qzdoom/wadsrc/static/shaders/glsl/main.fp
Christoph Oelckers ad7aaa8f2a - specify fragment output locations in the shader source.
OpenGL has been supporting this since version 3.3 and Vulkan requires it so it's the way to go.
2018-06-12 23:52:33 +02:00

519 lines
12 KiB
GLSL

in vec4 pixelpos;
in vec3 glowdist;
in vec4 vWorldNormal;
in vec4 vEyeNormal;
in vec4 vTexCoord;
in vec4 vColor;
layout(location=0) out vec4 FragColor;
#ifdef GBUFFER_PASS
layout(location=1) out vec4 FragFog;
layout(location=2) out vec4 FragNormal;
#endif
vec4 Process(vec4 color);
vec4 ProcessTexel();
vec4 ProcessLight(vec4 color);
vec3 ProcessMaterial(vec3 material, vec3 color);
//===========================================================================
//
// Color to grayscale
//
//===========================================================================
float grayscale(vec4 color)
{
return dot(color.rgb, vec3(0.4, 0.56, 0.14));
}
//===========================================================================
//
// Desaturate a color
//
//===========================================================================
vec4 desaturate(vec4 texel)
{
if (uDesaturationFactor > 0.0)
{
float gray = grayscale(texel);
return mix (texel, vec4(gray,gray,gray,texel.a), uDesaturationFactor);
}
else
{
return texel;
}
}
//===========================================================================
//
// This function is common for all (non-special-effect) fragment shaders
//
//===========================================================================
vec4 getTexel(vec2 st)
{
vec4 texel = texture(tex, st);
//
// Apply texture modes
//
switch (uTextureMode)
{
case 1: // TM_MASK
texel.rgb = vec3(1.0,1.0,1.0);
break;
case 2: // TM_OPAQUE
texel.a = 1.0;
break;
case 3: // TM_INVERSE
texel = vec4(1.0-texel.r, 1.0-texel.b, 1.0-texel.g, texel.a);
break;
case 4: // TM_REDTOALPHA
float gray = grayscale(texel);
texel = vec4(1.0, 1.0, 1.0, gray*texel.a);
break;
case 5: // TM_CLAMPY
if (st.t < 0.0 || st.t > 1.0)
{
texel.a = 0.0;
}
break;
case 6: // TM_OPAQUEINVERSE
texel = vec4(1.0-texel.r, 1.0-texel.b, 1.0-texel.g, 1.0);
break;
}
if (uObjectColor2.a == 0.0) texel *= uObjectColor;
else texel *= mix(uObjectColor, uObjectColor2, glowdist.z);
return desaturate(texel);
}
//===========================================================================
//
// Doom lighting equation exactly as calculated by zdoom.
//
//===========================================================================
float R_DoomLightingEquation(float light)
{
// L is the integer light level used in the game
float L = light * 255.0;
// z is the depth in view/eye space, positive going into the screen
float z;
if ((uPalLightLevels >> 8) == 2)
{
z = distance(pixelpos.xyz, uCameraPos.xyz);
}
else
{
z = pixelpos.w;
}
// The zdoom light equation
float vis = min(uGlobVis / z, 24.0 / 32.0);
float shade = 2.0 - (L + 12.0) / 128.0;
float lightscale;
if ((uPalLightLevels & 0xff) != 0)
lightscale = float(-floor(-(shade - vis) * 31.0) - 0.5) / 31.0;
else
lightscale = shade - vis;
// Result is the normalized colormap index (0 bright .. 1 dark)
return clamp(lightscale, 0.0, 31.0 / 32.0);
}
//===========================================================================
//
// Check if light is in shadow according to its 1D shadow map
//
//===========================================================================
#ifdef SUPPORTS_SHADOWMAPS
float shadowDirToU(vec2 dir)
{
if (abs(dir.x) > abs(dir.y))
{
if (dir.x >= 0.0)
return dir.y / dir.x * 0.125 + (0.25 + 0.125);
else
return dir.y / dir.x * 0.125 + (0.75 + 0.125);
}
else
{
if (dir.y >= 0.0)
return dir.x / dir.y * 0.125 + 0.125;
else
return dir.x / dir.y * 0.125 + (0.50 + 0.125);
}
}
float sampleShadowmap(vec2 dir, float v)
{
float u = shadowDirToU(dir);
float dist2 = dot(dir, dir);
return texture(ShadowMap, vec2(u, v)).x > dist2 ? 1.0 : 0.0;
}
float sampleShadowmapLinear(vec2 dir, float v)
{
float u = shadowDirToU(dir);
float dist2 = dot(dir, dir);
vec2 isize = textureSize(ShadowMap, 0);
vec2 size = vec2(isize);
vec2 fetchPos = vec2(u, v) * size - vec2(0.5, 0.0);
