flg & XMP_ENVELOPE_LOOP)) {
fade = 1;
}
}
} else {
if (~instrument->aei.flg & XMP_ENVELOPE_ON) {
if (TEST_NOTE(NOTE_RELEASE)) {
xc->fadeout = 0;
}
}
if (TEST_NOTE(NOTE_RELEASE) || act == VIRT_ACTION_OFF) {
fade = 1;
}
}
if (TEST_NOTE(NOTE_FADEOUT) || act == VIRT_ACTION_FADE) {
fade = 1;
}
if (fade) {
if (xc->fadeout > xc->ins_fade) {
xc->fadeout -= xc->ins_fade;
} else {
xc->fadeout = 0;
SET_NOTE(NOTE_END);
}
}
switch (check_envelope_fade(&instrument->aei, xc->v_idx)) {
case -1:
SET_NOTE(NOTE_END);
/* Don't reset channel, we may have a tone portamento later
* virt_resetchannel(ctx, chn);
*/
break;
case 0:
break;
default:
if (HAS_QUIRK(QUIRK_ENVFADE)) {
SET_NOTE(NOTE_FADEOUT);
}
}
if (!TEST_PER(VENV_PAUSE)) {
xc->v_idx = update_envelope(&instrument->aei, xc->v_idx,
DOENV_RELEASE, TEST(KEY_OFF), IS_PLAYER_MODE_IT());
}
vol_envelope = get_envelope(&instrument->aei, xc->v_idx, 64);
if (check_envelope_end(&instrument->aei, xc->v_idx)) {
if (vol_envelope == 0) {
SET_NOTE(NOTE_END);
}
SET_NOTE(NOTE_ENV_END);
}
/* If note ended in background channel, we can safely reset it */
if (TEST_NOTE(NOTE_END) && chn >= p->virt.num_tracks) {
libxmp_virt_resetchannel(ctx, chn);
return;
}
#ifndef LIBXMP_CORE_PLAYER
finalvol = libxmp_extras_get_volume(ctx, xc);
#else
finalvol = xc->volume;
#endif
if (IS_PLAYER_MODE_IT()) {
finalvol = xc->volume * (100 - xc->rvv) / 100;
}
if (TEST(TREMOLO)) {
/* OpenMPT VibratoReset.mod */
if (!is_first_frame(ctx) || !HAS_QUIRK(QUIRK_PROTRACK)) {
finalvol += libxmp_lfo_get(ctx, &xc->tremolo.lfo, 0) / (1 << 6);
}
if (!is_first_frame(ctx) || HAS_QUIRK(QUIRK_VIBALL)) {
libxmp_lfo_update(&xc->tremolo.lfo);
}
}
CLAMP(finalvol, 0, m->volbase);
finalvol = (finalvol * xc->fadeout) >> 6; /* 16 bit output */
finalvol = (uint32)(vol_envelope * p->gvol * xc->mastervol /
m->gvolbase * ((int)finalvol * 0x40 / m->volbase)) >> 18;
/* Apply channel volume */
finalvol = finalvol * get_channel_vol(ctx, chn) / 100;
#ifndef LIBXMP_CORE_PLAYER
/* Volume translation table (for PTM, ARCH, COCO) */
if (m->vol_table) {
finalvol = m->volbase == 0xff ?
m->vol_table[finalvol >> 2] << 2 :
m->vol_table[finalvol >> 4] << 4;
}
#endif
if (HAS_QUIRK(QUIRK_INSVOL)) {
finalvol = (finalvol * instrument->vol * xc->gvl) >> 12;
}
if (IS_PLAYER_MODE_FT2()) {
finalvol = tremor_ft2(ctx, chn, finalvol);
} else {
finalvol = tremor_s3m(ctx, chn, finalvol);
}
if (chn < m->mod.chn) {
finalvol = finalvol * p->master_vol / 100;
} else {
finalvol = finalvol * p->smix_vol / 100;
}
xc->info_finalvol = TEST_NOTE(NOTE_SAMPLE_END) ? 0 : finalvol;
libxmp_virt_setvol(ctx, chn, finalvol);
/* Check Amiga split channel */
if (xc->split) {
libxmp_virt_setvol(ctx, xc->pair, finalvol);
}
}
static void process_frequency(struct context_data *ctx, int chn, int act)
{
#ifndef LIBXMP_CORE_DISABLE_IT
struct mixer_data *s = &ctx->s;
#endif
struct player_data *p = &ctx->p;
struct module_data *m = &ctx->m;
struct channel_data *xc = &p->xc_data[chn];
struct xmp_instrument *instrument;
double period, vibrato;
