qzdoom/src/gl/scene/gl_flats.cpp
Christoph Oelckers c6ada2397c - adjustments.
2016-03-31 09:50:59 +02:00

747 lines
20 KiB
C++

/*
** gl_flat.cpp
** Flat rendering
**
**---------------------------------------------------------------------------
** Copyright 2000-2005 Christoph Oelckers
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
** 4. When not used as part of GZDoom or a GZDoom derivative, this code will be
** covered by the terms of the GNU Lesser General Public License as published
** by the Free Software Foundation; either version 2.1 of the License, or (at
** your option) any later version.
** 5. Full disclosure of the entire project's source code, except for third
** party libraries is mandatory. (NOTE: This clause is non-negotiable!)
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#include "gl/system/gl_system.h"
#include "a_sharedglobal.h"
#include "r_defs.h"
#include "r_sky.h"
#include "r_utility.h"
#include "g_level.h"
#include "doomstat.h"
#include "d_player.h"
#include "portal.h"
#include "gl/system/gl_interface.h"
#include "gl/system/gl_cvars.h"
#include "gl/renderer/gl_renderer.h"
#include "gl/renderer/gl_lightdata.h"
#include "gl/renderer/gl_renderstate.h"
#include "gl/data/gl_data.h"
#include "gl/data/gl_vertexbuffer.h"
#include "gl/dynlights/gl_dynlight.h"
#include "gl/dynlights/gl_glow.h"
#include "gl/dynlights/gl_lightbuffer.h"
#include "gl/scene/gl_drawinfo.h"
#include "gl/shaders/gl_shader.h"
#include "gl/textures/gl_material.h"
#include "gl/utility/gl_clock.h"
#include "gl/utility/gl_convert.h"
#include "gl/utility/gl_templates.h"
#ifdef _DEBUG
CVAR(Int, gl_breaksec, -1, 0)
#endif
//==========================================================================
//
// Sets the texture matrix according to the plane's texture positioning
// information
//
//==========================================================================
static float tics;
void gl_SetPlaneTextureRotation(const GLSectorPlane * secplane, FMaterial * gltexture)
{
// only manipulate the texture matrix if needed.
if (!secplane->Offs.isZero() ||
secplane->Scale.X != 1. || secplane->Scale.Y != 1 ||
secplane->Angle != 0 ||
gltexture->TextureWidth() != 64 ||
gltexture->TextureHeight() != 64)
{
float uoffs = secplane->Offs.X / gltexture->TextureWidth();
float voffs = secplane->Offs.Y / gltexture->TextureHeight();
float xscale1 = secplane->Scale.X;
float yscale1 = secplane->Scale.Y;
if (gltexture->tex->bHasCanvas)
{
yscale1 = 0 - yscale1;
}
float angle = -secplane->Angle;
float xscale2 = 64.f / gltexture->TextureWidth();
float yscale2 = 64.f / gltexture->TextureHeight();
gl_RenderState.mTextureMatrix.loadIdentity();
gl_RenderState.mTextureMatrix.scale(xscale1, yscale1, 1.0f);
gl_RenderState.mTextureMatrix.translate(uoffs, voffs, 0.0f);
gl_RenderState.mTextureMatrix.scale(xscale2, yscale2, 1.0f);
gl_RenderState.mTextureMatrix.rotate(angle, 0.0f, 0.0f, 1.0f);
gl_RenderState.EnableTextureMatrix(true);
}
}
//==========================================================================
//
// Flats
//
//==========================================================================
extern FDynLightData lightdata;
void GLFlat::SetupSubsectorLights(int pass, subsector_t * sub, int *dli)
{
Plane p;
if (dli != NULL && *dli != -1)
{
gl_RenderState.ApplyLightIndex(GLRenderer->mLights->GetIndex(*dli));
(*dli)++;
return;
}
lightdata.Clear();
FLightNode * node = sub->lighthead;
while (node)
{
ADynamicLight * light = node->lightsource;
if (light->flags2&MF2_DORMANT)
{
node=node->nextLight;
continue;
}
iter_dlightf++;
// we must do the side check here because gl_SetupLight needs the correct plane orientation
// which we don't have for Legacy-style 3D-floors