if (fetchPos.x < 0.0)
fetchPos.x += size.x;
ivec2 ifetchPos = ivec2(fetchPos);
int y = ifetchPos.y;
float t = fract(fetchPos.x);
int x0 = ifetchPos.x;
int x1 = ifetchPos.x + 1;
if (x1 == isize.x)
x1 = 0;
float depth0 = texelFetch(ShadowMap, ivec2(x0, y), 0).x;
float depth1 = texelFetch(ShadowMap, ivec2(x1, y), 0).x;
return mix(step(dist2, depth0), step(dist2, depth1), t);
}
//===========================================================================
//
// Check if light is in shadow using Percentage Closer Filtering (PCF)
//
//===========================================================================
#define PCF_FILTER_STEP_COUNT 3
#define PCF_COUNT (PCF_FILTER_STEP_COUNT * 2 + 1)
// #define USE_LINEAR_SHADOW_FILTER
#define USE_PCF_SHADOW_FILTER 1
float shadowmapAttenuation(vec4 lightpos, float shadowIndex)
{
if (shadowIndex >= 1024.0)
return 1.0; // No shadowmap available for this light
float v = (shadowIndex + 0.5) / 1024.0;
vec2 ray = pixelpos.xz - lightpos.xz;
float length = length(ray);
if (length < 3.0)
return 1.0;
vec2 dir = ray / length;
#if defined(USE_LINEAR_SHADOW_FILTER)
ray -= dir * 6.0; // Shadow acne margin
return sampleShadowmapLinear(ray, v);
#elif defined(USE_PCF_SHADOW_FILTER)
ray -= dir * 2.0; // Shadow acne margin
dir = dir * min(length / 50.0, 1.0); // avoid sampling behind light
vec2 normal = vec2(-dir.y, dir.x);
vec2 bias = dir * 10.0;
float sum = 0.0;
for (float x = -PCF_FILTER_STEP_COUNT; x <= PCF_FILTER_STEP_COUNT; x++)
{
sum += sampleShadowmap(ray + normal * x - bias * abs(x), v);
}
return sum / PCF_COUNT;
#else // nearest shadow filter
ray -= dir * 6.0; // Shadow acne margin
return sampleShadowmap(ray, v);
#endif
}
float shadowAttenuation(vec4 lightpos, float lightcolorA)
{
float shadowIndex = abs(lightcolorA) - 1.0;
return shadowmapAttenuation(lightpos, shadowIndex);
}
#else
float shadowAttenuation(vec4 lightpos, float lightcolorA)
{
return 1.0;
}
#endif
float spotLightAttenuation(vec4 lightpos, vec3 spotdir, float lightCosInnerAngle, float lightCosOuterAngle)
{
vec3 lightDirection = normalize(lightpos.xyz - pixelpos.xyz);
float cosDir = dot(lightDirection, spotdir);
return smoothstep(lightCosOuterAngle, lightCosInnerAngle, cosDir);
}
//===========================================================================
//
// Adjust normal vector according to the normal map
//
//===========================================================================
#if defined(NORMALMAP)
mat3 cotangent_frame(vec3 n, vec3 p, vec2 uv)
{
// get edge vectors of the pixel triangle
vec3 dp1 = dFdx(p);
vec3 dp2 = dFdy(p);
vec2 duv1 = dFdx(uv);
vec2 duv2 = dFdy(uv);
// solve the linear system
vec3 dp2perp = cross(n, dp2); // cross(dp2, n);
vec3 dp1perp = cross(dp1, n); // cross(n, dp1);
vec3 t = dp2perp * duv1.x + dp1perp * duv2.x;
vec3 b = dp2perp * duv1.y + dp1perp * duv2.y;
// construct a scale-invariant frame
float invmax = inversesqrt(max(dot(t,t), dot(b,b)));
return mat3(t * invmax, b * invmax, n);
}
vec3 ApplyNormalMap()
{
#define WITH_NORMALMAP_UNSIGNED
#define WITH_NORMALMAP_GREEN_UP
//#define WITH_NORMALMAP_2CHANNEL
vec3 interpolatedNormal = normalize(vWorldNormal.xyz);
vec3 map = texture(normaltexture, vTexCoord.st).xyz;
#if defined(WITH_NORMALMAP_UNSIGNED)
map = map * 255./127. - 128./127.; // Math so "odd" because 0.5 cannot be precisely described in an unsigned format
#endif
#if defined(WITH_NORMALMAP_2CHANNEL)
map.z = sqrt(1 - dot(map.xy, map.xy));
#endif
#if defined(WITH_NORMALMAP_GREEN_UP)
map.y = -map.y;
#endif
mat3 tbn = cotangent_frame(interpolatedNormal, pixelpos.xyz, vTexCoord.st);
vec3 bumpedNormal = normalize(tbn * map);
return bumpedNormal;
}
#else
vec3 ApplyNormalMap()
{
return normalize(vWorldNormal.xyz);
}
#endif
//===========================================================================
//
// Calculate light
//
// It is important to note that the light color is not desaturated
// due to ZDoom's implementation weirdness. Everything that's added
// on top of it, e.g. dynamic lights and glows are, though, because
// the objects emitting these lights are also.