int linear_bend;
int frq_envelope;
int arp;
#ifndef LIBXMP_CORE_DISABLE_IT
int cutoff, resonance;
#endif
instrument = libxmp_get_instrument(ctx, xc->ins);
if (!TEST_PER(FENV_PAUSE)) {
xc->f_idx = update_envelope(&instrument->fei, xc->f_idx,
DOENV_RELEASE, TEST(KEY_OFF), IS_PLAYER_MODE_IT());
}
frq_envelope = get_envelope(&instrument->fei, xc->f_idx, 0);
#ifndef LIBXMP_CORE_PLAYER
/* Do note slide */
if (TEST(NOTE_SLIDE)) {
if (xc->noteslide.count == 0) {
xc->note += xc->noteslide.slide;
xc->period = libxmp_note_to_period(ctx, xc->note,
xc->finetune, xc->per_adj);
xc->noteslide.count = xc->noteslide.speed;
}
xc->noteslide.count--;
libxmp_virt_setnote(ctx, chn, xc->note);
}
#endif
/* Instrument vibrato */
vibrato = 1.0 * libxmp_lfo_get(ctx, &xc->insvib.lfo, 1) /
(4096 * (1 + xc->insvib.sweep));
libxmp_lfo_update(&xc->insvib.lfo);
if (xc->insvib.sweep > 1) {
xc->insvib.sweep -= 2;
} else {
xc->insvib.sweep = 0;
}
/* Vibrato */
if (TEST(VIBRATO) || TEST_PER(VIBRATO)) {
/* OpenMPT VibratoReset.mod */
if (!is_first_frame(ctx) || !HAS_QUIRK(QUIRK_PROTRACK)) {
int shift = HAS_QUIRK(QUIRK_VIBHALF) ? 10 : 9;
int vib = libxmp_lfo_get(ctx, &xc->vibrato.lfo, 1) / (1 << shift);
if (HAS_QUIRK(QUIRK_VIBINV)) {
vibrato -= vib;
} else {
vibrato += vib;
}
}
if (!is_first_frame(ctx) || HAS_QUIRK(QUIRK_VIBALL)) {
libxmp_lfo_update(&xc->vibrato.lfo);
}
}
period = xc->period;
#ifndef LIBXMP_CORE_PLAYER
period += libxmp_extras_get_period(ctx, xc);
#endif
/* Sanity check */
if (period < 0.1) {
period = 0.1;
}
/* Arpeggio */
if (HAS_QUIRK(QUIRK_FT2BUGS)) {
arp = ft2_arpeggio(ctx, xc);
} else {
arp = xc->arpeggio.val[xc->arpeggio.count];
}
/* Pitch bend */
/* From OpenMPT PeriodLimit.s3m:
* "ScreamTracker 3 limits the final output period to be at least 64,
* i.e. when playing a note that is too high or when sliding the
* period lower than 64, the output period will simply be clamped to
* 64. However, when reaching a period of 0 through slides, the
* output on the channel should be stopped."
*/
/* ST3 uses periods*4, so the limit is 16. Adjusted to the exact
* A6 value because we compute periods in floating point.
*/
if (HAS_QUIRK(QUIRK_ST3BUGS)) {
if (period < 16.239270) { /* A6 */
period = 16.239270;
}
}
linear_bend = libxmp_period_to_bend(ctx, period + vibrato, xc->note,
xc->per_adj);
if (TEST_NOTE(NOTE_GLISSANDO) && TEST(TONEPORTA)) {
if (linear_bend > 0) {
linear_bend = (linear_bend + 6400) / 12800 * 12800;
} else if (linear_bend < 0) {
linear_bend = (linear_bend - 6400) / 12800 * 12800;
}
}
if (HAS_QUIRK(QUIRK_FT2BUGS)) {
if (arp) {
/* OpenMPT ArpSlide.xm */
linear_bend = linear_bend / 12800 * 12800 +
xc->finetune * 100;
/* OpenMPT ArpeggioClamp.xm */
if (xc->note + arp > 107) {
if (p->speed - (p->frame % p->speed) > 0) {
arp = 108 - xc->note;
}
}
}
}
/* Envelope */
if (xc->f_idx >= 0 && (~instrument->fei.flg & XMP_ENVELOPE_FLT)) {
/* IT pitch envelopes are always linear, even in Amiga period
* mode. Each unit in the envelope scale is 1/25 semitone.