double planeh = plane.plane.ZatPoint(light);
if (gl_lights_checkside && ((planeh<light->Z() && ceiling) || (planeh>light->Z() && !ceiling)))
{
node = node->nextLight;
continue;
}
p.Set(plane.plane);
gl_GetLight(sub->sector->PortalGroup, p, light, false, false, lightdata);
node = node->nextLight;
}
int d = GLRenderer->mLights->UploadLights(lightdata);
if (pass == GLPASS_LIGHTSONLY)
{
GLRenderer->mLights->StoreIndex(d);
}
else
{
gl_RenderState.ApplyLightIndex(d);
}
}
//==========================================================================
//
//
//
//==========================================================================
void GLFlat::DrawSubsector(subsector_t * sub)
{
FFlatVertex *ptr = GLRenderer->mVBO->GetBuffer();
if (plane.plane.isSlope())
{
for (unsigned int k = 0; k < sub->numlines; k++)
{
vertex_t *vt = sub->firstline[k].v1;
ptr->x = vt->fx;
ptr->y = vt->fy;
ptr->z = plane.plane.ZatPoint(vt->fx, vt->fy) + dz;
ptr->u = vt->fx / 64.f;
ptr->v = -vt->fy / 64.f;
ptr++;
}
}
else
{
float zc = FIXED2FLOAT(plane.plane.Zat0()) + dz;
for (unsigned int k = 0; k < sub->numlines; k++)
{
vertex_t *vt = sub->firstline[k].v1;
ptr->x = vt->fx;
ptr->y = vt->fy;
ptr->z = zc;
ptr->u = vt->fx / 64.f;
ptr->v = -vt->fy / 64.f;
ptr++;
}
}
GLRenderer->mVBO->RenderCurrent(ptr, GL_TRIANGLE_FAN);
flatvertices += sub->numlines;
flatprimitives++;
}
//==========================================================================
//
//
//
//==========================================================================
void GLFlat::ProcessLights(bool istrans)
{
dynlightindex = GLRenderer->mLights->GetIndexPtr();
if (sub)
{
// This represents a single subsector
SetupSubsectorLights(GLPASS_LIGHTSONLY, sub);
}
else
{
// Draw the subsectors belonging to this sector
for (int i=0; i<sector->subsectorcount; i++)
{
subsector_t * sub = sector->subsectors[i];
if (gl_drawinfo->ss_renderflags[sub-subsectors]&renderflags || istrans)
{
SetupSubsectorLights(GLPASS_LIGHTSONLY, sub);
}
}
// Draw the subsectors assigned to it due to missing textures
if (!(renderflags&SSRF_RENDER3DPLANES))
{
gl_subsectorrendernode * node = (renderflags&SSRF_RENDERFLOOR)?
gl_drawinfo->GetOtherFloorPlanes(sector->sectornum) :
gl_drawinfo->GetOtherCeilingPlanes(sector->sectornum);
while (node)
{
SetupSubsectorLights(GLPASS_LIGHTSONLY, node->sub);
node = node->next;
}
}
}
}
//==========================================================================
//
//
//
//==========================================================================
void GLFlat::DrawSubsectors(int pass, bool processlights, bool istrans)
{
int dli = dynlightindex;
gl_RenderState.Apply();
if (sub)
{
// This represents a single subsector
if (processlights) SetupSubsectorLights(GLPASS_ALL, sub, &dli);
DrawSubsector(sub);
}
else
{
if (vboindex >= 0)
{
int index = vboindex;
for (int i=0; i<sector->subsectorcount; i++)
{
subsector_t * sub = sector->subsectors[i];
if (gl_drawinfo->ss_renderflags[sub-subsectors]&renderflags || istrans)
{
if (processlights) SetupSubsectorLights(GLPASS_ALL, sub, &dli);
drawcalls.Clock();
glDrawArrays(GL_TRIANGLE_FAN, index, sub->numlines);
drawcalls.Unclock();
flatvertices += sub->numlines;
flatprimitives++;
}
index += sub->numlines;
}
}
else
{
// Draw the subsectors belonging to this sector
for (int i=0; i<sector->subsectorcount; i++)
{
subsector_t * sub = sector->subsectors[i];
if (gl_drawinfo->ss_renderflags[sub-subsectors]&renderflags || istrans)
{
if (processlights) SetupSubsectorLights(GLPASS_ALL, sub, &dli);
DrawSubsector(sub);
}
}
}
// Draw the subsectors assigned to it due to missing textures
if (!(renderflags&SSRF_RENDER3DPLANES))
{
gl_subsectorrendernode * node = (renderflags&SSRF_RENDERFLOOR)?
