qzdoom/src/scripting/codegeneration/codegen.cpp
2016-10-25 16:53:14 +02:00

7172 lines
179 KiB
C++

/*
** thingdef_expression.cpp
**
** Expression evaluation
**
**---------------------------------------------------------------------------
** Copyright 2008 Christoph Oelckers
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
** 4. When not used as part of ZDoom or a ZDoom derivative, this code will be
** covered by the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or (at
** your option) any later version.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#include <stdlib.h>
#include "actor.h"
#include "sc_man.h"
#include "tarray.h"
#include "templates.h"
#include "cmdlib.h"
#include "i_system.h"
#include "m_random.h"
#include "a_pickups.h"
#include "thingdef.h"
#include "p_lnspec.h"
#include "doomstat.h"
#include "codegen.h"
#include "m_fixed.h"
#include "vmbuilder.h"
#include "v_text.h"
#include "math/cmath.h"
struct FLOP
{
ENamedName Name;
int Flop;
double (*Evaluate)(double);
};
// Decorate operates on degrees, so the evaluate functions need to convert
// degrees to radians for those that work with angles.
static const FLOP FxFlops[] =
{
{ NAME_Exp, FLOP_EXP, [](double v) { return g_exp(v); } },
{ NAME_Log, FLOP_LOG, [](double v) { return g_log(v); } },
{ NAME_Log10, FLOP_LOG10, [](double v) { return g_log10(v); } },
{ NAME_Sqrt, FLOP_SQRT, [](double v) { return g_sqrt(v); } },
{ NAME_Ceil, FLOP_CEIL, [](double v) { return ceil(v); } },
{ NAME_Floor, FLOP_FLOOR, [](double v) { return floor(v); } },
{ NAME_ACos, FLOP_ACOS_DEG, [](double v) { return g_acos(v) * (180.0 / M_PI); } },
{ NAME_ASin, FLOP_ASIN_DEG, [](double v) { return g_asin(v) * (180.0 / M_PI); } },
{ NAME_ATan, FLOP_ATAN_DEG, [](double v) { return g_atan(v) * (180.0 / M_PI); } },
{ NAME_Cos, FLOP_COS_DEG, [](double v) { return g_cosdeg(v); } },
{ NAME_Sin, FLOP_SIN_DEG, [](double v) { return g_sindeg(v); } },
{ NAME_Tan, FLOP_TAN_DEG, [](double v) { return g_tan(v * (M_PI / 180.0)); } },
{ NAME_CosH, FLOP_COSH, [](double v) { return g_cosh(v); } },
{ NAME_SinH, FLOP_SINH, [](double v) { return g_sinh(v); } },
{ NAME_TanH, FLOP_TANH, [](double v) { return g_tanh(v); } },
};
//==========================================================================
//
// FCompileContext
//
//==========================================================================
FCompileContext::FCompileContext(PFunction *fnc, PPrototype *ret, bool fromdecorate) : ReturnProto(ret), Function(fnc), Class(nullptr), FromDecorate(fromdecorate)
{
if (fnc != nullptr) Class = fnc->OwningClass;
}
FCompileContext::FCompileContext(PClass *cls) : ReturnProto(nullptr), Function(nullptr), Class(cls), FromDecorate(true) // only used by DECORATE constants.
{
}
PSymbol *FCompileContext::FindInClass(FName identifier, PSymbolTable *&symt)
{
return Class != nullptr? Class->Symbols.FindSymbolInTable(identifier, symt) : nullptr;
}
PSymbol *FCompileContext::FindInSelfClass(FName identifier, PSymbolTable *&symt)
{
// If we have no self we cannot retrieve any values from it.
if (Function == nullptr || Function->Variants[0].SelfClass == nullptr) return nullptr;
return Function->Variants[0].SelfClass->Symbols.FindSymbolInTable(identifier, symt);
}
PSymbol *FCompileContext::FindGlobal(FName identifier)
{
return GlobalSymbols.FindSymbol(identifier, true);
}
void FCompileContext::CheckReturn(PPrototype *proto, FScriptPosition &pos)
{
assert(proto != nullptr);
bool fail = false;
if (ReturnProto == nullptr)
{
ReturnProto = proto;
return;
}
// A prototype that defines fewer return types can be compatible with
// one that defines more if the shorter one matches the initial types
// for the longer one.
if (ReturnProto->ReturnTypes.Size() < proto->ReturnTypes.Size())
{ // Make proto the shorter one to avoid code duplication below.
swapvalues(proto, ReturnProto);
}
// If one prototype returns nothing, they both must.
if (proto->ReturnTypes.Size() == 0)
{
if (ReturnProto->ReturnTypes.Size() != 0)
{
fail = true;
}
}
else
{
for (unsigned i = 0; i < proto->ReturnTypes.Size(); i++)
{
if (ReturnProto->ReturnTypes[i] != proto->ReturnTypes[i])
{ // Incompatible
fail = true;
break;
}
}
}
if (fail)
{
pos.Message(MSG_ERROR, "All return expressions must deduce to the same type");
}
}
FxLocalVariableDeclaration *FCompileContext::FindLocalVariable(FName name)
{
if (Block == nullptr)
{
return nullptr;
}
else
{
return Block->FindLocalVariable(name, *this);
}
}
//==========================================================================
//
// ExpEmit
//
//==========================================================================
ExpEmit::ExpEmit(VMFunctionBuilder *build, int type)
: RegNum(build->Registers[type].Get(1)), RegType(type), Konst(false), Fixed(false), Final(false), Target(false)
{
}
void ExpEmit::Free(VMFunctionBuilder *build)
{
if (!Fixed && !Konst && RegType <= REGT_TYPE)
{
build->Registers[RegType].Return(RegNum, 1);
}
}
void ExpEmit::Reuse(VMFunctionBuilder *build)
{
if (!Fixed && !Konst)
{
bool success = build->Registers[RegType].Reuse(RegNum);
assert(success && "Attempt to reuse a register that is already in use");
}
}
//==========================================================================
//
// FindDecorateBuiltinFunction
//
// Returns the symbol for a decorate utility function. If not found, create
// it and install it in Actor.
//
//==========================================================================
static PSymbol *FindDecorateBuiltinFunction(FName funcname, VMNativeFunction::NativeCallType func)
{
PSymbol *sym = RUNTIME_CLASS(AActor)->Symbols.FindSymbol(funcname, false);
if (sym == NULL)
{
PSymbolVMFunction *symfunc = new PSymbolVMFunction(funcname);
VMNativeFunction *calldec = new VMNativeFunction(func, funcname);
symfunc->Function = calldec;
sym = symfunc;
RUNTIME_CLASS(AActor)->Symbols.AddSymbol(sym);
}
return sym;
}
//==========================================================================
//
//
//
//==========================================================================
static bool AreCompatiblePointerTypes(PType *dest, PType *source)
{
if (dest->IsKindOf(RUNTIME_CLASS(PPointer)) && source->IsKindOf(RUNTIME_CLASS(PPointer)))
{
// Pointers to different types are only compatible if both point to an object and the source type is a child of the destination type.
auto fromtype = static_cast<PPointer *>(source);
auto totype = static_cast<PPointer *>(dest);
if (fromtype == nullptr) return true;
if (fromtype == totype) return true;
if (fromtype->PointedType->IsKindOf(RUNTIME_CLASS(PClass)) && totype->PointedType->IsKindOf(RUNTIME_CLASS(PClass)))
{
auto fromcls = static_cast<PClass *>(fromtype->PointedType);
auto tocls = static_cast<PClass *>(totype->PointedType);
return (fromcls->IsDescendantOf(tocls));
}
}
return false;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxExpression::Emit (VMFunctionBuilder *build)
{
ScriptPosition.Message(MSG_ERROR, "Unemitted expression found");
return ExpEmit();
}
//==========================================================================
//
//
//
//==========================================================================
bool FxExpression::isConstant() const
{
return false;
}
//==========================================================================
//
//
//
//==========================================================================
VMFunction *FxExpression::GetDirectFunction()
{
return NULL;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxExpression::Resolve(FCompileContext &ctx)
{
isresolved = true;
return this;
}
//==========================================================================
//
// Returns true if we can write to the address.
//
//==========================================================================
bool FxExpression::RequestAddress(bool *writable)
{
if (writable != nullptr) *writable = false;
return false;
}
//==========================================================================
//
// Called by return statements.
//
//==========================================================================
PPrototype *FxExpression::ReturnProto()
{
assert(ValueType != nullptr);
TArray<PType *> ret(0);
TArray<PType *> none(0);
if (ValueType != TypeVoid)
{
ret.Push(ValueType);
}
return NewPrototype(ret, none);
}
//==========================================================================
//
//
//
//==========================================================================
static void EmitParameter(VMFunctionBuilder *build, FxExpression *operand, const FScriptPosition &pos)
{
ExpEmit where = operand->Emit(build);
if (where.RegType == REGT_NIL)
{
pos.Message(MSG_ERROR, "Attempted to pass a non-value");
build->Emit(OP_PARAM, 0, where.RegType, where.RegNum);
}
else
{
int regtype = where.RegType;
if (where.Konst)
{
regtype |= REGT_KONST;
}
build->Emit(OP_PARAM, 0, regtype, where.RegNum);
where.Free(build);
}
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxConstant::MakeConstant(PSymbol *sym, const FScriptPosition &pos)
{
FxExpression *x;
PSymbolConstNumeric *csym = dyn_cast<PSymbolConstNumeric>(sym);
if (csym != NULL)
{
if (csym->ValueType->IsA(RUNTIME_CLASS(PInt)))
{
x = new FxConstant(csym->Value, pos);
}
else if (csym->ValueType->IsA(RUNTIME_CLASS(PFloat)))
{
x = new FxConstant(csym->Float, pos);
}
else
{
pos.Message(MSG_ERROR, "Invalid constant '%s'\n", csym->SymbolName.GetChars());
return NULL;
}
}
else
{
pos.Message(MSG_ERROR, "'%s' is not a constant\n", sym->SymbolName.GetChars());
x = NULL;
}
return x;
}
ExpEmit FxConstant::Emit(VMFunctionBuilder *build)
{
ExpEmit out;
out.Konst = true;
int regtype = value.Type->GetRegType();
out.RegType = regtype;
if (regtype == REGT_INT)
{
out.RegNum = build->GetConstantInt(value.Int);
}
else if (regtype == REGT_FLOAT)
{
out.RegNum = build->GetConstantFloat(value.Float);
}
else if (regtype == REGT_POINTER)
{
VM_ATAG tag = ATAG_GENERIC;
if (value.Type == TypeState)
{
tag = ATAG_STATE;
}
else if (value.Type->GetLoadOp() == OP_LO)
{
tag = ATAG_OBJECT;
}
out.RegNum = build->GetConstantAddress(value.pointer, tag);
}
else if (regtype == REGT_STRING)
{
out.RegNum = build->GetConstantString(value.GetString());
}
else
{
ScriptPosition.Message(MSG_ERROR, "Cannot emit needed constant");
out.RegNum = 0;
}
return out;
}
//==========================================================================
//
//
//
//==========================================================================
FxBoolCast::FxBoolCast(FxExpression *x, bool needvalue)
: FxExpression(EFX_BoolCast, x->ScriptPosition)
{
basex = x;
ValueType = TypeBool;
NeedValue = needvalue;
}
//==========================================================================
//
//
//
//==========================================================================
FxBoolCast::~FxBoolCast()
{
SAFE_DELETE(basex);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxBoolCast::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(basex, ctx);
if (basex->ValueType == TypeBool)
{
FxExpression *x = basex;
basex = nullptr;
delete this;
return x;
}
else if (basex->ValueType->GetRegType() == REGT_INT || basex->ValueType->GetRegType() == REGT_FLOAT || basex->ValueType->GetRegType() == REGT_POINTER)
{
if (basex->isConstant())
{
assert(basex->ValueType != TypeState && "We shouldn't be able to generate a constant state ref");
ExpVal constval = static_cast<FxConstant *>(basex)->GetValue();
FxExpression *x = new FxConstant(constval.GetBool(), ScriptPosition);
delete this;
return x;
}
return this;
}
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return nullptr;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxBoolCast::Emit(VMFunctionBuilder *build)
{
ExpEmit from = basex->Emit(build);
assert(!from.Konst);
assert(basex->ValueType->GetRegType() == REGT_INT || basex->ValueType->GetRegType() == REGT_FLOAT || basex->ValueType->GetRegType() == REGT_POINTER);
if (NeedValue)
{
ExpEmit to(build, REGT_INT);
from.Free(build);
// Preload result with 0.
build->Emit(OP_LI, to.RegNum, 0);
// Check source against 0.
if (from.RegType == REGT_INT)
{
build->Emit(OP_EQ_R, 1, from.RegNum, to.RegNum);
}
else if (from.RegType == REGT_FLOAT)
{
build->Emit(OP_EQF_K, 1, from.RegNum, build->GetConstantFloat(0.));
}
else if (from.RegType == REGT_POINTER)
{
build->Emit(OP_EQA_K, 1, from.RegNum, build->GetConstantAddress(nullptr, ATAG_GENERIC));
}
build->Emit(OP_JMP, 1);
// Reload result with 1 if the comparison fell through.
build->Emit(OP_LI, to.RegNum, 1);
return to;
}
else
{
return from;
}
}
//==========================================================================
//
//
//
//==========================================================================
FxIntCast::FxIntCast(FxExpression *x, bool nowarn)
: FxExpression(EFX_IntCast, x->ScriptPosition)
{
basex=x;
ValueType = TypeSInt32;
NoWarn = nowarn;
}
//==========================================================================
//
//
//
//==========================================================================
FxIntCast::~FxIntCast()
{
SAFE_DELETE(basex);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxIntCast::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(basex, ctx);
if (basex->ValueType->GetRegType() == REGT_INT)
{
if (basex->ValueType != TypeName)
{
FxExpression *x = basex;
basex = NULL;
delete this;
return x;
}
else
{
// Ugh. This should abort, but too many mods fell into this logic hole somewhere, so this seroious error needs to be reduced to a warning. :(
// At least in ZScript, MSG_OPTERROR always means to report an error, not a warning so the problem only exists in DECORATE.
if (!basex->isConstant()) ScriptPosition.Message(MSG_OPTERROR, "Numeric type expected, got a name");
else ScriptPosition.Message(MSG_OPTERROR, "Numeric type expected, got \"%s\"", static_cast<FxConstant*>(basex)->GetValue().GetName().GetChars());
FxExpression * x = new FxConstant(0, ScriptPosition);
delete this;
return x;
}
}
else if (basex->ValueType->GetRegType() == REGT_FLOAT)
{
if (basex->isConstant())
{
ExpVal constval = static_cast<FxConstant *>(basex)->GetValue();
FxExpression *x = new FxConstant(constval.GetInt(), ScriptPosition);
if (!NoWarn && constval.GetInt() != constval.GetFloat())
{
ScriptPosition.Message(MSG_WARNING, "Truncation of floating point constant %f", constval.GetFloat());
}
delete this;
return x;
}
else if (!NoWarn)
{
ScriptPosition.Message(MSG_WARNING, "Truncation of floating point value");
}
return this;
}
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxIntCast::Emit(VMFunctionBuilder *build)
{
ExpEmit from = basex->Emit(build);
assert(!from.Konst);
assert(basex->ValueType->GetRegType() == REGT_FLOAT);
from.Free(build);
ExpEmit to(build, REGT_INT);
build->Emit(OP_CAST, to.RegNum, from.RegNum, CAST_F2I);
return to;
}
//==========================================================================
//
//
//
//==========================================================================
FxFloatCast::FxFloatCast(FxExpression *x)
: FxExpression(EFX_FloatCast, x->ScriptPosition)
{
basex = x;
ValueType = TypeFloat64;
}
//==========================================================================
//
//
//
//==========================================================================
FxFloatCast::~FxFloatCast()
{
SAFE_DELETE(basex);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxFloatCast::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(basex, ctx);
if (basex->ValueType->GetRegType() == REGT_FLOAT)
{
FxExpression *x = basex;
basex = NULL;
delete this;
return x;
}
else if (basex->ValueType->GetRegType() == REGT_INT)
{
if (basex->ValueType != TypeName)
{
if (basex->isConstant())
{
ExpVal constval = static_cast<FxConstant *>(basex)->GetValue();
FxExpression *x = new FxConstant(constval.GetFloat(), ScriptPosition);
delete this;
return x;
}
return this;
}
else
{
// Ugh. This should abort, but too many mods fell into this logic hole somewhere, so this seroious error needs to be reduced to a warning. :(
// At least in ZScript, MSG_OPTERROR always means to report an error, not a warning so the problem only exists in DECORATE.