*/
linear_bend += frq_envelope << 7;
}
/* Arpeggio */
if (arp != 0) {
linear_bend += (100 << 7) * arp;
/* OpenMPT ArpWrapAround.mod */
if (HAS_QUIRK(QUIRK_PROTRACK)) {
if (xc->note + arp > MAX_NOTE_MOD + 1) {
linear_bend -= 12800 * (3 * 12);
} else if (xc->note + arp > MAX_NOTE_MOD) {
libxmp_virt_setvol(ctx, chn, 0);
}
}
}
#ifndef LIBXMP_CORE_PLAYER
linear_bend += libxmp_extras_get_linear_bend(ctx, xc);
#endif
period = libxmp_note_to_period_mix(xc->note, linear_bend);
libxmp_virt_setperiod(ctx, chn, period);
/* For xmp_get_frame_info() */
xc->info_pitchbend = linear_bend >> 7;
xc->info_period = (int) (period * 4096);
if (IS_PERIOD_MODRNG()) {
CLAMP(xc->info_period,
(int) (libxmp_note_to_period(ctx, MAX_NOTE_MOD, xc->finetune, 0) * 4096),
(int) (libxmp_note_to_period(ctx, MIN_NOTE_MOD, xc->finetune, 0) * 4096));
} else if (xc->info_period < (1 << 12)) {
xc->info_period = (1 << 12);
}
#ifndef LIBXMP_CORE_DISABLE_IT
/* Process filter */
if (!HAS_QUIRK(QUIRK_FILTER)) {
return;
}
if (xc->f_idx >= 0 && (instrument->fei.flg & XMP_ENVELOPE_FLT)) {
if (frq_envelope < 0xfe) {
xc->filter.envelope = frq_envelope;
}
cutoff = xc->filter.cutoff * xc->filter.envelope >> 8;
} else {
cutoff = xc->filter.cutoff;
}
resonance = xc->filter.resonance;
if (cutoff > 0xff) {
cutoff = 0xff;
} else if (cutoff < 0xff) {
int a0, b0, b1;
libxmp_filter_setup(s->freq, cutoff, resonance, &a0, &b0, &b1);
libxmp_virt_seteffect(ctx, chn, DSP_EFFECT_FILTER_A0, a0);
libxmp_virt_seteffect(ctx, chn, DSP_EFFECT_FILTER_B0, b0);
libxmp_virt_seteffect(ctx, chn, DSP_EFFECT_FILTER_B1, b1);
libxmp_virt_seteffect(ctx, chn, DSP_EFFECT_RESONANCE, resonance);
}
/* Always set cutoff */
libxmp_virt_seteffect(ctx, chn, DSP_EFFECT_CUTOFF, cutoff);
#endif
}
static void process_pan(struct context_data *ctx, int chn, int act)
{
struct player_data *p = &ctx->p;
struct module_data *m = &ctx->m;
struct mixer_data *s = &ctx->s;
struct channel_data *xc = &p->xc_data[chn];
struct xmp_instrument *instrument;
int finalpan, panbrello = 0;
int pan_envelope;
int channel_pan;
instrument = libxmp_get_instrument(ctx, xc->ins);
if (!TEST_PER(PENV_PAUSE)) {
xc->p_idx = update_envelope(&instrument->pei, xc->p_idx,
DOENV_RELEASE, TEST(KEY_OFF), IS_PLAYER_MODE_IT());
}
pan_envelope = get_envelope(&instrument->pei, xc->p_idx, 32);
#ifndef LIBXMP_CORE_DISABLE_IT
if (TEST(PANBRELLO)) {
panbrello = libxmp_lfo_get(ctx, &xc->panbrello.lfo, 0) / 512;
if (is_first_frame(ctx)) {
libxmp_lfo_update(&xc->panbrello.lfo);
}
}
#endif
channel_pan = xc->pan.val;
#if 0
#ifdef LIBXMP_PAULA_SIMULATOR
/* Always use 100% pan separation in Amiga mode */
if (p->flags & XMP_FLAGS_A500) {
if (IS_AMIGA_MOD()) {
channel_pan = channel_pan < 0x80 ? 0 : 0xff;
}
}
#endif
#endif
finalpan = channel_pan + panbrello + (pan_envelope - 32) *
(128 - abs(xc->pan.val - 128)) / 32;
if (IS_PLAYER_MODE_IT()) {
finalpan = finalpan + xc->rpv * 4;
}
CLAMP(finalpan, 0, 255);
if (s->format & XMP_FORMAT_MONO || xc->pan.surround) {
finalpan = 0;
} else {
finalpan = (finalpan - 0x80) * s->mix / 100;
}
xc->info_finalpan = finalpan + 0x80;
if (xc->pan.surround) {
libxmp_virt_setpan(ctx, chn, PAN_SURROUND);
} else {
libxmp_virt_setpan(ctx, chn, finalpan);
}
}
static void update_volume(struct context_data *ctx, int chn)
{
struct player_data *p = &ctx->p;
struct module_data *m = &ctx->m;
#ifndef LIBXMP_CORE_DISABLE_IT
struct flow_control *f = &p->flow;
#endif
struct channel_data *xc = &p->xc_data[chn];
/* Volume slides happen in all frames but the first, except when the
* "volume slide on all frames" flag is set.