gl_drawinfo->GetOtherFloorPlanes(sector->sectornum) :
gl_drawinfo->GetOtherCeilingPlanes(sector->sectornum);
while (node)
{
if (processlights) SetupSubsectorLights(GLPASS_ALL, node->sub, &dli);
DrawSubsector(node->sub);
node = node->next;
}
}
}
}
//==========================================================================
//
//
//
//==========================================================================
void GLFlat::Draw(int pass, bool trans) // trans only has meaning for GLPASS_LIGHTSONLY
{
int rel = getExtraLight();
#ifdef _DEBUG
if (sector->sectornum == gl_breaksec)
{
int a = 0;
}
#endif
switch (pass)
{
case GLPASS_PLAIN: // Single-pass rendering
case GLPASS_ALL:
gl_SetColor(lightlevel, rel, Colormap,1.0f);
gl_SetFog(lightlevel, rel, &Colormap, false);
gl_RenderState.SetMaterial(gltexture, CLAMP_NONE, 0, -1, false);
gl_SetPlaneTextureRotation(&plane, gltexture);
DrawSubsectors(pass, (pass == GLPASS_ALL || dynlightindex > -1), false);
gl_RenderState.EnableTextureMatrix(false);
break;
case GLPASS_LIGHTSONLY:
if (!trans || gltexture)
{
ProcessLights(trans);
}
break;
case GLPASS_TRANSLUCENT:
if (renderstyle==STYLE_Add) gl_RenderState.BlendFunc(GL_SRC_ALPHA, GL_ONE);
gl_SetColor(lightlevel, rel, Colormap, alpha);
gl_SetFog(lightlevel, rel, &Colormap, false);
gl_RenderState.AlphaFunc(GL_GEQUAL, gl_mask_threshold);
if (!gltexture)
{
gl_RenderState.EnableTexture(false);
DrawSubsectors(pass, false, true);
gl_RenderState.EnableTexture(true);
}
else
{
gl_RenderState.SetMaterial(gltexture, CLAMP_NONE, 0, -1, false);
gl_SetPlaneTextureRotation(&plane, gltexture);
DrawSubsectors(pass, true, true);
gl_RenderState.EnableTextureMatrix(false);
}
if (renderstyle==STYLE_Add) gl_RenderState.BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
break;
}
}
//==========================================================================
//
// GLFlat::PutFlat
//
// Checks texture, lighting and translucency settings and puts this
// plane in the appropriate render list.
//
//==========================================================================
inline void GLFlat::PutFlat(bool fog)
{
int list;
if (gl_fixedcolormap)
{
Colormap.Clear();
}
if (renderstyle!=STYLE_Translucent || alpha < 1.f - FLT_EPSILON || fog || gltexture == NULL)
{
// translucent 3D floors go into the regular translucent list, translucent portals go into the translucent border list.
list = (renderflags&SSRF_RENDER3DPLANES) ? GLDL_TRANSLUCENT : GLDL_TRANSLUCENTBORDER;
}
else
{
bool masked = gltexture->isMasked() && ((renderflags&SSRF_RENDER3DPLANES) || stack);
list = masked ? GLDL_MASKEDFLATS : GLDL_PLAINFLATS;
}
gl_drawinfo->drawlists[list].AddFlat (this);
}
//==========================================================================
//
// This draws one flat
// The passed sector does not indicate the area which is rendered.
// It is only used as source for the plane data.
// The whichplane boolean indicates if the flat is a floor(false) or a ceiling(true)
//
//==========================================================================
void GLFlat::Process(sector_t * model, int whichplane, bool fog)
{
plane.GetFromSector(model, whichplane);
if (!fog)
{
if (plane.texture==skyflatnum) return;
gltexture=FMaterial::ValidateTexture(plane.texture, false, true);
if (!gltexture) return;
if (gltexture->tex->isFullbright())
{
Colormap.LightColor.r = Colormap.LightColor.g = Colormap.LightColor.b = 0xff;
lightlevel=255;
}
}
else
{
gltexture = NULL;
lightlevel = abs(lightlevel);
}
// get height from vplane
if (whichplane == sector_t::floor && sector->transdoor) dz = -1;
else dz = 0;
z = plane.plane.ZatPoint(0.f, 0.f);
PutFlat(fog);
rendered_flats++;
}
//==========================================================================
//
// Sets 3D floor info. Common code for all 4 cases
//
//==========================================================================
void GLFlat::SetFrom3DFloor(F3DFloor *rover, bool top, bool underside)
{
F3DFloor::planeref & plane = top? rover->top : rover->bottom;
// FF_FOG requires an inverted logic where to get the light from
lightlist_t *light = P_GetPlaneLight(sector, plane.plane, underside);
lightlevel = *light->p_lightlevel;
if (rover->flags & FF_FOG) Colormap.LightColor = (light->extra_colormap)->Fade;
else Colormap.CopyFrom3DLight(light);
alpha = rover->alpha/255.0f;
renderstyle = rover->flags&FF_ADDITIVETRANS? STYLE_Add : STYLE_Translucent;
if (plane.model->VBOHeightcheck(plane.isceiling))
{
vboindex = plane.vindex;
}
else
{
vboindex = -1;
}
}
//==========================================================================
//
// Process a sector's flats for rendering
// This function is only called once per sector.