if (!basex->isConstant()) ScriptPosition.Message(MSG_OPTERROR, "Numeric type expected, got a name");
else ScriptPosition.Message(MSG_OPTERROR, "Numeric type expected, got \"%s\"", static_cast<FxConstant*>(basex)->GetValue().GetName().GetChars());
FxExpression *x = new FxConstant(0.0, ScriptPosition);
delete this;
return x;
}
}
else
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxFloatCast::Emit(VMFunctionBuilder *build)
{
ExpEmit from = basex->Emit(build);
assert(!from.Konst);
assert(basex->ValueType->GetRegType() == REGT_INT);
from.Free(build);
ExpEmit to(build, REGT_FLOAT);
build->Emit(OP_CAST, to.RegNum, from.RegNum, CAST_I2F);
return to;
}
//==========================================================================
//
//
//
//==========================================================================
FxNameCast::FxNameCast(FxExpression *x)
: FxExpression(EFX_NameCast, x->ScriptPosition)
{
basex = x;
ValueType = TypeName;
}
//==========================================================================
//
//
//
//==========================================================================
FxNameCast::~FxNameCast()
{
SAFE_DELETE(basex);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxNameCast::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(basex, ctx);
if (basex->ValueType == TypeName)
{
FxExpression *x = basex;
basex = NULL;
delete this;
return x;
}
else if (basex->ValueType == TypeString)
{
if (basex->isConstant())
{
ExpVal constval = static_cast<FxConstant *>(basex)->GetValue();
FxExpression *x = new FxConstant(constval.GetName(), ScriptPosition);
delete this;
return x;
}
return this;
}
else
{
ScriptPosition.Message(MSG_ERROR, "Cannot convert to name");
delete this;
return NULL;
}
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxNameCast::Emit(VMFunctionBuilder *build)
{
ExpEmit from = basex->Emit(build);
assert(!from.Konst);
assert(basex->ValueType == TypeString);
from.Free(build);
ExpEmit to(build, REGT_INT);
build->Emit(OP_CAST, to.RegNum, from.RegNum, CAST_S2N);
return to;
}
//==========================================================================
//
//
//
//==========================================================================
FxStringCast::FxStringCast(FxExpression *x)
: FxExpression(EFX_StringCast, x->ScriptPosition)
{
basex = x;
ValueType = TypeString;
}
//==========================================================================
//
//
//
//==========================================================================
FxStringCast::~FxStringCast()
{
SAFE_DELETE(basex);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxStringCast::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(basex, ctx);
if (basex->ValueType == TypeString)
{
FxExpression *x = basex;
basex = NULL;
delete this;
return x;
}
else if (basex->ValueType == TypeName)
{
if (basex->isConstant())
{
ExpVal constval = static_cast<FxConstant *>(basex)->GetValue();
FxExpression *x = new FxConstant(constval.GetString(), ScriptPosition);
delete this;
return x;
}
return this;
}
else if (basex->ValueType == TypeSound)
{
if (basex->isConstant())
{
ExpVal constval = static_cast<FxConstant *>(basex)->GetValue();
FxExpression *x = new FxConstant(S_sfx[constval.GetInt()].name, ScriptPosition);
delete this;
return x;
}
return this;
}
// although it could be done, let's not convert colors back to strings.
else
{
ScriptPosition.Message(MSG_ERROR, "Cannot convert to string");
delete this;
return NULL;
}
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxStringCast::Emit(VMFunctionBuilder *build)
{
ExpEmit from = basex->Emit(build);
assert(!from.Konst);
from.Free(build);
ExpEmit to(build, REGT_STRING);
if (ValueType == TypeName)
{
build->Emit(OP_CAST, to.RegNum, from.RegNum, CAST_N2S);
}
else if (ValueType == TypeSound)
{
build->Emit(OP_CAST, to.RegNum, from.RegNum, CAST_So2S);
}
return to;
}
//==========================================================================
//
//
//
//==========================================================================
FxColorCast::FxColorCast(FxExpression *x)
: FxExpression(EFX_ColorCast, x->ScriptPosition)
{
basex = x;
ValueType = TypeColor;
}
//==========================================================================
//
//
//
//==========================================================================
FxColorCast::~FxColorCast()
{
SAFE_DELETE(basex);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxColorCast::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(basex, ctx);
if (basex->ValueType == TypeColor || basex->ValueType->GetClass() == RUNTIME_CLASS(PInt))
{
FxExpression *x = basex;
x->ValueType = TypeColor;
basex = NULL;
delete this;
return x;
}
else if (basex->ValueType == TypeString)
{
if (basex->isConstant())
{
ExpVal constval = static_cast<FxConstant *>(basex)->GetValue();
FxExpression *x = new FxConstant(V_GetColor(nullptr, constval.GetString()), ScriptPosition);
delete this;
return x;
}
return this;
}
else
{
ScriptPosition.Message(MSG_ERROR, "Cannot convert to color");
delete this;
return NULL;
}
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxColorCast::Emit(VMFunctionBuilder *build)
{
ExpEmit from = basex->Emit(build);
assert(!from.Konst);
assert(basex->ValueType == TypeString);
from.Free(build);
ExpEmit to(build, REGT_INT);
build->Emit(OP_CAST, to.RegNum, from.RegNum, CAST_S2Co);
return to;
}
//==========================================================================
//
//
//
//==========================================================================
FxSoundCast::FxSoundCast(FxExpression *x)
: FxExpression(EFX_SoundCast, x->ScriptPosition)
{
basex = x;
ValueType = TypeSound;
}
//==========================================================================
//
//
//
//==========================================================================
FxSoundCast::~FxSoundCast()
{
SAFE_DELETE(basex);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxSoundCast::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(basex, ctx);
if (basex->ValueType == TypeSound || basex->ValueType->GetClass() == RUNTIME_CLASS(PInt))
{
FxExpression *x = basex;
x->ValueType = TypeSound;
basex = NULL;
delete this;
return x;
}
else if (basex->ValueType == TypeString)
{
if (basex->isConstant())
{
ExpVal constval = static_cast<FxConstant *>(basex)->GetValue();
FxExpression *x = new FxConstant(FSoundID(constval.GetString()), ScriptPosition);
delete this;
return x;
}
return this;
}
else
{
ScriptPosition.Message(MSG_ERROR, "Cannot convert to sound");
delete this;
return NULL;
}
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxSoundCast::Emit(VMFunctionBuilder *build)
{
ExpEmit from = basex->Emit(build);
assert(!from.Konst);
assert(basex->ValueType == TypeString);
from.Free(build);
ExpEmit to(build, REGT_INT);
build->Emit(OP_CAST, to.RegNum, from.RegNum, CAST_S2So);
return to;
}
//==========================================================================
//
// generic type cast operator
//
//==========================================================================
FxTypeCast::FxTypeCast(FxExpression *x, PType *type, bool nowarn)
: FxExpression(EFX_TypeCast, x->ScriptPosition)
{
basex = x;
ValueType = type;
}
//==========================================================================
//
//
//
//==========================================================================
FxTypeCast::~FxTypeCast()
{
SAFE_DELETE(basex);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxTypeCast::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(basex, ctx);
// first deal with the simple types
if (ValueType == TypeError || basex->ValueType == TypeError)
{
delete this;
return nullptr;
}
else if (ValueType == TypeVoid) // this should never happen
{
goto errormsg;
}
else if (basex->ValueType == TypeVoid)
{
goto errormsg;
}
else if (basex->ValueType == ValueType)
{
// don't go through the entire list if the types are the same.
goto basereturn;
}
else if (basex->ValueType == TypeNullPtr && (ValueType == TypeState || ValueType->IsKindOf(RUNTIME_CLASS(PPointer))))
{
goto basereturn;
}
else if (ValueType->GetRegType() == REGT_FLOAT)
{
FxExpression *x = new FxFloatCast(basex);
x = x->Resolve(ctx);
basex = nullptr;
delete this;
return x;
}
else if (ValueType->IsA(RUNTIME_CLASS(PInt)))
{
// This is only for casting to actual ints. Subtypes representing an int will be handled elsewhere.
FxExpression *x = new FxIntCast(basex, NoWarn);
x = x->Resolve(ctx);
basex = nullptr;
delete this;
return x;
}
else if (ValueType == TypeBool)
{
FxExpression *x = new FxBoolCast(basex);
x = x->Resolve(ctx);
basex = nullptr;
delete this;
return x;
}
else if (ValueType == TypeString)
{
FxExpression *x = new FxStringCast(basex);
x = x->Resolve(ctx);
basex = nullptr;
delete this;
return x;
}
else if (ValueType == TypeName)
{
FxExpression *x = new FxNameCast(basex);
x = x->Resolve(ctx);
basex = nullptr;
delete this;
return x;
}
else if (ValueType == TypeSound)
{
FxExpression *x = new FxSoundCast(basex);
x = x->Resolve(ctx);
basex = nullptr;
delete this;
return x;
}
else if (ValueType == TypeColor)
{
FxExpression *x = new FxColorCast(basex);
x = x->Resolve(ctx);
basex = nullptr;
delete this;
return x;
}
else if (ValueType == TypeState)
{
// Right now this only supports string constants. There should be an option to pass a string variable, too.
if (basex->isConstant() && (basex->ValueType == TypeString || basex->ValueType == TypeName))
{
FxExpression *x = new FxMultiNameState(static_cast<FxConstant *>(basex)->GetValue().GetString(), basex->ScriptPosition);
x = x->Resolve(ctx);
basex = nullptr;
delete this;
return x;
}
}
else if (ValueType->IsKindOf(RUNTIME_CLASS(PClassPointer)))
{
FxExpression *x = new FxClassTypeCast(static_cast<PClassPointer*>(ValueType), basex);
x = x->Resolve(ctx);
basex = nullptr;
delete this;
return x;
}
/* else if (ValueType->IsKindOf(RUNTIME_CLASS(PEnum)))
{
// this is not yet ready and does not get assigned to actual values.
}
*/
else if (ValueType->IsKindOf(RUNTIME_CLASS(PClass))) // this should never happen because the VM doesn't handle plain class types - just pointers
{
if (basex->ValueType->IsKindOf(RUNTIME_CLASS(PClass)))
{
// class types are only compatible if the base type is a descendant of the result type.
auto fromtype = static_cast<PClass *>(basex->ValueType);
auto totype = static_cast<PClass *>(ValueType);
if (fromtype->IsDescendantOf(totype)) goto basereturn;
}
}
else if (AreCompatiblePointerTypes(ValueType, basex->ValueType))
{
goto basereturn;
}
// todo: pointers to class objects.
// All other types are only compatible to themselves and have already been handled above by the equality check.
// Anything that falls through here is not compatible and must print an error.
errormsg:
ScriptPosition.Message(MSG_ERROR, "Cannot convert %s to %s", basex->ValueType->DescriptiveName(), ValueType->DescriptiveName());
delete this;
return nullptr;
basereturn:
auto x = basex;
x->ValueType = ValueType;
basex = nullptr;
delete this;
return x;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxTypeCast::Emit(VMFunctionBuilder *build)
{
assert(false);
// This should never be reached
return ExpEmit();
}
//==========================================================================
//
//
//
//==========================================================================
FxPlusSign::FxPlusSign(FxExpression *operand)
: FxExpression(EFX_PlusSign, operand->ScriptPosition)
{
Operand=operand;
}
//==========================================================================
//
//
//
//==========================================================================
FxPlusSign::~FxPlusSign()
{
SAFE_DELETE(Operand);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxPlusSign::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(Operand, ctx);
if (Operand->IsNumeric())
{
FxExpression *e = Operand;
Operand = NULL;
delete this;
return e;
}
else
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
}
ExpEmit FxPlusSign::Emit(VMFunctionBuilder *build)
{
return Operand->Emit(build);
}
//==========================================================================
//
//
//
//==========================================================================
FxMinusSign::FxMinusSign(FxExpression *operand)
: FxExpression(EFX_MinusSign, operand->ScriptPosition)
{
Operand=operand;
}
//==========================================================================
//
//
//
//==========================================================================
FxMinusSign::~FxMinusSign()
{
SAFE_DELETE(Operand);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxMinusSign::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(Operand, ctx);
if (Operand->IsNumeric())
{
if (Operand->isConstant())
{
ExpVal val = static_cast<FxConstant *>(Operand)->GetValue();
FxExpression *e = val.Type->GetRegType() == REGT_INT ?
new FxConstant(-val.Int, ScriptPosition) :
new FxConstant(-val.Float, ScriptPosition);
delete this;
return e;
}
ValueType = Operand->ValueType;
return this;
}
else
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxMinusSign::Emit(VMFunctionBuilder *build)
{
assert(ValueType == Operand->ValueType);
ExpEmit from = Operand->Emit(build);
assert(from.Konst == 0);
// Do it in-place.
if (ValueType->GetRegType() == REGT_INT)
{
build->Emit(OP_NEG, from.RegNum, from.RegNum, 0);
}
else
{
assert(ValueType->GetRegType() == REGT_FLOAT);
build->Emit(OP_FLOP, from.RegNum, from.RegNum, FLOP_NEG);
}
return from;
}
//==========================================================================
//
//
//
//==========================================================================
FxUnaryNotBitwise::FxUnaryNotBitwise(FxExpression *operand)
: FxExpression(EFX_UnaryNotBitwise, operand->ScriptPosition)
{
Operand=operand;
}
//==========================================================================
//
//
//
//==========================================================================
FxUnaryNotBitwise::~FxUnaryNotBitwise()
{
SAFE_DELETE(Operand);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxUnaryNotBitwise::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(Operand, ctx);
if (Operand->ValueType->GetRegType() == REGT_FLOAT /* lax */)
{
// DECORATE allows floats here so cast them to int.