*/
if (p->frame % p->speed != 0 || HAS_QUIRK(QUIRK_VSALL)) {
if (TEST(GVOL_SLIDE)) {
p->gvol += xc->gvol.slide;
}
if (TEST(VOL_SLIDE) || TEST_PER(VOL_SLIDE)) {
xc->volume += xc->vol.slide;
}
#ifndef LIBXMP_CORE_PLAYER
if (TEST_PER(VOL_SLIDE)) {
if (xc->vol.slide > 0 && xc->volume > m->volbase) {
xc->volume = m->volbase;
RESET_PER(VOL_SLIDE);
}
if (xc->vol.slide < 0 && xc->volume < 0) {
xc->volume = 0;
RESET_PER(VOL_SLIDE);
}
}
#endif
if (TEST(VOL_SLIDE_2)) {
xc->volume += xc->vol.slide2;
}
if (TEST(TRK_VSLIDE)) {
xc->mastervol += xc->trackvol.slide;
}
}
if (p->frame % p->speed == 0) {
/* Process "fine" effects */
if (TEST(FINE_VOLS)) {
xc->volume += xc->vol.fslide;
}
#ifndef LIBXMP_CORE_DISABLE_IT
if (TEST(FINE_VOLS_2)) {
/* OpenMPT FineVolColSlide.it:
* Unlike fine volume slides in the effect column,
* fine volume slides in the volume column are only
* ever executed on the first tick -- not on multiples
* of the first tick if there is a pattern delay.
*/
if (!f->rowdelay_set || f->rowdelay_set & 2) {
xc->volume += xc->vol.fslide2;
}
}
f->rowdelay_set &= ~2;
#endif
if (TEST(TRK_FVSLIDE)) {
xc->mastervol += xc->trackvol.fslide;
}
if (TEST(GVOL_SLIDE)) {
p->gvol += xc->gvol.fslide;
}
}
/* Clamp volumes */
CLAMP(xc->volume, 0, m->volbase);
CLAMP(p->gvol, 0, m->gvolbase);
CLAMP(xc->mastervol, 0, m->volbase);
if (xc->split) {
p->xc_data[xc->pair].volume = xc->volume;
}
}
static void update_frequency(struct context_data *ctx, int chn)
{
struct player_data *p = &ctx->p;
struct module_data *m = &ctx->m;
struct channel_data *xc = &p->xc_data[chn];
if (!is_first_frame(ctx) || HAS_QUIRK(QUIRK_PBALL)) {
if (TEST(PITCHBEND) || TEST_PER(PITCHBEND)) {
xc->period += xc->freq.slide;
if (HAS_QUIRK(QUIRK_PROTRACK)) {
xc->porta.target = xc->period;
}
}
/* Do tone portamento */
if (TEST(TONEPORTA) || TEST_PER(TONEPORTA)) {
if (xc->porta.target > 0) {
int end = 0;
if (xc->porta.dir > 0) {
xc->period += xc->porta.slide;
if (xc->period >= xc->porta.target)
end = 1;
} else {
xc->period -= xc->porta.slide;
if (xc->period <= xc->porta.target)
end = 1;
}
if (end) {
/* reached end */
xc->period = xc->porta.target;
xc->porta.dir = 0;
RESET(TONEPORTA);
RESET_PER(TONEPORTA);
if (HAS_QUIRK(QUIRK_PROTRACK)) {
xc->porta.target = -1;
}
}
}
}
}
if (is_first_frame(ctx)) {
if (TEST(FINE_BEND)) {
xc->period += xc->freq.fslide;
}
#ifndef LIBXMP_CORE_PLAYER
if (TEST(FINE_NSLIDE)) {
xc->note += xc->noteslide.fslide;
xc->period = libxmp_note_to_period(ctx, xc->note,
xc->finetune, xc->per_adj);
}
#endif
}
switch (m->period_type) {
case PERIOD_LINEAR:
CLAMP(xc->period, MIN_PERIOD_L, MAX_PERIOD_L);
break;
case PERIOD_MODRNG:
CLAMP(xc->period,
libxmp_note_to_period(ctx, MAX_NOTE_MOD, xc->finetune, 0),
libxmp_note_to_period(ctx, MIN_NOTE_MOD, xc->finetune, 0));
break;
}
xc->arpeggio.count++;
xc->arpeggio.count %= xc->arpeggio.size;
/* Check for invalid periods (from Toru Egashira's NSPmod)
* panic.s3m has negative periods
* ambio.it uses low (~8) period values
*/
if (xc->period < 0.25) {
libxmp_virt_setvol(ctx, chn, 0);
}
}
static void update_pan(struct context_data *ctx, int chn)
{
struct player_data *p = &ctx->p;
struct channel_data *xc = &p->xc_data[chn];
if (TEST(PAN_SLIDE)) {
if (is_first_frame(ctx)) {
xc->pan.val += xc->pan.fslide;
} else {
xc->pan.val += xc->pan.slide;
}
if (xc->pan.val < 0) {
xc->pan.val = 0;
} else if (xc->pan.val > 0xff) {
xc->pan.val = 0xff;
}
}
}
static void play_channel(struct context_data *ctx, int chn)