// Subsequent subsectors are just quickly added to the ss_renderflags array
//
//==========================================================================
void GLFlat::ProcessSector(sector_t * frontsector)
{
lightlist_t * light;
#ifdef _DEBUG
if (frontsector->sectornum==gl_breaksec)
{
int a = 0;
}
#endif
// Get the real sector for this one.
sector=&sectors[frontsector->sectornum];
extsector_t::xfloor &x = sector->e->XFloor;
this->sub=NULL;
dynlightindex = -1;
byte &srf = gl_drawinfo->sectorrenderflags[sector->sectornum];
//
//
//
// do floors
//
//
//
if (frontsector->floorplane.ZatPoint(FIXED2FLOAT(viewx), FIXED2FLOAT(viewy)) <= FIXED2FLOAT(viewz))
{
// process the original floor first.
srf |= SSRF_RENDERFLOOR;
lightlevel = gl_ClampLight(frontsector->GetFloorLight());
Colormap=frontsector->ColorMap;
if ((stack = (frontsector->portals[sector_t::floor] != NULL)))
{
if (!frontsector->PortalBlocksView(sector_t::floor))
{
if (sector->SkyBoxes[sector_t::floor]->special1 == SKYBOX_STACKEDSECTORTHING)
{
gl_drawinfo->AddFloorStack(sector);
}
alpha = frontsector->GetAlpha(sector_t::floor) / 65536.0f;
}
else
{
alpha = 1.f;
}
}
else
{
alpha = 1.0f-frontsector->GetReflect(sector_t::floor);
}
if (frontsector->VBOHeightcheck(sector_t::floor))
{
vboindex = frontsector->vboindex[sector_t::floor];
}
else
{
vboindex = -1;
}
ceiling=false;
renderflags=SSRF_RENDERFLOOR;
if (x.ffloors.Size())
{
light = P_GetPlaneLight(sector, &frontsector->floorplane, false);
if ((!(sector->GetFlags(sector_t::floor)&PLANEF_ABSLIGHTING) || light->lightsource == NULL)
&& (light->p_lightlevel != &frontsector->lightlevel))
{
lightlevel = *light->p_lightlevel;
}
Colormap.CopyFrom3DLight(light);
}
renderstyle = STYLE_Translucent;
if (alpha!=0.0f) Process(frontsector, false, false);
}
//
//
//
// do ceilings
//
//
//
if (frontsector->ceilingplane.ZatPoint(FIXED2FLOAT(viewx), FIXED2FLOAT(viewy)) >= FIXED2FLOAT(viewz))
{
// process the original ceiling first.
srf |= SSRF_RENDERCEILING;
lightlevel = gl_ClampLight(frontsector->GetCeilingLight());
Colormap=frontsector->ColorMap;
if ((stack = (frontsector->portals[sector_t::ceiling] != NULL)))
{
if (!frontsector->PortalBlocksView(sector_t::ceiling))
{
if (sector->SkyBoxes[sector_t::ceiling]->special1 == SKYBOX_STACKEDSECTORTHING)
{
gl_drawinfo->AddCeilingStack(sector);
}
alpha = frontsector->GetAlpha(sector_t::ceiling) / 65536.0f;
}
else
{
alpha = 1.f;
}
}
else
{
alpha = 1.0f-frontsector->GetReflect(sector_t::ceiling);
}
if (frontsector->VBOHeightcheck(sector_t::ceiling))
{
vboindex = frontsector->vboindex[sector_t::ceiling];
}
else
{
vboindex = -1;
}
ceiling=true;
renderflags=SSRF_RENDERCEILING;
if (x.ffloors.Size())
{
light = P_GetPlaneLight(sector, &sector->ceilingplane, true);
if ((!(sector->GetFlags(sector_t::ceiling)&PLANEF_ABSLIGHTING))
&& (light->p_lightlevel != &frontsector->lightlevel))
{
lightlevel = *light->p_lightlevel;
}
Colormap.CopyFrom3DLight(light);
}
renderstyle = STYLE_Translucent;
if (alpha!=0.0f) Process(frontsector, true, false);
}
//
//
//
// do 3D floors
//
//
//
stack=false;
if (x.ffloors.Size())
{
player_t * player=players[consoleplayer].camera->player;
renderflags=SSRF_RENDER3DPLANES;
srf |= SSRF_RENDER3DPLANES;
// 3d-floors must not overlap!