Operand = new FxIntCast(Operand, ctx.FromDecorate);
Operand = Operand->Resolve(ctx);
if (Operand == NULL)
{
delete this;
return NULL;
}
}
if (Operand->ValueType->GetRegType() != REGT_INT)
{
ScriptPosition.Message(MSG_ERROR, "Integer type expected");
delete this;
return NULL;
}
if (Operand->isConstant())
{
int result = ~static_cast<FxConstant *>(Operand)->GetValue().GetInt();
FxExpression *e = new FxConstant(result, ScriptPosition);
delete this;
return e;
}
ValueType = TypeSInt32;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxUnaryNotBitwise::Emit(VMFunctionBuilder *build)
{
assert(Operand->ValueType->GetRegType() == REGT_INT);
ExpEmit from = Operand->Emit(build);
assert(!from.Konst);
// Do it in-place.
build->Emit(OP_NOT, from.RegNum, from.RegNum, 0);
return from;
}
//==========================================================================
//
//
//
//==========================================================================
FxUnaryNotBoolean::FxUnaryNotBoolean(FxExpression *operand)
: FxExpression(EFX_UnaryNotBoolean, operand->ScriptPosition)
{
Operand=operand;
}
//==========================================================================
//
//
//
//==========================================================================
FxUnaryNotBoolean::~FxUnaryNotBoolean()
{
SAFE_DELETE(Operand);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxUnaryNotBoolean::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(Operand, ctx);
if (Operand->ValueType != TypeBool)
{
Operand = new FxBoolCast(Operand);
SAFE_RESOLVE(Operand, ctx);
}
if (Operand->isConstant())
{
bool result = !static_cast<FxConstant *>(Operand)->GetValue().GetBool();
FxExpression *e = new FxConstant(result, ScriptPosition);
delete this;
return e;
}
ValueType = TypeBool;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxUnaryNotBoolean::Emit(VMFunctionBuilder *build)
{
assert(Operand->ValueType == ValueType);
assert(ValueType == TypeBool);
ExpEmit from = Operand->Emit(build);
assert(!from.Konst);
// ~x & 1
build->Emit(OP_NOT, from.RegNum, from.RegNum, 0);
build->Emit(OP_AND_RK, from.RegNum, from.RegNum, build->GetConstantInt(1));
return from;
}
//==========================================================================
//
//
//
//==========================================================================
FxSizeAlign::FxSizeAlign(FxExpression *operand, int which)
: FxExpression(EFX_SizeAlign, operand->ScriptPosition)
{
Operand = operand;
Which = which;
}
//==========================================================================
//
//
//
//==========================================================================
FxSizeAlign::~FxSizeAlign()
{
SAFE_DELETE(Operand);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxSizeAlign::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(Operand, ctx);
auto type = Operand->ValueType;
if (Operand->isConstant())
{
ScriptPosition.Message(MSG_ERROR, "cannot determine %s of a constant", Which == 'a'? "alignment" : "size");
delete this;
return NULL;
}
else if (!Operand->RequestAddress(nullptr))
{
ScriptPosition.Message(MSG_ERROR, "Operand must be addressable to determine %s", Which == 'a' ? "alignment" : "size");
delete this;
return NULL;
}
else
{
FxExpression *x = new FxConstant(Which == TK_AlignOf ? int(type->Align) : int(type->Size), Operand->ScriptPosition);
delete this;
return x->Resolve(ctx);
}
}
ExpEmit FxSizeAlign::Emit(VMFunctionBuilder *build)
{
return ExpEmit();
}
//==========================================================================
//
// FxPreIncrDecr
//
//==========================================================================
FxPreIncrDecr::FxPreIncrDecr(FxExpression *base, int token)
: FxExpression(EFX_PreIncrDecr, base->ScriptPosition), Token(token), Base(base)
{
AddressRequested = false;
AddressWritable = false;
}
FxPreIncrDecr::~FxPreIncrDecr()
{
SAFE_DELETE(Base);
}
bool FxPreIncrDecr::RequestAddress(bool *writable)
{
AddressRequested = true;
if (writable != nullptr) *writable = AddressWritable;
return true;
}
FxExpression *FxPreIncrDecr::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(Base, ctx);
ValueType = Base->ValueType;
if (!Base->IsNumeric())
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return nullptr;
}
else if (Base->ValueType == TypeBool)
{
ScriptPosition.Message(MSG_ERROR, "%s is not allowed on type bool", FScanner::TokenName(Token).GetChars());
delete this;
return nullptr;
}
if (!Base->RequestAddress(&AddressWritable) || !AddressWritable )
{
ScriptPosition.Message(MSG_ERROR, "Expression must be a modifiable value");
delete this;
return nullptr;
}
return this;
}
ExpEmit FxPreIncrDecr::Emit(VMFunctionBuilder *build)
{
assert(Token == TK_Incr || Token == TK_Decr);
assert(ValueType == Base->ValueType && IsNumeric());
int zero = build->GetConstantInt(0);
int regtype = ValueType->GetRegType();
ExpEmit pointer = Base->Emit(build);
ExpEmit value = pointer;
if (!pointer.Target)
{
value = ExpEmit(build, regtype);
build->Emit(ValueType->GetLoadOp(), value.RegNum, pointer.RegNum, zero);
}
if (regtype == REGT_INT)
{
build->Emit((Token == TK_Incr) ? OP_ADD_RK : OP_SUB_RK, value.RegNum, value.RegNum, build->GetConstantInt(1));
}
else
{
build->Emit((Token == TK_Incr) ? OP_ADDF_RK : OP_SUBF_RK, value.RegNum, value.RegNum, build->GetConstantFloat(1.));
}
if (!pointer.Target)
{
build->Emit(ValueType->GetStoreOp(), pointer.RegNum, value.RegNum, zero);
}
if (AddressRequested)
{
value.Free(build);
return pointer;
}
pointer.Free(build);
return value;
}
//==========================================================================
//
// FxPostIncrDecr
//
//==========================================================================
FxPostIncrDecr::FxPostIncrDecr(FxExpression *base, int token)
: FxExpression(EFX_PostIncrDecr, base->ScriptPosition), Token(token), Base(base)
{
}
FxPostIncrDecr::~FxPostIncrDecr()
{
SAFE_DELETE(Base);
}
FxExpression *FxPostIncrDecr::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(Base, ctx);
bool AddressWritable;
ValueType = Base->ValueType;
if (!Base->IsNumeric())
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return nullptr;
}
else if (Base->ValueType == TypeBool)
{
ScriptPosition.Message(MSG_ERROR, "%s is not allowed on type bool", FScanner::TokenName(Token).GetChars());
delete this;
return nullptr;
}
if (!Base->RequestAddress(&AddressWritable) || !AddressWritable)
{
ScriptPosition.Message(MSG_ERROR, "Expression must be a modifiable value");
delete this;
return nullptr;
}
return this;
}
ExpEmit FxPostIncrDecr::Emit(VMFunctionBuilder *build)
{
assert(Token == TK_Incr || Token == TK_Decr);
assert(ValueType == Base->ValueType && IsNumeric());
int zero = build->GetConstantInt(0);
int regtype = ValueType->GetRegType();
ExpEmit pointer = Base->Emit(build);
ExpEmit out = pointer;
if (!pointer.Target)
{
out = ExpEmit(build, regtype);
build->Emit(ValueType->GetLoadOp(), out.RegNum, pointer.RegNum, zero);
}
ExpEmit assign(build, regtype);
if (regtype == REGT_INT)
{
build->Emit((Token == TK_Incr) ? OP_ADD_RK : OP_SUB_RK, assign.RegNum, out.RegNum, build->GetConstantInt(1));
}
else
{
build->Emit((Token == TK_Incr) ? OP_ADDF_RK : OP_SUBF_RK, assign.RegNum, out.RegNum, build->GetConstantFloat(1.));
}
if (!pointer.Target)
{
build->Emit(ValueType->GetStoreOp(), pointer.RegNum, assign.RegNum, zero);
}
pointer.Free(build);
assign.Free(build);
return out;
}
//==========================================================================
//
// FxAssign
//
//==========================================================================
FxAssign::FxAssign(FxExpression *base, FxExpression *right, bool ismodify)
: FxExpression(EFX_Assign, base->ScriptPosition), Base(base), Right(right), IsBitWrite(-1), IsModifyAssign(ismodify)
{
AddressRequested = false;
AddressWritable = false;
}
FxAssign::~FxAssign()
{
SAFE_DELETE(Base);
SAFE_DELETE(Right);
}
/* I don't think we should allow constructs like (a = b) = c;...
bool FxAssign::RequestAddress(bool *writable)
{
AddressRequested = true;
if (writable != nullptr) *writable = AddressWritable;
return true;
}
*/
FxExpression *FxAssign::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(Base, ctx);
ValueType = Base->ValueType;
SAFE_RESOLVE(Right, ctx);
if (IsModifyAssign && Base->ValueType == TypeBool && Right->ValueType != TypeBool)
{
// If the modify operation resulted in a type promotion from bool to int, this must be blocked.
// (this means, for bool, only &=, ^= and |= are allowed, although DECORATE is more lax.)
ScriptPosition.Message(MSG_ERROR, "Invalid modify/assign operation with a boolean operand");
delete this;
return nullptr;
}
if (Base->IsNumeric() && Right->IsNumeric())
{
if (Right->ValueType != ValueType)
{
if (ValueType == TypeBool)
{
Right = new FxBoolCast(Right);
}
else if (ValueType->GetRegType() == REGT_INT)
{
Right = new FxIntCast(Right, ctx.FromDecorate);
}
else
{
Right = new FxFloatCast(Right);
}
SAFE_RESOLVE(Right, ctx);
}
}
else if (Base->ValueType == Right->ValueType)
{
if (Base->ValueType->IsKindOf(RUNTIME_CLASS(PArray)))
{
ScriptPosition.Message(MSG_ERROR, "Cannot assign arrays");
delete this;
return nullptr;
}
if (Base->ValueType->IsKindOf(RUNTIME_CLASS(PStruct)))
{
ScriptPosition.Message(MSG_ERROR, "Struct assignment not implemented yet");
delete this;
return nullptr;
}
// Both types are the same so this is ok.
}
else if ((Base->ValueType == TypeState || Base->ValueType->IsKindOf(RUNTIME_CLASS(PPointer))) && Right->ValueType == TypeNullPtr)
{
// null pointers can be assigned to any other pointer
}
else if (Base->ValueType->IsKindOf(RUNTIME_CLASS(PClassPointer)))
{
// class pointers may be assignable so add a cast which performs a check.
Right = new FxClassTypeCast(static_cast<PClassPointer *>(ValueType), Right);
SAFE_RESOLVE(Right, ctx);
}
else if (Base->ValueType == TypeString && (Right->ValueType == TypeName || Right->ValueType == TypeSound))
{
Right = new FxStringCast(Right);
SAFE_RESOLVE(Right, ctx);
}
else if (Base->ValueType == TypeName && Right->ValueType == TypeString)
{
Right = new FxNameCast(Right);
SAFE_RESOLVE(Right, ctx);
}
else
{
ScriptPosition.Message(MSG_ERROR, "Assignment between incompatible types.");
delete this;
return nullptr;
}
if (!Base->RequestAddress(&AddressWritable) || !AddressWritable)
{
ScriptPosition.Message(MSG_ERROR, "Expression must be a modifiable value");
delete this;
return nullptr;
}
// Special case: Assignment to a bitfield.
if (Base->ExprType == EFX_StructMember || Base->ExprType == EFX_ClassMember)
{
auto f = static_cast<FxStructMember *>(Base)->membervar;
if (f->BitValue != -1 && !(f->Flags & VARF_ReadOnly))
{
IsBitWrite = f->BitValue;
return this;
}
}
return this;
}
ExpEmit FxAssign::Emit(VMFunctionBuilder *build)
{
static const BYTE loadops[] = { OP_LK, OP_LKF, OP_LKS, OP_LKP };
assert(ValueType == Base->ValueType);
assert(ValueType->GetRegType() == Right->ValueType->GetRegType());
ExpEmit pointer = Base->Emit(build);
Address = pointer;
ExpEmit result = Right->Emit(build);
assert(result.RegType <= REGT_TYPE);
if (pointer.Target)
{
if (result.Konst)
{
build->Emit(loadops[result.RegType], pointer.RegNum, result.RegNum);
}
else
{
build->Emit(Right->ValueType->GetMoveOp(), pointer.RegNum, result.RegNum);
}
}
else
{
if (result.Konst)
{
ExpEmit temp(build, result.RegType);
build->Emit(loadops[result.RegType], temp.RegNum, result.RegNum);
result.Free(build);
result = temp;
}
if (IsBitWrite == -1)
{
build->Emit(ValueType->GetStoreOp(), pointer.RegNum, result.RegNum, build->GetConstantInt(0));
}
else
{
build->Emit(OP_SBIT, pointer.RegNum, result.RegNum, 1 << IsBitWrite);
}
}
if (AddressRequested)
{
result.Free(build);
return pointer;
}
pointer.Free(build);
return result;
}
//==========================================================================
//
// FxAssignSelf
//
//==========================================================================
FxAssignSelf::FxAssignSelf(const FScriptPosition &pos)
: FxExpression(EFX_AssignSelf, pos)
{
Assignment = nullptr;
}
FxExpression *FxAssignSelf::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
// This should never happen if FxAssignSelf is used correctly
assert(Assignment != nullptr);
ValueType = Assignment->ValueType;
return this;
}
ExpEmit FxAssignSelf::Emit(VMFunctionBuilder *build)
{
assert(ValueType == Assignment->ValueType);
ExpEmit pointer = Assignment->Address; // FxAssign should have already emitted it
if (!pointer.Target)
{
ExpEmit out(build, ValueType->GetRegType());
if (Assignment->IsBitWrite != -1)
{
build->Emit(OP_LBIT, out.RegNum, pointer.RegNum, 1 << Assignment->IsBitWrite);
}
else
{
build->Emit(ValueType->GetLoadOp(), out.RegNum, pointer.RegNum, build->GetConstantInt(0));
}
return out;
}
else
{
return pointer;
}
}
//==========================================================================
//
//
//
//==========================================================================
FxBinary::FxBinary(int o, FxExpression *l, FxExpression *r)
: FxExpression(EFX_Binary, l->ScriptPosition)
{
Operator=o;
left=l;
right=r;
}
//==========================================================================
//
//
//
//==========================================================================
FxBinary::~FxBinary()
{
SAFE_DELETE(left);
SAFE_DELETE(right);
}
//==========================================================================
//
//
//
//==========================================================================
bool FxBinary::ResolveLR(FCompileContext& ctx, bool castnumeric)
{
RESOLVE(left, ctx);
RESOLVE(right, ctx);
if (!left || !right)
{
delete this;
return false;
}
if (left->ValueType == TypeBool && right->ValueType == TypeBool)
{
if (Operator == '&' || Operator == '|' || Operator == '^' || ctx.FromDecorate)
{
ValueType = TypeBool;
}
else
{
ValueType = TypeSInt32; // math operations on bools result in integers.
}
}
else if (left->ValueType == TypeName && right->ValueType == TypeName)
{
// pointers can only be compared for equality.
if (Operator == TK_Eq || Operator == TK_Neq)
{
ValueType = TypeBool;
return true;
}
else
{
ScriptPosition.Message(MSG_ERROR, "Invalid operation for names");
delete this;
return false;
}
}
else if (left->IsNumeric() && right->IsNumeric())
{
if (left->ValueType->GetRegType() == REGT_INT && right->ValueType->GetRegType() == REGT_INT)
{
ValueType = TypeSInt32;
}
else
{
ValueType = TypeFloat64;
}
}
else if (left->ValueType->GetRegType() == REGT_POINTER)
{
if (left->ValueType == right->ValueType || right->ValueType == TypeNullPtr || left->ValueType == TypeNullPtr ||
AreCompatiblePointerTypes(left->ValueType, right->ValueType))
{
// pointers can only be compared for equality.
if (Operator == TK_Eq || Operator == TK_Neq)
{
ValueType = TypeBool;
return true;
}
else
{
ScriptPosition.Message(MSG_ERROR, "Invalid operation for pointers");
delete this;
return false;
}
}
}
else
{
// To check: It may be that this could pass in DECORATE, although setting TypeVoid here would pretty much prevent that.
ScriptPosition.Message(MSG_ERROR, "Incompatible operator");
delete this;
return false;
}
assert(ValueType > nullptr && ValueType < (PType*)0xfffffffffffffff);
if (castnumeric)
{
// later!