{
struct player_data *p = &ctx->p;
struct smix_data *smix = &ctx->smix;
struct module_data *m = &ctx->m;
struct xmp_module *mod = &m->mod;
struct channel_data *xc = &p->xc_data[chn];
int act;
xc->info_finalvol = 0;
#ifndef LIBXMP_CORE_DISABLE_IT
/* IT tempo slide */
if (!is_first_frame(ctx) && TEST(TEMPO_SLIDE)) {
p->bpm += xc->tempo.slide;
CLAMP(p->bpm, 0x20, 0xff);
}
#endif
/* Do delay */
if (xc->delay > 0) {
if (--xc->delay == 0) {
libxmp_read_event(ctx, &xc->delayed_event, chn);
}
}
act = libxmp_virt_cstat(ctx, chn);
if (act == VIRT_INVALID) {
/* We need this to keep processing global volume slides */
update_volume(ctx, chn);
return;
}
if (p->frame == 0 && act != VIRT_ACTIVE) {
if (!IS_VALID_INSTRUMENT_OR_SFX(xc->ins) || act == VIRT_ACTION_CUT) {
libxmp_virt_resetchannel(ctx, chn);
return;
}
}
if (!IS_VALID_INSTRUMENT_OR_SFX(xc->ins))
return;
#ifndef LIBXMP_CORE_PLAYER
libxmp_play_extras(ctx, xc, chn);
#endif
/* Do cut/retrig */
if (TEST(RETRIG)) {
int cond = HAS_QUIRK(QUIRK_S3MRTG) ?
--xc->retrig.count <= 0 :
--xc->retrig.count == 0;
if (cond) {
if (xc->retrig.type < 0x10) {
/* don't retrig on cut */
libxmp_virt_voicepos(ctx, chn, 0);
} else {
SET_NOTE(NOTE_END);
}
xc->volume += rval[xc->retrig.type].s;
xc->volume *= rval[xc->retrig.type].m;
xc->volume /= rval[xc->retrig.type].d;
xc->retrig.count = LSN(xc->retrig.val);
}
}
/* Do keyoff */
if (xc->keyoff) {
if (--xc->keyoff == 0)
SET_NOTE(NOTE_RELEASE);
}
libxmp_virt_release(ctx, chn, TEST_NOTE(NOTE_RELEASE));
process_volume(ctx, chn, act);
process_frequency(ctx, chn, act);
process_pan(ctx, chn, act);
update_volume(ctx, chn);
update_frequency(ctx, chn);
update_pan(ctx, chn);
#ifndef LIBXMP_CORE_PLAYER
if (HAS_QUIRK(QUIRK_PROTRACK) && xc->ins < mod->ins) {
update_invloop(m, xc);
}
#endif
if (TEST_NOTE(NOTE_SUSEXIT)) {
SET_NOTE(NOTE_RELEASE);
}
xc->info_position = (int) libxmp_virt_getvoicepos(ctx, chn);
}
/*
* Event injection
*/
static void inject_event(struct context_data *ctx)
{
struct player_data *p = &ctx->p;
struct module_data *m = &ctx->m;
struct xmp_module *mod = &m->mod;
struct smix_data *smix = &ctx->smix;
int chn;
for (chn = 0; chn < mod->chn + smix->chn; chn++) {
struct xmp_event *e = &p->inject_event[chn];
if (e->_flag > 0) {
libxmp_read_event(ctx, e, chn);
e->_flag = 0;
}
}
}
/*
* Sequencing
*/
static void next_order(struct context_data *ctx)
{
struct player_data *p = &ctx->p;
struct flow_control *f = &p->flow;
struct module_data *m = &ctx->m;
struct xmp_module *mod = &m->mod;
int mark;
do {
p->ord++;
/* Restart module */
mark = HAS_QUIRK(QUIRK_MARKER) && mod->xxo[p->ord] == 0xff;
if (p->ord >= mod->len || mark) {
if (mod->rst > mod->len ||
mod->xxo[mod->rst] >= mod->pat ||
p->ord < m->seq_data[p->sequence].entry_point) {
p->ord = m->seq_data[p->sequence].entry_point;
} else {
if (libxmp_get_sequence(ctx, mod->rst) == p->sequence) {
p->ord = mod->rst;
} else {
p->ord = m->seq_data[p->sequence].entry_point;
}
}
p->gvol = m->xxo_info[p->ord].gvl;
}
} while (mod->xxo[p->ord] >= mod->pat);
p->current_time = m->xxo_info[p->ord].time;
f->num_rows = mod->xxp[mod->xxo[p->ord]]->rows;
if (f->jumpline >= f->num_rows)
f->jumpline = 0;
p->row = f->jumpline;
f->jumpline = 0;
p->pos = p->ord;
p->frame = 0;
#ifndef LIBXMP_CORE_PLAYER
/* Reset persistent effects at new pattern */
if (HAS_QUIRK(QUIRK_PERPAT)) {
int chn;
for (chn = 0; chn < mod->chn; chn++) {
p->xc_data[chn].per_flags = 0;
}
}
#endif
}
static void next_row(struct context_data *ctx)