//
// This is making this a bit more complicated than it needs to
// because we can't just desaturate the final fragment color.
//
//===========================================================================
vec4 getLightColor(vec4 material, float fogdist, float fogfactor)
{
vec4 color = vColor;
if (uLightLevel >= 0.0)
{
float newlightlevel = 1.0 - R_DoomLightingEquation(uLightLevel);
color.rgb *= newlightlevel;
}
else if (uFogEnabled > 0)
{
// brightening around the player for light mode 2
if (fogdist < uLightDist)
{
color.rgb *= uLightFactor - (fogdist / uLightDist) * (uLightFactor - 1.0);
}
//
// apply light diminishing through fog equation
//
color.rgb = mix(vec3(0.0, 0.0, 0.0), color.rgb, fogfactor);
}
//
// handle glowing walls
//
if (uGlowTopColor.a > 0.0 && glowdist.x < uGlowTopColor.a)
{
color.rgb += desaturate(uGlowTopColor * (1.0 - glowdist.x / uGlowTopColor.a)).rgb;
}
if (uGlowBottomColor.a > 0.0 && glowdist.y < uGlowBottomColor.a)
{
color.rgb += desaturate(uGlowBottomColor * (1.0 - glowdist.y / uGlowBottomColor.a)).rgb;
}
color = min(color, 1.0);
//
// apply brightmaps (or other light manipulation by custom shaders.
//
color = ProcessLight(color);
//
// apply dynamic lights
//
return vec4(ProcessMaterial(material.rgb, color.rgb), material.a * vColor.a);
}
//===========================================================================
//
// Applies colored fog
//
//===========================================================================
vec4 applyFog(vec4 frag, float fogfactor)
{
return vec4(mix(uFogColor.rgb, frag.rgb, fogfactor), frag.a);
}
//===========================================================================
//
// The color of the fragment if it is fully occluded by ambient lighting
//
//===========================================================================
vec3 AmbientOcclusionColor()
{
float fogdist;
float fogfactor;
//
// calculate fog factor
//
if (uFogEnabled == -1)
{
fogdist = pixelpos.w;
}
else
{
fogdist = max(16.0, distance(pixelpos.xyz, uCameraPos.xyz));
}
fogfactor = exp2 (uFogDensity * fogdist);
return mix(uFogColor.rgb, vec3(0.0), fogfactor);
}
//===========================================================================
//
// Main shader routine
//
//===========================================================================
void main()
{
vec4 frag = ProcessTexel();
#ifndef NO_ALPHATEST
if (frag.a <= uAlphaThreshold) discard;
#endif
switch (uFixedColormap)
{
case 0: // in-game rendering.
{
float fogdist = 0.0;
float fogfactor = 0.0;
//
// calculate fog factor
//
if (uFogEnabled != 0)
{
if (uFogEnabled == 1 || uFogEnabled == -1)
{
fogdist = pixelpos.w;
}
else
{
fogdist = max(16.0, distance(pixelpos.xyz, uCameraPos.xyz));
}
fogfactor = exp2 (uFogDensity * fogdist);
}
frag = getLightColor(frag, fogdist, fogfactor);
//
// colored fog
//
if (uFogEnabled < 0)
{
frag = applyFog(frag, fogfactor);
}
break;
}
case 1: // special colormap
{
float gray = grayscale(frag);
vec4 cm = uFixedColormapStart + gray * uFixedColormapRange;
frag = vec4(clamp(cm.rgb, 0.0, 1.0), frag.a*vColor.a);
break;
}
case 2: // fullscreen tint.
{
frag = vColor * frag * uFixedColormapStart;
break;
}
case 3: // fog layer
{
float fogdist;
float fogfactor;
//
// calculate fog factor
//
if (uFogEnabled == -1)
{
fogdist = pixelpos.w;
}
else
{
fogdist = max(16.0, distance(pixelpos.xyz, uCameraPos.xyz));
}
fogfactor = exp2 (uFogDensity * fogdist);
frag = vec4(uFogColor.rgb, (1.0 - fogfactor) * frag.a * 0.75 * vColor.a);
break;
}
case 4: // simple 2D (reuses a uniform for the special colormap for the color overlay.)
{
frag = frag * ProcessLight(vColor);
frag.rgb = frag.rgb + uFixedColormapStart.rgb;
break;
}
}
FragColor = frag;
#ifdef GBUFFER_PASS
FragFog = vec4(AmbientOcclusionColor(), 1.0);
FragNormal = vec4(vEyeNormal.xyz * 0.5 + 0.5, 1.0);
#endif
}