}
return true;
}
void FxBinary::Promote(FCompileContext &ctx)
{
if (left->ValueType->GetRegType() == REGT_FLOAT && right->ValueType->GetRegType() == REGT_INT)
{
right = (new FxFloatCast(right))->Resolve(ctx);
}
else if (left->ValueType->GetRegType() == REGT_INT && right->ValueType->GetRegType() == REGT_FLOAT)
{
left = (new FxFloatCast(left))->Resolve(ctx);
}
}
//==========================================================================
//
//
//
//==========================================================================
FxAddSub::FxAddSub(int o, FxExpression *l, FxExpression *r)
: FxBinary(o, l, r)
{
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxAddSub::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (!ResolveLR(ctx, true)) return NULL;
if (!IsNumeric())
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return nullptr;
}
else if (left->isConstant() && right->isConstant())
{
if (ValueType->GetRegType() == REGT_FLOAT)
{
double v;
double v1 = static_cast<FxConstant *>(left)->GetValue().GetFloat();
double v2 = static_cast<FxConstant *>(right)->GetValue().GetFloat();
v = Operator == '+'? v1 + v2 :
Operator == '-'? v1 - v2 : 0;
FxExpression *e = new FxConstant(v, ScriptPosition);
delete this;
return e;
}
else
{
int v;
int v1 = static_cast<FxConstant *>(left)->GetValue().GetInt();
int v2 = static_cast<FxConstant *>(right)->GetValue().GetInt();
v = Operator == '+'? v1 + v2 :
Operator == '-'? v1 - v2 : 0;
FxExpression *e = new FxConstant(v, ScriptPosition);
delete this;
return e;
}
}
Promote(ctx);
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxAddSub::Emit(VMFunctionBuilder *build)
{
assert(Operator == '+' || Operator == '-');
ExpEmit op1 = left->Emit(build);
ExpEmit op2 = right->Emit(build);
if (Operator == '+')
{
// Since addition is commutative, only the second operand may be a constant.
if (op1.Konst)
{
swapvalues(op1, op2);
}
assert(!op1.Konst);
op1.Free(build);
op2.Free(build);
if (ValueType->GetRegType() == REGT_FLOAT)
{
assert(op1.RegType == REGT_FLOAT && op2.RegType == REGT_FLOAT);
ExpEmit to(build, REGT_FLOAT);
build->Emit(op2.Konst ? OP_ADDF_RK : OP_ADDF_RR, to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
else
{
assert(ValueType->GetRegType() == REGT_INT);
assert(op1.RegType == REGT_INT && op2.RegType == REGT_INT);
ExpEmit to(build, REGT_INT);
build->Emit(op2.Konst ? OP_ADD_RK : OP_ADD_RR, to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
}
else
{
// Subtraction is not commutative, so either side may be constant (but not both).
assert(!op1.Konst || !op2.Konst);
op1.Free(build);
op2.Free(build);
if (ValueType->GetRegType() == REGT_FLOAT)
{
assert(op1.RegType == REGT_FLOAT && op2.RegType == REGT_FLOAT);
ExpEmit to(build, REGT_FLOAT);
build->Emit(op1.Konst ? OP_SUBF_KR : op2.Konst ? OP_SUBF_RK : OP_SUBF_RR,
to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
else
{
assert(ValueType->GetRegType() == REGT_INT);
assert(op1.RegType == REGT_INT && op2.RegType == REGT_INT);
ExpEmit to(build, REGT_INT);
build->Emit(op1.Konst ? OP_SUB_KR : op2.Konst ? OP_SUB_RK : OP_SUB_RR,
to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
}
}
//==========================================================================
//
//
//
//==========================================================================
FxMulDiv::FxMulDiv(int o, FxExpression *l, FxExpression *r)
: FxBinary(o, l, r)
{
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxMulDiv::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (!ResolveLR(ctx, true)) return NULL;
if (!IsNumeric())
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
else if (left->isConstant() && right->isConstant())
{
if (ValueType->GetRegType() == REGT_FLOAT)
{
double v;
double v1 = static_cast<FxConstant *>(left)->GetValue().GetFloat();
double v2 = static_cast<FxConstant *>(right)->GetValue().GetFloat();
if (Operator != '*' && v2 == 0)
{
ScriptPosition.Message(MSG_ERROR, "Division by 0");
delete this;
return NULL;
}
v = Operator == '*'? v1 * v2 :
Operator == '/'? v1 / v2 :
Operator == '%'? fmod(v1, v2) : 0;
FxExpression *e = new FxConstant(v, ScriptPosition);
delete this;
return e;
}
else
{
int v;
int v1 = static_cast<FxConstant *>(left)->GetValue().GetInt();
int v2 = static_cast<FxConstant *>(right)->GetValue().GetInt();
if (Operator != '*' && v2 == 0)
{
ScriptPosition.Message(MSG_ERROR, "Division by 0");
delete this;
return NULL;
}
v = Operator == '*'? v1 * v2 :
Operator == '/'? v1 / v2 :
Operator == '%'? v1 % v2 : 0;
FxExpression *e = new FxConstant(v, ScriptPosition);
delete this;
return e;
}
}
Promote(ctx);
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxMulDiv::Emit(VMFunctionBuilder *build)
{
ExpEmit op1 = left->Emit(build);
ExpEmit op2 = right->Emit(build);
if (Operator == '*')
{
// Multiplication is commutative, so only the second operand may be constant.
if (op1.Konst)
{
swapvalues(op1, op2);
}
assert(!op1.Konst);
op1.Free(build);
op2.Free(build);
if (ValueType->GetRegType() == REGT_FLOAT)
{
assert(op1.RegType == REGT_FLOAT && op2.RegType == REGT_FLOAT);
ExpEmit to(build, REGT_FLOAT);
build->Emit(op2.Konst ? OP_MULF_RK : OP_MULF_RR, to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
else
{
assert(ValueType->GetRegType() == REGT_INT);
assert(op1.RegType == REGT_INT && op2.RegType == REGT_INT);
ExpEmit to(build, REGT_INT);
build->Emit(op2.Konst ? OP_MUL_RK : OP_MUL_RR, to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
}
else
{
// Division is not commutative, so either side may be constant (but not both).
assert(!op1.Konst || !op2.Konst);
assert(Operator == '%' || Operator == '/');
op1.Free(build);
op2.Free(build);
if (ValueType->GetRegType() == REGT_FLOAT)
{
assert(op1.RegType == REGT_FLOAT && op2.RegType == REGT_FLOAT);
ExpEmit to(build, REGT_FLOAT);
build->Emit(Operator == '/' ? (op1.Konst ? OP_DIVF_KR : op2.Konst ? OP_DIVF_RK : OP_DIVF_RR)
: (op1.Konst ? OP_MODF_KR : op2.Konst ? OP_MODF_RK : OP_MODF_RR),
to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
else
{
assert(ValueType->GetRegType() == REGT_INT);
assert(op1.RegType == REGT_INT && op2.RegType == REGT_INT);
ExpEmit to(build, REGT_INT);
build->Emit(Operator == '/' ? (op1.Konst ? OP_DIV_KR : op2.Konst ? OP_DIV_RK : OP_DIV_RR)
: (op1.Konst ? OP_MOD_KR : op2.Konst ? OP_MOD_RK : OP_MOD_RR),
to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
}
}
//==========================================================================
//
//
//
//==========================================================================
FxPow::FxPow(FxExpression *l, FxExpression *r)
: FxBinary(TK_MulMul, new FxFloatCast(l), new FxFloatCast(r))
{
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxPow::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (!ResolveLR(ctx, true)) return nullptr;
if (!IsNumeric())
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return nullptr;
}
if (left->isConstant() && right->isConstant())
{
double v1 = static_cast<FxConstant *>(left)->GetValue().GetFloat();
double v2 = static_cast<FxConstant *>(right)->GetValue().GetFloat();
return new FxConstant(g_pow(v1, v2), left->ScriptPosition);
}
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxPow::Emit(VMFunctionBuilder *build)
{
ExpEmit op1 = left->Emit(build);
ExpEmit op2 = right->Emit(build);
// Pow is not commutative, so either side may be constant (but not both).
assert(!op1.Konst || !op2.Konst);
op1.Free(build);
op2.Free(build);
assert(op1.RegType == REGT_FLOAT && op2.RegType == REGT_FLOAT);
ExpEmit to(build, REGT_FLOAT);
build->Emit((op1.Konst ? OP_POWF_KR : op2.Konst ? OP_POWF_RK : OP_POWF_RR), to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
//==========================================================================
//
//
//
//==========================================================================
FxCompareRel::FxCompareRel(int o, FxExpression *l, FxExpression *r)
: FxBinary(o, l, r)
{
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxCompareRel::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (!ResolveLR(ctx, true)) return NULL;
if (!IsNumeric())
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
else if (left->isConstant() && right->isConstant())
{
int v;
if (ValueType->GetRegType() == REGT_FLOAT)
{
double v1 = static_cast<FxConstant *>(left)->GetValue().GetFloat();
double v2 = static_cast<FxConstant *>(right)->GetValue().GetFloat();
v = Operator == '<'? v1 < v2 :
Operator == '>'? v1 > v2 :
Operator == TK_Geq? v1 >= v2 :
Operator == TK_Leq? v1 <= v2 : 0;
}
else
{
int v1 = static_cast<FxConstant *>(left)->GetValue().GetInt();
int v2 = static_cast<FxConstant *>(right)->GetValue().GetInt();
v = Operator == '<'? v1 < v2 :
Operator == '>'? v1 > v2 :
Operator == TK_Geq? v1 >= v2 :
Operator == TK_Leq? v1 <= v2 : 0;
}
FxExpression *e = new FxConstant(v, ScriptPosition);
delete this;
return e;
}
Promote(ctx);
ValueType = TypeBool;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxCompareRel::Emit(VMFunctionBuilder *build)
{
ExpEmit op1 = left->Emit(build);
ExpEmit op2 = right->Emit(build);
assert(op1.RegType == op2.RegType);
assert(op1.RegType == REGT_INT || op1.RegType == REGT_FLOAT);
assert(!op1.Konst || !op2.Konst);
assert(Operator == '<' || Operator == '>' || Operator == TK_Geq || Operator == TK_Leq);
static const VM_UBYTE InstrMap[][4] =
{
{ OP_LT_RR, OP_LTF_RR, 0 }, // <
{ OP_LE_RR, OP_LEF_RR, 1 }, // >
{ OP_LT_RR, OP_LTF_RR, 1 }, // >=
{ OP_LE_RR, OP_LEF_RR, 0 } // <=
};
int instr, check, index;
ExpEmit to(build, REGT_INT);
index = Operator == '<' ? 0 :
Operator == '>' ? 1 :
Operator == TK_Geq ? 2 : 3;
instr = InstrMap[index][op1.RegType == REGT_INT ? 0 : 1];
check = InstrMap[index][2];
if (op2.Konst)
{
instr += 1;
}
else
{
op2.Free(build);
}
if (op1.Konst)
{
instr += 2;
}
else
{
op1.Free(build);
}
// See FxBoolCast for comments, since it's the same thing.
build->Emit(OP_LI, to.RegNum, 0, 0);
build->Emit(instr, check, op1.RegNum, op2.RegNum);
build->Emit(OP_JMP, 1);
build->Emit(OP_LI, to.RegNum, 1);
return to;
}
//==========================================================================
//
//
//
//==========================================================================
FxCompareEq::FxCompareEq(int o, FxExpression *l, FxExpression *r)
: FxBinary(o, l, r)
{
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxCompareEq::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (!ResolveLR(ctx, true)) return NULL;
if (!left || !right)
{
delete this;
return NULL;
}
if (!IsNumeric() && !IsPointer() && ValueType != TypeName)
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
if (Operator == TK_ApproxEq && ValueType->GetRegType() != REGT_FLOAT) Operator = TK_Eq;
if (left->isConstant() && right->isConstant())
{
int v;
if (ValueType->GetRegType() == REGT_FLOAT)
{
double v1 = static_cast<FxConstant *>(left)->GetValue().GetFloat();
double v2 = static_cast<FxConstant *>(right)->GetValue().GetFloat();
v = Operator == TK_Eq? v1 == v2 : Operator == TK_Neq? v1 != v2 : fabs(v1-v2) < VM_EPSILON;
}
else
{
int v1 = static_cast<FxConstant *>(left)->GetValue().GetInt();
int v2 = static_cast<FxConstant *>(right)->GetValue().GetInt();
v = Operator == TK_Eq? v1 == v2 : v1 != v2;
}
FxExpression *e = new FxConstant(v, ScriptPosition);
delete this;
return e;
}
Promote(ctx);
ValueType = TypeBool;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxCompareEq::Emit(VMFunctionBuilder *build)
{
ExpEmit op1 = left->Emit(build);
ExpEmit op2 = right->Emit(build);
assert(op1.RegType == op2.RegType);
assert(op1.RegType == REGT_INT || op1.RegType == REGT_FLOAT || op1.RegType == REGT_POINTER);
int instr;
// Only the second operand may be constant.
if (op1.Konst)
{
swapvalues(op1, op2);
}
assert(!op1.Konst);
ExpEmit to(build, REGT_INT);
instr = op1.RegType == REGT_INT ? OP_EQ_R :
op1.RegType == REGT_FLOAT ? OP_EQF_R :
OP_EQA_R;
op1.Free(build);
if (!op2.Konst)
{
op2.Free(build);
}
else
{
instr += 1;
}
// See FxUnaryNotBoolean for comments, since it's the same thing.
build->Emit(OP_LI, to.RegNum, 0, 0);
build->Emit(instr, Operator == TK_ApproxEq? CMP_APPROX : Operator != TK_Eq, op1.RegNum, op2.RegNum);
build->Emit(OP_JMP, 1);
build->Emit(OP_LI, to.RegNum, 1);
return to;
}
//==========================================================================
//
//
//
//==========================================================================
FxBinaryInt::FxBinaryInt(int o, FxExpression *l, FxExpression *r)
: FxBinary(o, l, r)
{
ValueType = TypeSInt32;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxBinaryInt::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (!ResolveLR(ctx, false)) return NULL;
if (ValueType->GetRegType() == REGT_FLOAT && ctx.FromDecorate)
{
// For DECORATE which allows floats here. ZScript does not.
if (left->ValueType->GetRegType() != REGT_INT)
{
left = new FxIntCast(left, ctx.FromDecorate);
left = left->Resolve(ctx);
}
if (right->ValueType->GetRegType() != REGT_INT)
{
right = new FxIntCast(right, ctx.FromDecorate);
right = right->Resolve(ctx);
}
if (left == NULL || right == NULL)
{
delete this;
return NULL;
}
ValueType = TypeSInt32;
}
if (ValueType->GetRegType() != REGT_INT)
{
ScriptPosition.Message(MSG_ERROR, "Integer type expected");
delete this;
return NULL;
}
else if (left->isConstant() && right->isConstant())
{
int v1 = static_cast<FxConstant *>(left)->GetValue().GetInt();
int v2 = static_cast<FxConstant *>(right)->GetValue().GetInt();
FxExpression *e = new FxConstant(
Operator == TK_LShift? v1 << v2 :
Operator == TK_RShift? v1 >> v2 :
Operator == TK_URShift? int((unsigned int)(v1) >> v2) :
Operator == '&'? v1 & v2 :
Operator == '|'? v1 | v2 :
Operator == '^'? v1 ^ v2 : 0, ScriptPosition);
delete this;
return e;
}
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxBinaryInt::Emit(VMFunctionBuilder *build)
{
assert(left->ValueType->GetRegType() == REGT_INT);
assert(right->ValueType->GetRegType() == REGT_INT);
static const VM_UBYTE InstrMap[][4] =
{
{ OP_SLL_RR, OP_SLL_KR, OP_SLL_RI }, // TK_LShift
{ OP_SRA_RR, OP_SRA_KR, OP_SRA_RI }, // TK_RShift
{ OP_SRL_RR, OP_SRL_KR, OP_SRL_RI }, // TK_URShift
{ OP_AND_RR, 0, OP_AND_RK }, // '&'
{ OP_OR_RR, 0, OP_OR_RK }, // '|'
{ OP_XOR_RR, 0, OP_XOR_RK }, // '^'
};
int index, instr, rop;
ExpEmit op1, op2;
index = Operator == TK_LShift ? 0 :
Operator == TK_RShift ? 1 :
Operator == TK_URShift ? 2 :
Operator == '&' ? 3 :
Operator == '|' ? 4 :
Operator == '^' ? 5 : -1;
assert(index >= 0);
op1 = left->Emit(build);
if (index < 3)
{ // Shift instructions use right-hand immediates instead of constant registers.
if (right->isConstant())
{
rop = static_cast<FxConstant *>(right)->GetValue().GetInt();
op2.Konst = true;
}
else
{
op2 = right->Emit(build);
assert(!op2.Konst);
op2.Free(build);
rop = op2.RegNum;
}
}
else
{ // The other operators only take a constant on the right-hand side.
op2 = right->Emit(build);
if (op1.Konst)
{
swapvalues(op1, op2);
}
assert(!op1.Konst);
rop = op2.RegNum;
op2.Free(build);
}
if (!op1.Konst)
{
op1.Free(build);
if (!op2.Konst)
{
instr = InstrMap[index][0];
}
else
{
instr = InstrMap[index][2];
}
}
else
{
assert(!op2.Konst);
instr = InstrMap[index][1];
}
assert(instr != 0);
ExpEmit to(build, REGT_INT);
build->Emit(instr, to.RegNum, op1.RegNum, rop);
return to;
}
//==========================================================================
//
//
//
//==========================================================================
FxLtGtEq::FxLtGtEq(FxExpression *l, FxExpression *r)
: FxBinary(TK_LtGtEq, l, r)
{
ValueType = TypeSInt32;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxLtGtEq::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (!ResolveLR(ctx, true)) return NULL;
if (!left->IsNumeric() || !right->IsNumeric())
{
ScriptPosition.Message(MSG_ERROR, "<>= expects two numeric operands");
delete this;
return nullptr;
}
if (left->ValueType->GetRegType() != right->ValueType->GetRegType())
{
if (left->ValueType->GetRegType() == REGT_INT)
{
left = new FxFloatCast(left);
SAFE_RESOLVE(left, ctx);
}
if (right->ValueType->GetRegType() == REGT_INT)
{
right = new FxFloatCast(left);
SAFE_RESOLVE(left, ctx);
}
}
else if (left->isConstant() && right->isConstant())
{
// let's cut this short and always compare doubles. For integers the result will be exactly the same as with an integer comparison, either signed or unsigned.