{
struct player_data *p = &ctx->p;
struct flow_control *f = &p->flow;
p->frame = 0;
f->delay = 0;
if (f->pbreak) {
f->pbreak = 0;
if (f->jump != -1) {
p->ord = f->jump - 1;
f->jump = -1;
}
next_order(ctx);
} else {
if (f->loop_chn) {
p->row = f->loop[f->loop_chn - 1].start - 1;
f->loop_chn = 0;
}
if (f->rowdelay == 0) {
p->row++;
f->rowdelay_set = 0;
} else {
f->rowdelay--;
}
/* check end of pattern */
if (p->row >= f->num_rows) {
next_order(ctx);
}
}
}
#ifndef LIBXMP_CORE_DISABLE_IT
/*
* Set note action for libxmp_virt_pastnote
*/
void libxmp_player_set_release(struct context_data *ctx, int chn)
{
struct player_data *p = &ctx->p;
struct channel_data *xc = &p->xc_data[chn];
SET_NOTE(NOTE_RELEASE);
}
void libxmp_player_set_fadeout(struct context_data *ctx, int chn)
{
struct player_data *p = &ctx->p;
struct channel_data *xc = &p->xc_data[chn];
SET_NOTE(NOTE_FADEOUT);
}
#endif
static void update_from_ord_info(struct context_data *ctx)
{
struct player_data *p = &ctx->p;
struct module_data *m = &ctx->m;
struct ord_data *oinfo = &m->xxo_info[p->ord];
if (oinfo->speed)
p->speed = oinfo->speed;
p->bpm = oinfo->bpm;
p->gvol = oinfo->gvl;
p->current_time = oinfo->time;
p->frame_time = m->time_factor * m->rrate / p->bpm;
#ifndef LIBXMP_CORE_PLAYER
p->st26_speed = oinfo->st26_speed;
#endif
}
int xmp_start_player(xmp_context opaque, int rate, int format)
{
struct context_data *ctx = (struct context_data *)opaque;
struct player_data *p = &ctx->p;
struct smix_data *smix = &ctx->smix;
struct module_data *m = &ctx->m;
struct xmp_module *mod = &m->mod;
struct flow_control *f = &p->flow;
int i;
int ret = 0;
if (rate < XMP_MIN_SRATE || rate > XMP_MAX_SRATE)
return -XMP_ERROR_INVALID;
if (ctx->state < XMP_STATE_LOADED)
return -XMP_ERROR_STATE;
if (ctx->state > XMP_STATE_LOADED)
xmp_end_player(opaque);
if (libxmp_mixer_on(ctx, rate, format, m->c4rate) < 0)
return -XMP_ERROR_INTERNAL;
p->master_vol = 100;
p->smix_vol = 100;
p->gvol = m->volbase;
p->pos = p->ord = 0;
p->frame = -1;
p->row = 0;
p->current_time = 0;
p->loop_count = 0;
p->sequence = 0;
/* Unmute all channels and set default volume */
for (i = 0; i < XMP_MAX_CHANNELS; i++) {
p->channel_mute[i] = 0;
p->channel_vol[i] = 100;
}
/* Skip invalid patterns at start (the seventh laboratory.it) */
while (p->ord < mod->len && mod->xxo[p->ord] >= mod->pat) {
p->ord++;
}
/* Check if all positions skipped */
if (p->ord >= mod->len) {
mod->len = 0;
}
if (mod->len == 0 || mod->chn == 0) {
/* set variables to sane state */
p->ord = p->scan[0].ord = 0;
p->row = p->scan[0].row = 0;
f->end_point = 0;
f->num_rows = 0;
} else {
f->num_rows = mod->xxp[mod->xxo[p->ord]]->rows;
f->end_point = p->scan[0].num;
}
update_from_ord_info(ctx);
if (libxmp_virt_on(ctx, mod->chn + smix->chn) != 0) {
ret = -XMP_ERROR_INTERNAL;
goto err;
}
f->delay = 0;
f->jumpline = 0;
f->jump = -1;
f->pbreak = 0;
f->rowdelay_set = 0;
f->loop = (struct pattern_loop *)calloc(p->virt.virt_channels, sizeof(struct pattern_loop));
if (f->loop == NULL) {
ret = -XMP_ERROR_SYSTEM;
goto err;
}
p->xc_data = (struct channel_data *)calloc(p->virt.virt_channels, sizeof(struct channel_data));
if (p->xc_data == NULL) {
ret = -XMP_ERROR_SYSTEM;
goto err1;
}
#ifndef LIBXMP_CORE_PLAYER
for (i = 0; i < p->virt.virt_channels; i++) {
struct channel_data *xc = &p->xc_data[i];
if (libxmp_new_channel_extras(ctx, xc) < 0)
goto err2;
}
#endif
reset_channels(ctx);
ctx->state = XMP_STATE_PLAYING;
return 0;