fixed_t lastceilingheight=sector->CenterCeiling(); // render only in the range of the
fixed_t lastfloorheight=sector->CenterFloor(); // current sector part (if applicable)
F3DFloor * rover;
int k;
// floors are ordered now top to bottom so scanning the list for the best match
// is no longer necessary.
ceiling=true;
for(k=0;k<(int)x.ffloors.Size();k++)
{
rover=x.ffloors[k];
if ((rover->flags&(FF_EXISTS|FF_RENDERPLANES|FF_THISINSIDE))==(FF_EXISTS|FF_RENDERPLANES))
{
if (rover->flags&FF_FOG && gl_fixedcolormap) continue;
if (!rover->top.copied && rover->flags&(FF_INVERTPLANES|FF_BOTHPLANES))
{
fixed_t ff_top=FLOAT2FIXED(rover->top.plane->ZatPoint(sector->centerspot));
if (ff_top<lastceilingheight)
{
if (FIXED2FLOAT(viewz) <= rover->top.plane->ZatPoint(FIXED2FLOAT(viewx), FIXED2FLOAT(viewy)))
{
SetFrom3DFloor(rover, true, !!(rover->flags&FF_FOG));
Colormap.FadeColor=frontsector->ColorMap->Fade;
Process(rover->top.model, rover->top.isceiling, !!(rover->flags&FF_FOG));
}
lastceilingheight=ff_top;
}
}
if (!rover->bottom.copied && !(rover->flags&FF_INVERTPLANES))
{
fixed_t ff_bottom=FLOAT2FIXED(rover->bottom.plane->ZatPoint(sector->centerspot));
if (ff_bottom<lastceilingheight)
{
if (FIXED2FLOAT(viewz)<=rover->bottom.plane->ZatPoint(FIXED2FLOAT(viewx), FIXED2FLOAT(viewy)))
{
SetFrom3DFloor(rover, false, !(rover->flags&FF_FOG));
Colormap.FadeColor=frontsector->ColorMap->Fade;
Process(rover->bottom.model, rover->bottom.isceiling, !!(rover->flags&FF_FOG));
}
lastceilingheight=ff_bottom;
if (rover->alpha<255) lastceilingheight++;
}
}
}
}
ceiling=false;
for(k=x.ffloors.Size()-1;k>=0;k--)
{
rover=x.ffloors[k];
if ((rover->flags&(FF_EXISTS|FF_RENDERPLANES|FF_THISINSIDE))==(FF_EXISTS|FF_RENDERPLANES))
{
if (rover->flags&FF_FOG && gl_fixedcolormap) continue;
if (!rover->bottom.copied && rover->flags&(FF_INVERTPLANES|FF_BOTHPLANES))
{
fixed_t ff_bottom=FLOAT2FIXED(rover->bottom.plane->ZatPoint(sector->centerspot));
if (ff_bottom>lastfloorheight || (rover->flags&FF_FIX))
{
if (FIXED2FLOAT(viewz) >= rover->bottom.plane->ZatPoint(FIXED2FLOAT(viewx), FIXED2FLOAT(viewy)))
{
SetFrom3DFloor(rover, false, !(rover->flags&FF_FOG));
Colormap.FadeColor=frontsector->ColorMap->Fade;
if (rover->flags&FF_FIX)
{
lightlevel = gl_ClampLight(rover->model->lightlevel);
Colormap = rover->GetColormap();
}
Process(rover->bottom.model, rover->bottom.isceiling, !!(rover->flags&FF_FOG));
}
lastfloorheight=ff_bottom;
}
}
if (!rover->top.copied && !(rover->flags&FF_INVERTPLANES))
{
fixed_t ff_top=FLOAT2FIXED(rover->top.plane->ZatPoint(sector->centerspot));
if (ff_top>lastfloorheight)
{
if (FIXED2FLOAT(viewz) >= rover->top.plane->ZatPoint(FIXED2FLOAT(viewx), FIXED2FLOAT(viewy)))
{
SetFrom3DFloor(rover, true, !!(rover->flags&FF_FOG));
Colormap.FadeColor=frontsector->ColorMap->Fade;
Process(rover->top.model, rover->top.isceiling, !!(rover->flags&FF_FOG));
}
lastfloorheight=ff_top;
if (rover->alpha<255) lastfloorheight--;
}
}
}
}
}
}