auto v1 = static_cast<FxConstant *>(left)->GetValue().GetFloat();
auto v2 = static_cast<FxConstant *>(right)->GetValue().GetFloat();
auto e = new FxConstant(v1 < v2 ? -1 : v1 > v2 ? 1 : 0, ScriptPosition);
delete this;
return e;
}
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxLtGtEq::Emit(VMFunctionBuilder *build)
{
ExpEmit op1 = left->Emit(build);
ExpEmit op2 = right->Emit(build);
assert(op1.RegType == op2.RegType);
assert(op1.RegType == REGT_INT || op1.RegType == REGT_FLOAT);
assert(!op1.Konst || !op2.Konst);
ExpEmit to(build, REGT_INT);
int instr = op1.RegType == REGT_INT ? (left->ValueType == TypeUInt32? OP_LTU_RR : OP_LT_RR) : OP_LTF_RR;
if (op1.Konst) instr += 2;
if (op2.Konst) instr++;
build->Emit(OP_LI, to.RegNum, 1); // default to 1
build->Emit(instr, 0, op1.RegNum, op2.RegNum); // if (left < right)
auto j1 = build->Emit(OP_JMP, 1);
build->Emit(OP_LI, to.RegNum, -1); // result is -1
auto j2 = build->Emit(OP_JMP, 1); // jump to end
build->BackpatchToHere(j1);
build->Emit(instr + OP_LE_RR - OP_LT_RR, 0, op1.RegNum, op2.RegNum); // if (left == right)
auto j3 = build->Emit(OP_JMP, 1);
build->Emit(OP_LI, to.RegNum, 0); // result is 0
build->BackpatchToHere(j2);
build->BackpatchToHere(j3);
return to;
}
//==========================================================================
//
//
//
//==========================================================================
FxBinaryLogical::FxBinaryLogical(int o, FxExpression *l, FxExpression *r)
: FxExpression(EFX_BinaryLogical, l->ScriptPosition)
{
Operator=o;
left=l;
right=r;
ValueType = TypeBool;
}
//==========================================================================
//
//
//
//==========================================================================
FxBinaryLogical::~FxBinaryLogical()
{
SAFE_DELETE(left);
SAFE_DELETE(right);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxBinaryLogical::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
RESOLVE(left, ctx);
RESOLVE(right, ctx);
ABORT(right && left);
if (left->ValueType != TypeBool)
{
left = new FxBoolCast(left);
SAFE_RESOLVE(left, ctx);
}
if (right->ValueType != TypeBool)
{
right = new FxBoolCast(right);
SAFE_RESOLVE(right, ctx);
}
int b_left=-1, b_right=-1;
if (left->isConstant()) b_left = static_cast<FxConstant *>(left)->GetValue().GetBool();
if (right->isConstant()) b_right = static_cast<FxConstant *>(right)->GetValue().GetBool();
// Do some optimizations. This will throw out all sub-expressions that are not
// needed to retrieve the final result.
if (Operator == TK_AndAnd)
{
if (b_left==0 || b_right==0)
{
FxExpression *x = new FxConstant(true, ScriptPosition);
delete this;
return x;
}
else if (b_left==1 && b_right==1)
{
FxExpression *x = new FxConstant(false, ScriptPosition);
delete this;
return x;
}
else if (b_left==1)
{
FxExpression *x = right;
right=NULL;
delete this;
return x;
}
else if (b_right==1)
{
FxExpression *x = left;
left=NULL;
delete this;
return x;
}
}
else if (Operator == TK_OrOr)
{
if (b_left==1 || b_right==1)
{
FxExpression *x = new FxConstant(true, ScriptPosition);
delete this;
return x;
}
if (b_left==0 && b_right==0)
{
FxExpression *x = new FxConstant(false, ScriptPosition);
delete this;
return x;
}
else if (b_left==0)
{
FxExpression *x = right;
right=NULL;
delete this;
return x;
}
else if (b_right==0)
{
FxExpression *x = left;
left=NULL;
delete this;
return x;
}
}
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxBinaryLogical::Emit(VMFunctionBuilder *build)
{
// This is not the "right" way to do these, but it works for now.
// (Problem: No information sharing is done between nodes to reduce the
// code size if you have something like a1 && a2 && a3 && ... && an.)
assert(left->ValueType->GetRegType() == REGT_INT && right->ValueType->GetRegType() == REGT_INT);
ExpEmit op1 = left->Emit(build);
assert(!op1.Konst);
int zero = build->GetConstantInt(0);
op1.Free(build);
if (Operator == TK_AndAnd)
{
build->Emit(OP_EQ_K, 1, op1.RegNum, zero);
// If op1 is 0, skip evaluation of op2.
size_t patchspot = build->Emit(OP_JMP, 0, 0, 0);
// Evaluate op2.
ExpEmit op2 = right->Emit(build);
assert(!op2.Konst);
op2.Free(build);
ExpEmit to(build, REGT_INT);
build->Emit(OP_EQ_K, 1, op2.RegNum, zero);
build->Emit(OP_JMP, 2);
build->Emit(OP_LI, to.RegNum, 1);
build->Emit(OP_JMP, 1);
size_t target = build->Emit(OP_LI, to.RegNum, 0);
build->Backpatch(patchspot, target);
return to;
}
else
{
assert(Operator == TK_OrOr);
build->Emit(OP_EQ_K, 0, op1.RegNum, zero);
// If op1 is not 0, skip evaluation of op2.
size_t patchspot = build->Emit(OP_JMP, 0, 0, 0);
// Evaluate op2.
ExpEmit op2 = right->Emit(build);
assert(!op2.Konst);
op2.Free(build);
ExpEmit to(build, REGT_INT);
build->Emit(OP_EQ_K, 0, op2.RegNum, zero);
build->Emit(OP_JMP, 2);
build->Emit(OP_LI, to.RegNum, 0);
build->Emit(OP_JMP, 1);
size_t target = build->Emit(OP_LI, to.RegNum, 1);
build->Backpatch(patchspot, target);
return to;
}
}
//==========================================================================
//
//
//
//==========================================================================
FxConditional::FxConditional(FxExpression *c, FxExpression *t, FxExpression *f)
: FxExpression(EFX_Conditional, c->ScriptPosition)
{
condition = c;
truex=t;
falsex=f;
}
//==========================================================================
//
//
//
//==========================================================================
FxConditional::~FxConditional()
{
SAFE_DELETE(condition);
SAFE_DELETE(truex);
SAFE_DELETE(falsex);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxConditional::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
RESOLVE(condition, ctx);
RESOLVE(truex, ctx);
RESOLVE(falsex, ctx);
ABORT(condition && truex && falsex);
if (truex->ValueType == TypeBool && falsex->ValueType == TypeBool)
ValueType = TypeBool;
else if (truex->ValueType->GetRegType() == REGT_INT && falsex->ValueType->GetRegType() == REGT_INT)
ValueType = TypeSInt32;
else if (truex->IsNumeric() && falsex->IsNumeric())
ValueType = TypeFloat64;
//else if (truex->ValueType != falsex->ValueType)
if (condition->ValueType != TypeBool)
{
condition = new FxBoolCast(condition);
SAFE_RESOLVE(condition, ctx);
}
if (condition->isConstant())
{
ExpVal condval = static_cast<FxConstant *>(condition)->GetValue();
bool result = condval.GetBool();
FxExpression *e = result? truex:falsex;
delete (result? falsex:truex);
falsex = truex = NULL;
delete this;
return e;
}
if (ValueType->GetRegType() == REGT_FLOAT)
{
if (truex->ValueType->GetRegType() != REGT_FLOAT)
{
truex = new FxFloatCast(truex);
RESOLVE(truex, ctx);
}
if (falsex->ValueType->GetRegType() != REGT_FLOAT)
{
falsex = new FxFloatCast(falsex);
RESOLVE(falsex, ctx);
}
}
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxConditional::Emit(VMFunctionBuilder *build)
{
size_t truejump, falsejump;
ExpEmit out;
// The true and false expressions ought to be assigned to the
// same temporary instead of being copied to it. Oh well; good enough
// for now.
ExpEmit cond = condition->Emit(build);
assert(cond.RegType == REGT_INT && !cond.Konst);
// Test condition.
build->Emit(OP_EQ_K, 1, cond.RegNum, build->GetConstantInt(0));
falsejump = build->Emit(OP_JMP, 0);
// Evaluate true expression.
if (truex->isConstant() && truex->ValueType->GetRegType() == REGT_INT)
{
out = ExpEmit(build, REGT_INT);
build->EmitLoadInt(out.RegNum, static_cast<FxConstant *>(truex)->GetValue().GetInt());
}
else
{
ExpEmit trueop = truex->Emit(build);
if (trueop.Konst)
{
assert(trueop.RegType == REGT_FLOAT);
out = ExpEmit(build, REGT_FLOAT);
build->Emit(OP_LKF, out.RegNum, trueop.RegNum);
}
else
{
// Use the register returned by the true condition as the
// target for the false condition.
out = trueop;
}
}
// Make sure to skip the false path.
truejump = build->Emit(OP_JMP, 0);
// Evaluate false expression.
build->BackpatchToHere(falsejump);
if (falsex->isConstant() && falsex->ValueType->GetRegType() == REGT_INT)
{
build->EmitLoadInt(out.RegNum, static_cast<FxConstant *>(falsex)->GetValue().GetInt());
}
else
{
ExpEmit falseop = falsex->Emit(build);
if (falseop.Konst)
{
assert(falseop.RegType == REGT_FLOAT);
build->Emit(OP_LKF, out.RegNum, falseop.RegNum);
}
else
{
// Move result from the register returned by "false" to the one
// returned by "true" so that only one register is returned by
// this tree.
falseop.Free(build);
if (falseop.RegType == REGT_INT)
{
build->Emit(OP_MOVE, out.RegNum, falseop.RegNum, 0);
}
else
{
assert(falseop.RegType == REGT_FLOAT);
build->Emit(OP_MOVEF, out.RegNum, falseop.RegNum, 0);
}
}
}
build->BackpatchToHere(truejump);
return out;
}
//==========================================================================
//
//
//
//==========================================================================
FxAbs::FxAbs(FxExpression *v)
: FxExpression(EFX_Abs, v->ScriptPosition)
{
val = v;
ValueType = v->ValueType;
}
//==========================================================================
//
//
//
//==========================================================================
FxAbs::~FxAbs()
{
SAFE_DELETE(val);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxAbs::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(val, ctx);
if (!val->IsNumeric())
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
else if (val->isConstant())
{
ExpVal value = static_cast<FxConstant *>(val)->GetValue();
switch (value.Type->GetRegType())
{
case REGT_INT:
value.Int = abs(value.Int);
break;
case REGT_FLOAT:
value.Float = fabs(value.Float);
break;
default:
// shouldn't happen
delete this;
return NULL;
}
FxExpression *x = new FxConstant(value, ScriptPosition);
delete this;
return x;
}
ValueType = val->ValueType;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxAbs::Emit(VMFunctionBuilder *build)
{
ExpEmit absofsteal = val->Emit(build);
assert(!absofsteal.Konst);
ExpEmit out(build, absofsteal.RegType);
if (absofsteal.RegType == REGT_INT)
{
build->Emit(OP_ABS, out.RegNum, absofsteal.RegNum, 0);
}
else
{
assert(absofsteal.RegType == REGT_FLOAT);
build->Emit(OP_FLOP, out.RegNum, absofsteal.RegNum, FLOP_ABS);
}
return out;
}
//==========================================================================
//
//
//
//==========================================================================
FxATan2::FxATan2(FxExpression *y, FxExpression *x, const FScriptPosition &pos)
: FxExpression(EFX_ATan2, pos)
{
yval = y;
xval = x;
}
//==========================================================================
//
//
//
//==========================================================================
FxATan2::~FxATan2()
{
SAFE_DELETE(yval);
SAFE_DELETE(xval);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxATan2::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(yval, ctx);
SAFE_RESOLVE(xval, ctx);
if (!yval->IsNumeric() || !xval->IsNumeric())
{
ScriptPosition.Message(MSG_ERROR, "numeric value expected for parameter");
delete this;
return NULL;
}
if (yval->isConstant() && xval->isConstant())
{
double y = static_cast<FxConstant *>(yval)->GetValue().GetFloat();
double x = static_cast<FxConstant *>(xval)->GetValue().GetFloat();
FxExpression *z = new FxConstant(g_atan2(y, x) * (180 / M_PI), ScriptPosition);
delete this;
return z;
}
if (yval->ValueType->GetRegType() != REGT_FLOAT && !yval->isConstant())
{
yval = new FxFloatCast(yval);
}
if (xval->ValueType->GetRegType() != REGT_FLOAT && !xval->isConstant())
{
xval = new FxFloatCast(xval);
}
ValueType = TypeFloat64;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxATan2::Emit(VMFunctionBuilder *build)
{
ExpEmit yreg = ToReg(build, yval);
ExpEmit xreg = ToReg(build, xval);
yreg.Free(build);
xreg.Free(build);
ExpEmit out(build, REGT_FLOAT);
build->Emit(OP_ATAN2, out.RegNum, yreg.RegNum, xreg.RegNum);
return out;
}
//==========================================================================
//
// The atan2 opcode only takes registers as parameters, so any constants
// must be loaded into registers first.
//
//==========================================================================
ExpEmit FxATan2::ToReg(VMFunctionBuilder *build, FxExpression *val)
{
if (val->isConstant())
{
ExpEmit reg(build, REGT_FLOAT);
build->Emit(OP_LKF, reg.RegNum, build->GetConstantFloat(static_cast<FxConstant*>(val)->GetValue().GetFloat()));
return reg;
}
return val->Emit(build);
}
//==========================================================================
//
//
//
//==========================================================================
FxMinMax::FxMinMax(TArray<FxExpression*> &expr, FName type, const FScriptPosition &pos)
: FxExpression(EFX_MinMax, pos), Type(type)
{
assert(expr.Size() > 0);
assert(type == NAME_Min || type == NAME_Max);
choices.Resize(expr.Size());
for (unsigned i = 0; i < expr.Size(); ++i)
{
choices[i] = expr[i];
}
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxMinMax::Resolve(FCompileContext &ctx)
{
unsigned int i;
int intcount, floatcount;
CHECKRESOLVED();
// Determine if float or int
intcount = floatcount = 0;
for (i = 0; i < choices.Size(); ++i)
{
RESOLVE(choices[i], ctx);
ABORT(choices[i]);
if (choices[i]->ValueType->GetRegType() == REGT_FLOAT)
{
floatcount++;
}
else if (choices[i]->ValueType->GetRegType() == REGT_INT && choices[i]->ValueType != TypeName)
{
intcount++;
}
else
{
ScriptPosition.Message(MSG_ERROR, "Arguments must be of type int or float");
delete this;
return NULL;
}
}
if (floatcount != 0)
{
ValueType = TypeFloat64;
if (intcount != 0)
{ // There are some ints that need to be cast to floats
for (i = 0; i < choices.Size(); ++i)
{
if (choices[i]->ValueType->GetRegType() == REGT_INT)
{
choices[i] = new FxFloatCast(choices[i]);
RESOLVE(choices[i], ctx);
ABORT(choices[i]);
}
}
}
}
else
{
ValueType = TypeSInt32;
}
// If at least two arguments are constants, they can be solved now.
// Look for first constant
for (i = 0; i < choices.Size(); ++i)
{
if (choices[i]->isConstant())
{
ExpVal best = static_cast<FxConstant *>(choices[i])->GetValue();
// Compare against remaining constants, which are removed.