#ifndef LIBXMP_CORE_PLAYER
err2:
free(p->xc_data);
#endif
err1:
free(f->loop);
err:
return ret;
}
static void check_end_of_module(struct context_data *ctx)
{
struct player_data *p = &ctx->p;
struct flow_control *f = &p->flow;
/* check end of module */
if (p->ord == p->scan[p->sequence].ord &&
p->row == p->scan[p->sequence].row) {
if (f->end_point == 0) {
p->loop_count++;
f->end_point = p->scan[p->sequence].num;
/* return -1; */
}
f->end_point--;
}
}
int xmp_play_frame(xmp_context opaque)
{
struct context_data *ctx = (struct context_data *)opaque;
struct player_data *p = &ctx->p;
struct module_data *m = &ctx->m;
struct xmp_module *mod = &m->mod;
struct flow_control *f = &p->flow;
int i;
if (ctx->state < XMP_STATE_PLAYING)
return -XMP_ERROR_STATE;
if (mod->len <= 0) {
return -XMP_END;
}
if (HAS_QUIRK(QUIRK_MARKER) && mod->xxo[p->ord] == 0xff) {
return -XMP_END;
}
/* check reposition */
if (p->ord != p->pos) {
int start = m->seq_data[p->sequence].entry_point;
if (p->pos == -2) { /* set by xmp_module_stop */
return -XMP_END; /* that's all folks */
}
if (p->pos == -1) {
/* restart sequence */
p->pos = start;
}
if (p->pos == start) {
f->end_point = p->scan[p->sequence].num;
}
/* Check if lands after a loop point */
if (p->pos > p->scan[p->sequence].ord) {
f->end_point = 0;
}
f->jumpline = 0;
f->jump = -1;
p->ord = p->pos - 1;
/* Stay inside our subsong */
if (p->ord < start) {
p->ord = start - 1;
}
next_order(ctx);
update_from_ord_info(ctx);
libxmp_virt_reset(ctx);
reset_channels(ctx);
} else {
p->frame++;
if (p->frame >= (p->speed * (1 + f->delay))) {
/* If break during pattern delay, next row is skipped.
* See corruption.mod order 1D (pattern 0D) last line:
* EE2 + D31 ignores D00 in order 1C line 31. Reported
* by The Welder <welder@majesty.net>, Jan 14 2012
*/
if (HAS_QUIRK(QUIRK_PROTRACK) && f->delay && f->pbreak)
{
next_row(ctx);
check_end_of_module(ctx);
}
next_row(ctx);
}
}
for (i = 0; i < mod->chn; i++) {
struct channel_data *xc = &p->xc_data[i];
RESET(KEY_OFF);
}
/* check new row */
if (p->frame == 0) { /* first frame in row */
check_end_of_module(ctx);
read_row(ctx, mod->xxo[p->ord], p->row);
#ifndef LIBXMP_CORE_PLAYER
if (p->st26_speed) {
if (p->st26_speed & 0x10000) {
p->speed = (p->st26_speed & 0xff00) >> 8;
} else {
p->speed = p->st26_speed & 0xff;
}
p->st26_speed ^= 0x10000;
}
#endif
}
inject_event(ctx);
/* play_frame */
for (i = 0; i < p->virt.virt_channels; i++) {
play_channel(ctx, i);
}
p->frame_time = m->time_factor * m->rrate / p->bpm;
p->current_time += p->frame_time;
libxmp_mixer_softmixer(ctx);
return 0;
}
int xmp_play_buffer(xmp_context opaque, void *out_buffer, int size, int loop)
{
struct context_data *ctx = (struct context_data *)opaque;
struct player_data *p = &ctx->p;
int ret = 0, filled = 0, copy_size;
struct xmp_frame_info fi;
/* Reset internal state
* Syncs buffer start with frame start */
if (out_buffer == NULL) {
p->loop_count = 0;
p->buffer_data.consumed = 0;
p->buffer_data.in_size = 0;
return 0;
}
if (ctx->state < XMP_STATE_PLAYING)
return -XMP_ERROR_STATE;
/* Fill buffer */
while (filled < size) {
/* Check if buffer full */
if (p->buffer_data.consumed == p->buffer_data.in_size) {
ret = xmp_play_frame(opaque);
xmp_get_frame_info(opaque, &fi);
/* Check end of module */
if (ret < 0 || (loop > 0 && fi.loop_count >= loop)) {
/* Start of frame, return end of replay */
if (filled == 0) {
p->buffer_data.consumed = 0;
p->buffer_data.in_size = 0;
return -1;