// The best value gets stored in this one.
for (unsigned j = i + 1; j < choices.Size(); )
{
if (!choices[j]->isConstant())
{
j++;
}
else
{
ExpVal value = static_cast<FxConstant *>(choices[j])->GetValue();
assert(value.Type == ValueType);
if (Type == NAME_Min)
{
if (value.Type->GetRegType() == REGT_FLOAT)
{
if (value.Float < best.Float)
{
best.Float = value.Float;
}
}
else
{
if (value.Int < best.Int)
{
best.Int = value.Int;
}
}
}
else
{
if (value.Type->GetRegType() == REGT_FLOAT)
{
if (value.Float > best.Float)
{
best.Float = value.Float;
}
}
else
{
if (value.Int > best.Int)
{
best.Int = value.Int;
}
}
}
delete choices[j];
choices[j] = NULL;
choices.Delete(j);
}
}
FxExpression *x = new FxConstant(best, ScriptPosition);
if (i == 0 && choices.Size() == 1)
{ // Every choice was constant
delete this;
return x;
}
delete choices[i];
choices[i] = x;
break;
}
}
return this;
}
//==========================================================================
//
//
//
//==========================================================================
static void EmitLoad(VMFunctionBuilder *build, const ExpEmit resultreg, const ExpVal &value)
{
if (resultreg.RegType == REGT_FLOAT)
{
build->Emit(OP_LKF, resultreg.RegNum, build->GetConstantFloat(value.GetFloat()));
}
else
{
build->EmitLoadInt(resultreg.RegNum, value.GetInt());
}
}
ExpEmit FxMinMax::Emit(VMFunctionBuilder *build)
{
unsigned i;
int opcode, opA;
assert(choices.Size() > 0);
assert(OP_LTF_RK == OP_LTF_RR+1);
assert(OP_LT_RK == OP_LT_RR+1);
assert(OP_LEF_RK == OP_LEF_RR+1);
assert(OP_LE_RK == OP_LE_RR+1);
if (Type == NAME_Min)
{
opcode = ValueType->GetRegType() == REGT_FLOAT ? OP_LEF_RR : OP_LE_RR;
opA = 1;
}
else
{
opcode = ValueType->GetRegType() == REGT_FLOAT ? OP_LTF_RR : OP_LT_RR;
opA = 0;
}
ExpEmit bestreg;
// Get first value into a register. This will also be the result register.
if (choices[0]->isConstant())
{
bestreg = ExpEmit(build, ValueType->GetRegType());
EmitLoad(build, bestreg, static_cast<FxConstant *>(choices[0])->GetValue());
}
else
{
bestreg = choices[0]->Emit(build);
}
// Compare every choice. Better matches get copied to the bestreg.
for (i = 1; i < choices.Size(); ++i)
{
ExpEmit checkreg = choices[i]->Emit(build);
assert(checkreg.RegType == bestreg.RegType);
build->Emit(opcode + checkreg.Konst, opA, bestreg.RegNum, checkreg.RegNum);
build->Emit(OP_JMP, 1);
if (checkreg.Konst)
{
build->Emit(bestreg.RegType == REGT_FLOAT ? OP_LKF : OP_LK, bestreg.RegNum, checkreg.RegNum);
}
else
{
build->Emit(bestreg.RegType == REGT_FLOAT ? OP_MOVEF : OP_MOVE, bestreg.RegNum, checkreg.RegNum, 0);
checkreg.Free(build);
}
}
return bestreg;
}
//==========================================================================
//
//
//
//==========================================================================
FxRandom::FxRandom(FRandom * r, FxExpression *mi, FxExpression *ma, const FScriptPosition &pos, bool nowarn)
: FxExpression(EFX_Random, pos)
{
EmitTail = false;
if (mi != NULL && ma != NULL)
{
min = new FxIntCast(mi, nowarn);
max = new FxIntCast(ma, nowarn);
}
else min = max = NULL;
rng = r;
ValueType = TypeSInt32;
}
//==========================================================================
//
//
//
//==========================================================================
FxRandom::~FxRandom()
{
SAFE_DELETE(min);
SAFE_DELETE(max);
}
//==========================================================================
//
//
//
//==========================================================================
PPrototype *FxRandom::ReturnProto()
{
EmitTail = true;
return FxExpression::ReturnProto();
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxRandom::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
if (min && max)
{
RESOLVE(min, ctx);
RESOLVE(max, ctx);
ABORT(min && max);
assert(min->ValueType == ValueType);
assert(max->ValueType == ValueType);
}
return this;
};
//==========================================================================
//
//
//
//==========================================================================
int DecoRandom(VMFrameStack *stack, VMValue *param, int numparam, VMReturn *ret, int numret)
{
assert(numparam >= 1 && numparam <= 3);
FRandom *rng = reinterpret_cast<FRandom *>(param[0].a);
if (numparam == 1)
{
ACTION_RETURN_INT((*rng)());
}
else if (numparam == 2)
{
int maskval = param[1].i;
ACTION_RETURN_INT(rng->Random2(maskval));
}
else if (numparam == 3)
{
int min = param[1].i, max = param[2].i;
if (max < min)
{
swapvalues(max, min);
}
ACTION_RETURN_INT((*rng)(max - min + 1) + min);
}
// Shouldn't happen
return 0;
}
ExpEmit FxRandom::Emit(VMFunctionBuilder *build)
{
// Call DecoRandom to generate a random number.
VMFunction *callfunc;
PSymbol *sym = FindDecorateBuiltinFunction(NAME_DecoRandom, DecoRandom);
assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolVMFunction)));
assert(((PSymbolVMFunction *)sym)->Function != NULL);
callfunc = ((PSymbolVMFunction *)sym)->Function;
int opcode = (EmitTail ? OP_TAIL_K : OP_CALL_K);
build->Emit(OP_PARAM, 0, REGT_POINTER | REGT_KONST, build->GetConstantAddress(rng, ATAG_RNG));
if (min != NULL && max != NULL)
{
EmitParameter(build, min, ScriptPosition);
EmitParameter(build, max, ScriptPosition);
build->Emit(opcode, build->GetConstantAddress(callfunc, ATAG_OBJECT), 3, 1);
}
else
{
build->Emit(opcode, build->GetConstantAddress(callfunc, ATAG_OBJECT), 1, 1);
}
if (EmitTail)
{
ExpEmit call;
call.Final = true;
return call;
}
ExpEmit out(build, REGT_INT);
build->Emit(OP_RESULT, 0, REGT_INT, out.RegNum);
return out;
}
//==========================================================================
//
//
//
//==========================================================================
FxRandomPick::FxRandomPick(FRandom *r, TArray<FxExpression*> &expr, bool floaty, const FScriptPosition &pos, bool nowarn)
: FxExpression(EFX_RandomPick, pos)
{
assert(expr.Size() > 0);
choices.Resize(expr.Size());
for (unsigned int index = 0; index < expr.Size(); index++)
{
if (floaty)
{
choices[index] = new FxFloatCast(expr[index]);
}
else
{
choices[index] = new FxIntCast(expr[index], nowarn);
}
}
rng = r;
if (floaty)
{
ValueType = TypeFloat64;
}
else
{
ValueType = TypeSInt32;
}
}
//==========================================================================
//
//
//
//==========================================================================
FxRandomPick::~FxRandomPick()
{
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxRandomPick::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
for (unsigned int index = 0; index < choices.Size(); index++)
{
RESOLVE(choices[index], ctx);
ABORT(choices[index]);
assert(choices[index]->ValueType == ValueType);
}
return this;
};
//==========================================================================
//
// FxPick :: Emit
//
// The expression:
// a = pick[rng](i_0, i_1, i_2, ..., i_n)
// [where i_x is a complete expression and not just a value]
// is syntactic sugar for:
//
// switch(random[rng](0, n)) {
// case 0: a = i_0;
// case 1: a = i_1;
// case 2: a = i_2;
// ...
// case n: a = i_n;
// }
//
//==========================================================================
ExpEmit FxRandomPick::Emit(VMFunctionBuilder *build)
{
unsigned i;
assert(choices.Size() > 0);
// Call DecoRandom to generate a random number.
VMFunction *callfunc;
PSymbol *sym = FindDecorateBuiltinFunction(NAME_DecoRandom, DecoRandom);
assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolVMFunction)));
assert(((PSymbolVMFunction *)sym)->Function != NULL);
callfunc = ((PSymbolVMFunction *)sym)->Function;
build->Emit(OP_PARAM, 0, REGT_POINTER | REGT_KONST, build->GetConstantAddress(rng, ATAG_RNG));
build->EmitParamInt(0);
build->EmitParamInt(choices.Size() - 1);
build->Emit(OP_CALL_K, build->GetConstantAddress(callfunc, ATAG_OBJECT), 3, 1);
ExpEmit resultreg(build, REGT_INT);
build->Emit(OP_RESULT, 0, REGT_INT, resultreg.RegNum);
build->Emit(OP_IJMP, resultreg.RegNum, 0);
// Free the result register now. The simple code generation algorithm should
// automatically pick it as the destination register for each case.
resultreg.Free(build);
// For floating point results, we need to get a new register, since we can't
// reuse the integer one used to store the random result.
if (ValueType->GetRegType() == REGT_FLOAT)
{
resultreg = ExpEmit(build, REGT_FLOAT);
resultreg.Free(build);
}
// Allocate space for the jump table.
size_t jumptable = build->Emit(OP_JMP, 0);
for (i = 1; i < choices.Size(); ++i)
{
build->Emit(OP_JMP, 0);
}
// Emit each case
TArray<size_t> finishes(choices.Size() - 1);
for (unsigned i = 0; i < choices.Size(); ++i)
{
build->BackpatchToHere(jumptable + i);
if (choices[i]->isConstant())
{
EmitLoad(build, resultreg, static_cast<FxConstant *>(choices[i])->GetValue());
}
else
{
ExpEmit casereg = choices[i]->Emit(build);
if (casereg.RegNum != resultreg.RegNum)
{ // The result of the case is in a different register from what
// was expected. Copy it to the one we wanted.
resultreg.Reuse(build); // This is really just for the assert in Reuse()
build->Emit(ValueType->GetRegType() == REGT_INT ? OP_MOVE : OP_MOVEF, resultreg.RegNum, casereg.RegNum, 0);
resultreg.Free(build);
}
// Free this register so the remaining cases can use it.
casereg.Free(build);
}
// All but the final case needs a jump to the end of the expression's code.
if (i + 1 < choices.Size())
{
size_t loc = build->Emit(OP_JMP, 0);
finishes.Push(loc);
}
}
// Backpatch each case (except the last, since it ends here) to jump to here.
for (i = 0; i < choices.Size() - 1; ++i)
{
build->BackpatchToHere(finishes[i]);
}
// The result register needs to be in-use when we return.
// It should have been freed earlier, so restore its in-use flag.
resultreg.Reuse(build);
return resultreg;
}
//==========================================================================
//
//
//
//==========================================================================
FxFRandom::FxFRandom(FRandom *r, FxExpression *mi, FxExpression *ma, const FScriptPosition &pos)
: FxRandom(r, NULL, NULL, pos, true)
{
if (mi != NULL && ma != NULL)
{
min = new FxFloatCast(mi);
max = new FxFloatCast(ma);
}
ValueType = TypeFloat64;
ExprType = EFX_FRandom;
}
//==========================================================================
//
//
//
//==========================================================================
int DecoFRandom(VMFrameStack *stack, VMValue *param, int numparam, VMReturn *ret, int numret)
{
assert(numparam == 1 || numparam == 3);
FRandom *rng = reinterpret_cast<FRandom *>(param[0].a);
int random = (*rng)(0x40000000);
double frandom = random / double(0x40000000);
if (numparam == 3)
{
double min = param[1].f, max = param[2].f;
if (max < min)
{
swapvalues(max, min);
}
ACTION_RETURN_FLOAT(frandom * (max - min) + min);
}
else
{
ACTION_RETURN_FLOAT(frandom);
}
}
ExpEmit FxFRandom::Emit(VMFunctionBuilder *build)
{
// Call the DecoFRandom function to generate a floating point random number..
VMFunction *callfunc;
PSymbol *sym = FindDecorateBuiltinFunction(NAME_DecoFRandom, DecoFRandom);
assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolVMFunction)));
assert(((PSymbolVMFunction *)sym)->Function != NULL);
callfunc = ((PSymbolVMFunction *)sym)->Function;
int opcode = (EmitTail ? OP_TAIL_K : OP_CALL_K);
build->Emit(OP_PARAM, 0, REGT_POINTER | REGT_KONST, build->GetConstantAddress(rng, ATAG_RNG));
if (min != NULL && max != NULL)
{
EmitParameter(build, min, ScriptPosition);
EmitParameter(build, max, ScriptPosition);
build->Emit(opcode, build->GetConstantAddress(callfunc, ATAG_OBJECT), 3, 1);
}
else
{
build->Emit(opcode, build->GetConstantAddress(callfunc, ATAG_OBJECT), 1, 1);
}
if (EmitTail)
{
ExpEmit call;
call.Final = true;
return call;
}
ExpEmit out(build, REGT_FLOAT);
build->Emit(OP_RESULT, 0, REGT_FLOAT, out.RegNum);
return out;
}
//==========================================================================
//
//
//
//==========================================================================
FxRandom2::FxRandom2(FRandom *r, FxExpression *m, const FScriptPosition &pos, bool nowarn)
: FxExpression(EFX_Random2, pos)
{
EmitTail = false;
rng = r;
if (m) mask = new FxIntCast(m, nowarn);
else mask = new FxConstant(-1, pos);
ValueType = TypeSInt32;
}
//==========================================================================
//
//
//
//==========================================================================
FxRandom2::~FxRandom2()
{
SAFE_DELETE(mask);
}
//==========================================================================
//
//
//
//==========================================================================
PPrototype *FxRandom2::ReturnProto()
{
EmitTail = true;
return FxExpression::ReturnProto();
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxRandom2::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(mask, ctx);
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxRandom2::Emit(VMFunctionBuilder *build)
{
// Call the DecoRandom function to generate the random number.
VMFunction *callfunc;
PSymbol *sym = FindDecorateBuiltinFunction(NAME_DecoRandom, DecoRandom);
assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolVMFunction)));
assert(((PSymbolVMFunction *)sym)->Function != NULL);
callfunc = ((PSymbolVMFunction *)sym)->Function;
int opcode = (EmitTail ? OP_TAIL_K : OP_CALL_K);
build->Emit(OP_PARAM, 0, REGT_POINTER | REGT_KONST, build->GetConstantAddress(rng, ATAG_RNG));
EmitParameter(build, mask, ScriptPosition);
build->Emit(opcode, build->GetConstantAddress(callfunc, ATAG_OBJECT), 2, 1);
if (EmitTail)
{
ExpEmit call;
call.Final = true;
return call;
}
ExpEmit out(build, REGT_INT);
build->Emit(OP_RESULT, 0, REGT_INT, out.RegNum);
return out;
}
//==========================================================================
//
//
//
//==========================================================================
FxIdentifier::FxIdentifier(FName name, const FScriptPosition &pos)
: FxExpression(EFX_Identifier, pos)
{
Identifier = name;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxIdentifier::Resolve(FCompileContext& ctx)
{
PSymbol * sym;
FxExpression *newex = nullptr;
int num;
CHECKRESOLVED();
// Local variables have highest priority.
FxLocalVariableDeclaration *local = ctx.FindLocalVariable(Identifier);
if (local != nullptr)
{
auto x = new FxLocalVariable(local, ScriptPosition);
delete this;
return x->Resolve(ctx);
}
// Ugh, the horror. Constants need to be taken from the owning class, but members from the self class to catch invalid accesses here...
// see if the current class (if valid) defines something with this name.
PSymbolTable *symtbl;
if ((sym = ctx.FindInClass(Identifier, symtbl)) != nullptr)
{
if (sym->IsKindOf(RUNTIME_CLASS(PSymbolConst)))
{
ScriptPosition.Message(MSG_DEBUGLOG, "Resolving name '%s' as class constant\n", Identifier.GetChars());
newex = FxConstant::MakeConstant(sym, ScriptPosition);
}
else if (sym->IsKindOf(RUNTIME_CLASS(PField)))
{
if (!ctx.Function)
{
ScriptPosition.Message(MSG_ERROR, "Cannot resolve class member outside a function", sym->SymbolName.GetChars());
delete this;
return nullptr;
}
PField *vsym = static_cast<PField*>(sym);
// We have 4 cases to consider here:
// 1. The symbol is a static/meta member (not implemented yet) which is always accessible.
// 2. This is a static function
// 3. This is an action function with a restricted self pointer
// 4. This is a normal member or unrestricted action function.
if (vsym->Flags & VARF_Deprecated)
{
ScriptPosition.Message(MSG_WARNING, "Accessing deprecated member variable %s", sym->SymbolName.GetChars());
}
if ((vsym->Flags & VARF_Private) && symtbl != &ctx.Class->Symbols)
{
ScriptPosition.Message(MSG_ERROR, "Private member %s not accessible", sym->SymbolName.GetChars());
delete this;
return nullptr;
}
if (vsym->Flags & VARF_Static)
{
// todo. For now these cannot be defined so let's just exit.
ScriptPosition.Message(MSG_ERROR, "Static members not implemented yet.");
delete this;
return nullptr;
}
if (ctx.Function->Variants[0].SelfClass == nullptr)
{
ScriptPosition.Message(MSG_ERROR, "Unable to access class member from static function");
delete this;
return nullptr;
}
if (ctx.Function->Variants[0].SelfClass != ctx.Class)
{
// Check if the restricted class can access it.
PSymbol *sym2;
if ((sym2 = ctx.FindInSelfClass(Identifier, symtbl)) != nullptr)
{
if (sym != sym2)
{
ScriptPosition.Message(MSG_ERROR, "Member variable of %s not accessible through restricted self pointer", ctx.Class->TypeName.GetChars());
delete this;
return nullptr;
}
}
}
ScriptPosition.Message(MSG_DEBUGLOG, "Resolving name '%s' as member variable, index %d\n", Identifier.GetChars(), vsym->Offset);
newex = new FxClassMember((new FxSelf(ScriptPosition))->Resolve(ctx), vsym, ScriptPosition);
}
else
{
ScriptPosition.Message(MSG_ERROR, "Invalid member identifier '%s'\n", Identifier.GetChars());
delete this;
return nullptr;
}
}
// now check the global identifiers.
else if ((sym = ctx.FindGlobal(Identifier)) != NULL)
{
if (sym->IsKindOf(RUNTIME_CLASS(PSymbolConst)))
{
ScriptPosition.Message(MSG_DEBUGLOG, "Resolving name '%s' as global constant\n", Identifier.GetChars());
newex = FxConstant::MakeConstant(sym, ScriptPosition);
}
else
{
ScriptPosition.Message(MSG_ERROR, "Invalid global identifier '%s'\n", Identifier.GetChars());
}
}
// and line specials
else if ((num = P_FindLineSpecial(Identifier, NULL, NULL)))
{
ScriptPosition.Message(MSG_DEBUGLOG, "Resolving name '%s' as line special %d\n", Identifier.GetChars(), num);
newex = new FxConstant(num, ScriptPosition);
}
else
{
ScriptPosition.Message(MSG_ERROR, "Unknown identifier '%s'", Identifier.GetChars());
delete this;
return nullptr;
}
delete this;
return newex? newex->Resolve(ctx) : nullptr;
}
//==========================================================================
//
//
//
//==========================================================================
FxMemberIdentifier::FxMemberIdentifier(FxExpression *left, FName name, const FScriptPosition &pos)
: FxIdentifier(name, pos)
{
Object = left;
ExprType = EFX_MemberIdentifier;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxMemberIdentifier::Resolve(FCompileContext& ctx)
{
PSymbol * sym;
FxExpression *newex = nullptr;
CHECKRESOLVED();
SAFE_RESOLVE(Object, ctx);
if (Object->ValueType->IsKindOf(RUNTIME_CLASS(PPointer)))
{
PSymbolTable *symtbl;
auto ptype = static_cast<PPointer *>(Object->ValueType)->PointedType;
if (ptype->IsKindOf(RUNTIME_CLASS(PStruct))) // PClass is a child class of PStruct so this covers both.
{
PStruct *cls = static_cast<PStruct *>(ptype);
bool isclass = cls->IsKindOf(RUNTIME_CLASS(PClass));
if ((sym = cls->Symbols.FindSymbolInTable(Identifier, symtbl)) != nullptr)
{
if (sym->IsKindOf(RUNTIME_CLASS(PSymbolConst)))
{
ScriptPosition.Message(MSG_DEBUGLOG, "Resolving name '%s' as %s constant\n", Identifier.GetChars(), isclass? "class" : "struct");
newex = FxConstant::MakeConstant(sym, ScriptPosition);
}
else if (sym->IsKindOf(RUNTIME_CLASS(PField)))
{
PField *vsym = static_cast<PField*>(sym);
// We have 4 cases to consider here:
// 1. The symbol is a static/meta member (not implemented yet) which is always accessible.
// 2. This is a static function
// 3. This is an action function with a restricted self pointer
// 4. This is a normal member or unrestricted action function.
if (vsym->Flags & VARF_Deprecated)
{
ScriptPosition.Message(MSG_WARNING, "Accessing deprecated member variable %s", vsym->SymbolName.GetChars());
}
if ((vsym->Flags & VARF_Private) && symtbl != &ctx.Class->Symbols)
{
ScriptPosition.Message(MSG_ERROR, "Private member %s not accessible", vsym->SymbolName.GetChars());
delete this;
return nullptr;
}
if (vsym->Flags & VARF_Static)
{
// todo. For now these cannot be defined so let's just exit.
ScriptPosition.Message(MSG_ERROR, "Static members not implemented yet.");
delete this;
return nullptr;
}
auto x = isclass? new FxClassMember(Object, vsym, ScriptPosition) : new FxStructMember(Object, vsym, ScriptPosition);
delete this;
return x->Resolve(ctx);
}
else
{
ScriptPosition.Message(MSG_ERROR, "Invalid member identifier '%s'\n", Identifier.GetChars());
delete this;
return nullptr;
}
}
else
{
ScriptPosition.Message(MSG_ERROR, "Unknown identifier '%s'", Identifier.GetChars());
delete this;
return nullptr;
}
}
}
else if (Object->ValueType->IsA(RUNTIME_CLASS(PStruct)))
{
if ((sym = Object->ValueType->Symbols.FindSymbol(Identifier, false)) != nullptr)
{
if (sym->IsKindOf(RUNTIME_CLASS(PSymbolConst)))
{
ScriptPosition.Message(MSG_DEBUGLOG, "Resolving name '%s' as struct constant\n", Identifier.GetChars());
newex = FxConstant::MakeConstant(sym, ScriptPosition);
}
else if (sym->IsKindOf(RUNTIME_CLASS(PField)))
{
PField *vsym = static_cast<PField*>(sym);
if (vsym->Flags & VARF_Deprecated)
{
ScriptPosition.Message(MSG_WARNING, "Accessing deprecated member variable %s", vsym->SymbolName.GetChars());
}
auto x = new FxStructMember(Object, vsym, ScriptPosition);
delete this;
return x->Resolve(ctx);
}
else
{
ScriptPosition.Message(MSG_ERROR, "Invalid member identifier '%s'\n", Identifier.GetChars());
delete this;
return nullptr;
}
}
else
{
ScriptPosition.Message(MSG_ERROR, "Unknown identifier '%s'", Identifier.GetChars());
delete this;
return nullptr;
}
}
ScriptPosition.Message(MSG_ERROR, "Left side of %s is not a struct or class", Identifier.GetChars());
delete this;
return nullptr;
}
//==========================================================================
//
//
//
//==========================================================================
FxLocalVariable::FxLocalVariable(FxLocalVariableDeclaration *var, const FScriptPosition &sc)
: FxExpression(EFX_LocalVariable, sc)
{
Variable = var;
ValueType = var->ValueType;
AddressRequested = false;
}
FxExpression *FxLocalVariable::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
return this;
}
bool FxLocalVariable::RequestAddress(bool *writable)
{
AddressRequested = true;
if (writable != nullptr) *writable = !(Variable->VarFlags & VARF_ReadOnly);
return true;
}
ExpEmit FxLocalVariable::Emit(VMFunctionBuilder *build)
{
ExpEmit ret(Variable->RegNum, Variable->ValueType->GetRegType(), false, true);
if (AddressRequested) ret.Target = true;
return ret;
}
//==========================================================================
//
//
//
//==========================================================================
FxSelf::FxSelf(const FScriptPosition &pos)
: FxExpression(EFX_Self, pos)
{
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxSelf::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (ctx.Function == nullptr || ctx.Function->Variants[0].SelfClass == nullptr)
{
ScriptPosition.Message(MSG_ERROR, "self used outside of a member function");
delete this;
return nullptr;
}
ValueType = NewPointer(ctx.Function->Variants[0].SelfClass);
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxSelf::Emit(VMFunctionBuilder *build)
{
// self is always the first pointer passed to the function
return ExpEmit(0, REGT_POINTER, false, true);
}
//==========================================================================
//
//
//
//==========================================================================
FxStructMember::FxStructMember(FxExpression *x, PField* mem, const FScriptPosition &pos)
: FxExpression(EFX_StructMember, pos)
{
classx = x;
membervar = mem;
AddressRequested = false;
AddressWritable = true; // must be true unless classx tells us otherwise if requested.
}
//==========================================================================
//
//
//
//==========================================================================
FxStructMember::~FxStructMember()
{
SAFE_DELETE(classx);
}
//==========================================================================
//
//
//
//==========================================================================
bool FxStructMember::RequestAddress(bool *writable)
{
AddressRequested = true;
if (writable != nullptr) *writable = AddressWritable && !(membervar->Flags & VARF_ReadOnly);
return true;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxStructMember::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(classx, ctx);
if (classx->ValueType->IsKindOf(RUNTIME_CLASS(PPointer)))
{
PPointer *ptrtype = dyn_cast<PPointer>(classx->ValueType);
if (ptrtype == nullptr || !ptrtype->PointedType->IsKindOf(RUNTIME_CLASS(PStruct)))
{
ScriptPosition.Message(MSG_ERROR, "Member variable requires a struct or class object.");
delete this;
return nullptr;
}
}
else if (classx->ValueType->IsA(RUNTIME_CLASS(PStruct))) // Classes can never be used as value types so we do not have to consider that case.
{
// if this is a struct within a class or another struct we can simplify the expression by creating a new PField with a cumulative offset.
if (classx->ExprType == EFX_ClassMember || classx->ExprType == EFX_StructMember)
{
auto parentfield = static_cast<FxStructMember *>(classx)->membervar;
// PFields are garbage collected so this will be automatically taken care of later.
auto newfield = new PField(membervar->SymbolName, membervar->Type, membervar->Flags | parentfield->Flags, membervar->Offset + parentfield->Offset, membervar->BitValue);
static_cast<FxStructMember *>(classx)->membervar = newfield;
classx->isresolved = false; // re-resolve the parent so it can also check if it can be optimized away.
auto x = classx->Resolve(ctx);
classx = nullptr;
return x;
}
else
{
if (!(classx->RequestAddress(&AddressWritable)))
{
ScriptPosition.Message(MSG_ERROR, "unable to dereference left side of %s", membervar->SymbolName.GetChars());
delete this;
return nullptr;
}
}
}
ValueType = membervar->Type;
return this;
}
ExpEmit FxStructMember::Emit(VMFunctionBuilder *build)
{
ExpEmit obj = classx->Emit(build);
assert(obj.RegType == REGT_POINTER);
if (obj.Konst)
{
// If the situation where we are dereferencing a constant
// pointer is common, then it would probably be worthwhile
// to add new opcodes for those. But as of right now, I
// don't expect it to be a particularly common case.
ExpEmit newobj(build, REGT_POINTER);
build->Emit(OP_LKP, newobj.RegNum, obj.RegNum);
obj = newobj;
}
if (AddressRequested)
{
if (membervar->Offset == 0)
{
return obj;
}
obj.Free(build);
ExpEmit out(build, REGT_POINTER);
build->Emit(OP_ADDA_RK, out.RegNum, obj.RegNum, build->GetConstantInt((int)membervar->Offset));
return out;
}
int offsetreg = build->GetConstantInt((int)membervar->Offset);
ExpEmit loc(build, membervar->Type->GetRegType());
if (membervar->BitValue == -1)
{
build->Emit(membervar->Type->GetLoadOp(), loc.RegNum, obj.RegNum, offsetreg);
}
else
{
ExpEmit out(build, REGT_POINTER);
build->Emit(OP_ADDA_RK, out.RegNum, obj.RegNum, offsetreg);
build->Emit(OP_LBIT, loc.RegNum, out.RegNum, 1 << membervar->BitValue);
out.Free(build);
}
obj.Free(build);
return loc;
}
//==========================================================================
//
// not really needed at the moment but may become useful with meta properties
// and some other class-specific extensions.
//
//==========================================================================
FxClassMember::FxClassMember(FxExpression *x, PField* mem, const FScriptPosition &pos)
: FxStructMember(x, mem, pos)
{
ExprType = EFX_ClassMember;
//if (classx->IsDefaultObject()) Readonly=true;
}
//==========================================================================
//
//
//
//==========================================================================
FxArrayElement::FxArrayElement(FxExpression *base, FxExpression *_index)
:FxExpression(EFX_ArrayElement, base->ScriptPosition)
{
Array=base;
index = _index;
AddressRequested = false;
AddressWritable = false;
}
//==========================================================================
//
//
//
//==========================================================================
FxArrayElement::~FxArrayElement()
{
SAFE_DELETE(Array);
SAFE_DELETE(index);
}
//==========================================================================
//
//
//
//==========================================================================
bool FxArrayElement::RequestAddress(bool *writable)
{
AddressRequested = true;
if (writable != nullptr) *writable = AddressWritable;
return true;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxArrayElement::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(Array,ctx);
SAFE_RESOLVE(index,ctx);
if (index->ValueType->GetRegType() == REGT_FLOAT /* lax */)
{
// DECORATE allows floats here so cast them to int.
index = new FxIntCast(index, ctx.FromDecorate);
index = index->Resolve(ctx);
if (index == NULL)
{
delete this;
return NULL;
}
}
if (index->ValueType->GetRegType() != REGT_INT && index->ValueType != TypeName)
{
ScriptPosition.Message(MSG_ERROR, "Array index must be integer");
delete this;
return NULL;
}
PArray *arraytype = dyn_cast<PArray>(Array->ValueType);
if (arraytype == NULL)
{
ScriptPosition.Message(MSG_ERROR, "'[]' can only be used with arrays.");
delete this;
return NULL;
}
if (index->isConstant())
{
unsigned indexval = static_cast<FxConstant *>(index)->GetValue().GetInt();
if (indexval >= arraytype->ElementCount)
{
ScriptPosition.Message(MSG_ERROR, "Array index out of bounds");
delete this;
return NULL;
}
}
ValueType = arraytype->ElementType;
if (ValueType->GetRegType() != REGT_INT && ValueType->GetRegType() != REGT_FLOAT)
{
// int arrays only for now
ScriptPosition.Message(MSG_ERROR, "Only numeric arrays are supported.");
delete this;
return NULL;
}
if (!Array->RequestAddress(&AddressWritable))
{
ScriptPosition.Message(MSG_ERROR, "Unable to dereference array.");
delete this;
return NULL;
}
return this;
}
//==========================================================================
//
// in its current state this won't be able to do more than handle the args array.