}
/* Fill remaining of this buffer */
memset((char *)out_buffer + filled, 0, size - filled);
return 0;
}
p->buffer_data.consumed = 0;
p->buffer_data.in_buffer = (char *)fi.buffer;
p->buffer_data.in_size = fi.buffer_size;
}
/* Copy frame data to user buffer */
copy_size = MIN(size - filled, p->buffer_data.in_size -
p->buffer_data.consumed);
memcpy((char *)out_buffer + filled, p->buffer_data.in_buffer +
p->buffer_data.consumed, copy_size);
p->buffer_data.consumed += copy_size;
filled += copy_size;
}
return ret;
}
void xmp_end_player(xmp_context opaque)
{
struct context_data *ctx = (struct context_data *)opaque;
struct player_data *p = &ctx->p;
struct flow_control *f = &p->flow;
#ifndef LIBXMP_CORE_PLAYER
struct channel_data *xc;
int i;
#endif
if (ctx->state < XMP_STATE_PLAYING)
return;
ctx->state = XMP_STATE_LOADED;
#ifndef LIBXMP_CORE_PLAYER
/* Free channel extras */
for (i = 0; i < p->virt.virt_channels; i++) {
xc = &p->xc_data[i];
libxmp_release_channel_extras(ctx, xc);
}
#endif
libxmp_virt_off(ctx);
free(p->xc_data);
free(f->loop);
p->xc_data = NULL;
f->loop = NULL;
libxmp_mixer_off(ctx);
}
void xmp_get_module_info(xmp_context opaque, struct xmp_module_info *info)
{
struct context_data *ctx = (struct context_data *)opaque;
struct module_data *m = &ctx->m;
struct xmp_module *mod = &m->mod;
if (ctx->state < XMP_STATE_LOADED)
return;
memcpy(info->md5, m->md5, 16);
info->mod = mod;
info->comment = m->comment;
info->num_sequences = m->num_sequences;
info->seq_data = m->seq_data;
info->vol_base = m->volbase;
}
void xmp_get_frame_info(xmp_context opaque, struct xmp_frame_info *info)
{
struct context_data *ctx = (struct context_data *)opaque;
struct player_data *p = &ctx->p;
struct mixer_data *s = &ctx->s;
struct module_data *m = &ctx->m;
struct xmp_module *mod = &m->mod;
int chn, i;
if (ctx->state < XMP_STATE_LOADED)
return;
chn = mod->chn;
if (p->pos >= 0 && p->pos < mod->len) {
info->pos = p->pos;
} else {
info->pos = 0;
}
info->pattern = mod->xxo[info->pos];
if (info->pattern < mod->pat) {
info->num_rows = mod->xxp[info->pattern]->rows;
} else {
info->num_rows = 0;
}
info->row = p->row;
info->frame = p->frame;
info->speed = p->speed;
info->bpm = p->bpm;
info->total_time = p->scan[p->sequence].time;
info->frame_time = (int) (p->frame_time * 1000);
info->time = (int) p->current_time;
info->buffer = s->buffer;
info->total_size = XMP_MAX_FRAMESIZE;
info->buffer_size = s->ticksize;
if (~s->format & XMP_FORMAT_MONO) {
info->buffer_size *= 2;
}
if (~s->format & XMP_FORMAT_8BIT) {
info->buffer_size *= 2;
}
info->volume = p->gvol;
info->loop_count = p->loop_count;
info->virt_channels = p->virt.virt_channels;
info->virt_used = p->virt.virt_used;
info->sequence = p->sequence;
if (p->xc_data != NULL) {
for (i = 0; i < chn; i++) {
struct channel_data *c = &p->xc_data[i];
struct xmp_channel_info *ci = &info->channel_info[i];
struct xmp_track *track;
struct xmp_event *event;
int trk;
ci->note = c->key;
ci->pitchbend = c->info_pitchbend;
ci->period = c->info_period;
ci->position = c->info_position;
ci->instrument = c->ins;
ci->sample = c->smp;
ci->volume = c->info_finalvol >> 4;
ci->pan = c->info_finalpan;
ci->reserved = 0;
memset(&ci->event, 0, sizeof(*event));
if (info->pattern < mod->pat && info->row < info->num_rows) {
trk = mod->xxp[info->pattern]->index[i];
track = mod->xxt[trk];
if (info->row < track->rows) {
event = &track->event[info->row];
memcpy(&ci->event, event, sizeof(*event));
}
}
}
}
}