//
//==========================================================================
ExpEmit FxArrayElement::Emit(VMFunctionBuilder *build)
{
ExpEmit start = Array->Emit(build);
PArray *const arraytype = static_cast<PArray*>(Array->ValueType);
ExpEmit dest(build, arraytype->ElementType->GetRegType());
if (start.Konst)
{
ExpEmit tmpstart(build, REGT_POINTER);
build->Emit(OP_LKP, tmpstart.RegNum, start.RegNum);
start.Free(build);
start = tmpstart;
}
if (index->isConstant())
{
unsigned indexval = static_cast<FxConstant *>(index)->GetValue().GetInt();
assert(indexval < arraytype->ElementCount && "Array index out of bounds");
indexval *= arraytype->ElementSize;
if (AddressRequested)
{
if (indexval != 0)
{
build->Emit(OP_ADDA_RK, start.RegNum, start.RegNum, build->GetConstantInt(indexval));
}
}
else
{
build->Emit(arraytype->ElementType->GetLoadOp(), dest.RegNum,
start.RegNum, build->GetConstantInt(indexval));
}
}
else
{
ExpEmit indexv(index->Emit(build));
int shiftbits = 0;
while (1u << shiftbits < arraytype->ElementSize)
{
shiftbits++;
}
assert(1u << shiftbits == arraytype->ElementSize && "Element sizes other than power of 2 are not implemented");
build->Emit(OP_BOUND, indexv.RegNum, arraytype->ElementCount);
if (shiftbits > 0)
{
build->Emit(OP_SLL_RI, indexv.RegNum, indexv.RegNum, shiftbits);
}
if (AddressRequested)
{
build->Emit(OP_ADDA_RR, start.RegNum, start.RegNum, indexv.RegNum);
}
else
{
build->Emit(arraytype->ElementType->GetLoadOp() + 1, // added 1 to use the *_R version that
dest.RegNum, start.RegNum, indexv.RegNum); // takes the offset from a register
}
indexv.Free(build);
}
if (AddressRequested)
{
dest.Free(build);
return start;
}
start.Free(build);
return dest;
}
//==========================================================================
//
//
//
//==========================================================================
FxFunctionCall::FxFunctionCall(FName methodname, FName rngname, FArgumentList *args, const FScriptPosition &pos)
: FxExpression(EFX_FunctionCall, pos)
{
MethodName = methodname;
RNG = nullptr;
ArgList = args;
if (rngname != NAME_None)
{
switch (MethodName)
{
case NAME_Random:
case NAME_FRandom:
case NAME_RandomPick:
case NAME_FRandomPick:
case NAME_Random2:
RNG = FRandom::StaticFindRNG(rngname.GetChars());
break;
default:
pos.Message(MSG_ERROR, "Cannot use named RNGs with %s", MethodName.GetChars());
break;
}
}
}
//==========================================================================
//
//
//
//==========================================================================
FxFunctionCall::~FxFunctionCall()
{
SAFE_DELETE(ArgList);
}
//==========================================================================
//
// Check function that gets called
//
//==========================================================================
static bool CheckArgSize(FName fname, FArgumentList *args, int min, int max, FScriptPosition &sc)
{
int s = args ? args->Size() : 0;
if (s < min)
{
sc.Message(MSG_ERROR, "Insufficient arguments in call to %s, expected %d, got %d", fname.GetChars(), min, s);
return false;
}
else if (s > max && max >= 0)
{
sc.Message(MSG_ERROR, "Too many arguments in call to %s, expected %d, got %d", fname.GetChars(), min, s);
return false;
}
return true;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxFunctionCall::Resolve(FCompileContext& ctx)
{
ABORT(ctx.Class);
bool error = false;
PFunction *afd = FindClassMemberFunction(ctx.Class, ctx.Class, MethodName, ScriptPosition, &error);
if (error)
{
delete this;
return nullptr;
}
if (afd != nullptr)
{
if (ctx.Function->Variants[0].Flags & VARF_Static && !(afd->Variants[0].Flags & VARF_Static))
{
ScriptPosition.Message(MSG_ERROR, "Call to non-static function %s from a static context", MethodName.GetChars());
delete this;
return nullptr;
}
auto self = !(afd->Variants[0].Flags & VARF_Static)? new FxSelf(ScriptPosition) : nullptr;
auto x = new FxVMFunctionCall(self, afd, ArgList, ScriptPosition, false);
ArgList = nullptr;
delete this;
return x->Resolve(ctx);
}
for (size_t i = 0; i < countof(FxFlops); ++i)
{
if (MethodName == FxFlops[i].Name)
{
FxExpression *x = new FxFlopFunctionCall(i, ArgList, ScriptPosition);
ArgList = nullptr;
delete this;
return x->Resolve(ctx);
}
}
int min, max, special;
if (MethodName == NAME_ACS_NamedExecuteWithResult || MethodName == NAME_CallACS)
{
special = -ACS_ExecuteWithResult;
min = 1;
max = 5;
}
else
{
special = P_FindLineSpecial(MethodName.GetChars(), &min, &max);
}
if (special != 0 && min >= 0)
{
int paramcount = ArgList? ArgList->Size() : 0;
if (paramcount < min)
{
ScriptPosition.Message(MSG_ERROR, "Not enough parameters for '%s' (expected %d, got %d)",
MethodName.GetChars(), min, paramcount);
delete this;
return nullptr;
}
else if (paramcount > max)
{
ScriptPosition.Message(MSG_ERROR, "too many parameters for '%s' (expected %d, got %d)",
MethodName.GetChars(), max, paramcount);
delete this;
return nullptr;
}
FxExpression *self = (ctx.Function && ctx.Function->Variants[0].Flags & VARF_Method) ? new FxSelf(ScriptPosition) : nullptr;
FxExpression *x = new FxActionSpecialCall(self, special, ArgList, ScriptPosition);
ArgList = nullptr;
delete this;
return x->Resolve(ctx);
}
// Last but not least: Check builtins. The random functions can take a named RNG if specified.
// Note that for all builtins the used arguments have to be nulled in the ArgList so that they won't get deleted before they get used.
FxExpression *func = nullptr;
switch (MethodName)
{
case NAME_Random:
if (CheckArgSize(NAME_Random, ArgList, 2, 2, ScriptPosition))
{
func = new FxRandom(RNG, (*ArgList)[0], (*ArgList)[1], ScriptPosition, ctx.FromDecorate);
(*ArgList)[0] = (*ArgList)[1] = nullptr;
}
break;
case NAME_FRandom:
if (CheckArgSize(NAME_FRandom, ArgList, 2, 2, ScriptPosition))
{
func = new FxFRandom(RNG, (*ArgList)[0], (*ArgList)[1], ScriptPosition);
(*ArgList)[0] = (*ArgList)[1] = nullptr;
}
break;
case NAME_RandomPick:
case NAME_FRandomPick:
if (CheckArgSize(MethodName, ArgList, 1, -1, ScriptPosition))
{
func = new FxRandomPick(RNG, *ArgList, MethodName == NAME_FRandomPick, ScriptPosition, ctx.FromDecorate);
for (auto &i : *ArgList) i = nullptr;
}
break;
case NAME_Random2:
if (CheckArgSize(NAME_Random2, ArgList, 0, 1, ScriptPosition))
{
func = new FxRandom2(RNG, ArgList->Size() == 0? nullptr : (*ArgList)[0], ScriptPosition, ctx.FromDecorate);
if (ArgList->Size() > 0) (*ArgList)[0] = nullptr;
}
break;
case NAME_Min:
case NAME_Max:
if (CheckArgSize(MethodName, ArgList, 2, -1, ScriptPosition))
{
func = new FxMinMax(*ArgList, MethodName, ScriptPosition);
for (auto &i : *ArgList) i = nullptr;
}
break;
case NAME_Clamp:
if (CheckArgSize(MethodName, ArgList, 3, 3, ScriptPosition))
{
TArray<FxExpression *> pass;
pass.Resize(2);
pass[0] = (*ArgList)[0];
pass[1] = (*ArgList)[1];
pass[0] = new FxMinMax(pass, NAME_Max, ScriptPosition);
pass[1] = (*ArgList)[2];
func = new FxMinMax(*ArgList, NAME_Min, ScriptPosition);
(*ArgList)[0] = (*ArgList)[1] = (*ArgList)[2] = nullptr;
}
break;
case NAME_Abs:
if (CheckArgSize(MethodName, ArgList, 1, 1, ScriptPosition))
{
func = new FxAbs((*ArgList)[0]);
(*ArgList)[0] = nullptr;
}
break;
case NAME_ATan2:
case NAME_VectorAngle:
if (CheckArgSize(MethodName, ArgList, 2, 2, ScriptPosition))
{
func = MethodName == NAME_ATan2 ? new FxATan2((*ArgList)[0], (*ArgList)[1], ScriptPosition) : new FxATan2((*ArgList)[1], (*ArgList)[0], ScriptPosition);
(*ArgList)[0] = (*ArgList)[1] = nullptr;
}
break;
default:
break;
}
if (func != nullptr)
{
delete this;
return func->Resolve(ctx);
}
ScriptPosition.Message(MSG_ERROR, "Call to unknown function '%s'", MethodName.GetChars());
delete this;
return nullptr;
}
//==========================================================================
//
//
//
//==========================================================================
FxMemberFunctionCall::FxMemberFunctionCall(FxExpression *self, FName methodname, FArgumentList *args, const FScriptPosition &pos)
: FxExpression(EFX_MemberFunctionCall, pos)
{
Self = self;
MethodName = methodname;
ArgList = args;
}
//==========================================================================
//
//
//
//==========================================================================
FxMemberFunctionCall::~FxMemberFunctionCall()
{
SAFE_DELETE(Self);
SAFE_DELETE(ArgList);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxMemberFunctionCall::Resolve(FCompileContext& ctx)
{
ABORT(ctx.Class);
SAFE_RESOLVE(Self, ctx);
PClass *cls;
bool staticonly = false;
if (Self->ValueType->IsKindOf(RUNTIME_CLASS(PClassPointer)))
{
cls = static_cast<PClassPointer *>(Self->ValueType)->ClassRestriction;
staticonly = true;
}
else if (Self->ValueType->IsKindOf(RUNTIME_CLASS(PPointer)))
{
auto ptype = static_cast<PPointer *>(Self->ValueType)->PointedType;
if (ptype->IsKindOf(RUNTIME_CLASS(PClass)))
{
cls = static_cast<PClass *>(ptype);
}
else
{
ScriptPosition.Message(MSG_ERROR, "Left hand side of %s must point to a class object\n", MethodName.GetChars());
delete this;
return nullptr;
}
}
else
{
ScriptPosition.Message(MSG_ERROR, "Invalid expression on left hand side of %s\n", MethodName.GetChars());
delete this;
return nullptr;
}
bool error = false;
PFunction *afd = FindClassMemberFunction(cls, cls, MethodName, ScriptPosition, &error);
if (error)
{
delete this;
return nullptr;
}
if (afd == nullptr)
{
ScriptPosition.Message(MSG_ERROR, "Unknown function %s\n", MethodName.GetChars());
delete this;
return nullptr;
}
if (staticonly && !(afd->Variants[0].Flags & VARF_Static))
{
if (!ctx.Class->IsDescendantOf(cls))
{
ScriptPosition.Message(MSG_ERROR, "Cannot call non-static function %s::%s from here\n", cls->TypeName.GetChars(), MethodName.GetChars());
delete this;
return nullptr;
}
// If this is a qualified call to a parent class function, let it through (but this needs to disable virtual calls later.)
}
// do not pass the self pointer to static functions.
auto self = !(afd->Variants[0].Flags & VARF_Static) ? Self : nullptr;
auto x = new FxVMFunctionCall(self, afd, ArgList, ScriptPosition, staticonly);
ArgList = nullptr;
if (Self == self) Self = nullptr;
delete this;
return x->Resolve(ctx);
}
//==========================================================================
//
// FxActionSpecialCall
//
// If special is negative, then the first argument will be treated as a
// name for ACS_NamedExecuteWithResult.
//
//==========================================================================
FxActionSpecialCall::FxActionSpecialCall(FxExpression *self, int special, FArgumentList *args, const FScriptPosition &pos)
: FxExpression(EFX_ActionSpecialCall, pos)
{
Self = self;
Special = special;
ArgList = args;
EmitTail = false;
}
//==========================================================================
//
//
//
//==========================================================================
FxActionSpecialCall::~FxActionSpecialCall()
{
SAFE_DELETE(Self);
SAFE_DELETE(ArgList);
}
//==========================================================================
//
//
//
//==========================================================================
PPrototype *FxActionSpecialCall::ReturnProto()
{
EmitTail = true;
return FxExpression::ReturnProto();
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxActionSpecialCall::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
bool failed = false;
SAFE_RESOLVE_OPT(Self, ctx);
if (ArgList != NULL)
{
for (unsigned i = 0; i < ArgList->Size(); i++)
{
(*ArgList)[i] = (*ArgList)[i]->Resolve(ctx);
if ((*ArgList)[i] == NULL) failed = true;
if (Special < 0 && i == 0)
{
if ((*ArgList)[i]->ValueType != TypeName)
{
ScriptPosition.Message(MSG_ERROR, "Name expected for parameter %d", i);
failed = true;
}
}
else if ((*ArgList)[i]->ValueType->GetRegType() != REGT_INT)
{
if ((*ArgList)[i]->ValueType->GetRegType() == REGT_FLOAT /* lax */)
{
(*ArgList)[i] = new FxIntCast((*ArgList)[i], ctx.FromDecorate);
}
else
{
ScriptPosition.Message(MSG_ERROR, "Integer expected for parameter %d", i);
failed = true;
}
}
}
if (failed)
{
delete this;
return NULL;
}
}
ValueType = TypeSInt32;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
int DecoCallLineSpecial(VMFrameStack *stack, VMValue *param, int numparam, VMReturn *ret, int numret)
{
assert(numparam > 2 && numparam < 8);
assert(param[0].Type == REGT_INT);
assert(param[1].Type == REGT_POINTER);
int v[5] = { 0 };
for (int i = 2; i < numparam; ++i)
{
v[i - 2] = param[i].i;
}
ACTION_RETURN_INT(P_ExecuteSpecial(param[0].i, NULL, reinterpret_cast<AActor*>(param[1].a), false, v[0], v[1], v[2], v[3], v[4]));
}
ExpEmit FxActionSpecialCall::Emit(VMFunctionBuilder *build)
{
unsigned i = 0;
build->Emit(OP_PARAMI, abs(Special)); // pass special number
// fixme: This really should use the Self pointer that got passed to this class instead of just using the first argument from the function.
// Once static functions are possible, or specials can be called through a member access operator this won't work anymore.
build->Emit(OP_PARAM, 0, REGT_POINTER, 0); // pass self
if (ArgList != NULL)
{
for (; i < ArgList->Size(); ++i)
{
FxExpression *argex = (*ArgList)[i];
if (Special < 0 && i == 0)
{
assert(argex->ValueType == TypeName);
assert(argex->isConstant());
build->EmitParamInt(-static_cast<FxConstant *>(argex)->GetValue().GetName());
}
else
{
assert(argex->ValueType->GetRegType() == REGT_INT);
if (argex->isConstant())
{
build->EmitParamInt(static_cast<FxConstant *>(argex)->GetValue().GetInt());
}
else
{
ExpEmit arg(argex->Emit(build));
build->Emit(OP_PARAM, 0, arg.RegType, arg.RegNum);
arg.Free(build);
}
}
}
}
// Call the DecoCallLineSpecial function to perform the desired special.
VMFunction *callfunc;
PSymbol *sym = FindDecorateBuiltinFunction(NAME_DecoCallLineSpecial, DecoCallLineSpecial);
assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolVMFunction)));
assert(((PSymbolVMFunction *)sym)->Function != NULL);
callfunc = ((PSymbolVMFunction *)sym)->Function;
if (EmitTail)
{
build->Emit(OP_TAIL_K, build->GetConstantAddress(callfunc, ATAG_OBJECT), 2 + i, 0);
ExpEmit call;
call.Final = true;
return call;
}
ExpEmit dest(build, REGT_INT);
build->Emit(OP_CALL_K, build->GetConstantAddress(callfunc, ATAG_OBJECT), 2 + i, 1);
build->Emit(OP_RESULT, 0, REGT_INT, dest.RegNum);
return dest;
}
//==========================================================================
//
// FxVMFunctionCall
//
//==========================================================================
FxVMFunctionCall::FxVMFunctionCall(FxExpression *self, PFunction *func, FArgumentList *args, const FScriptPosition &pos, bool novirtual)
: FxExpression(EFX_VMFunctionCall, pos)
{
Self = self;
Function = func;
ArgList = args;
EmitTail = false;
NoVirtual = novirtual;
}
//==========================================================================
//
//
//
//==========================================================================
FxVMFunctionCall::~FxVMFunctionCall()
{
SAFE_DELETE(ArgList);
}
//==========================================================================
//
//
//
//==========================================================================
PPrototype *FxVMFunctionCall::ReturnProto()
{
EmitTail = true;
return Function->Variants[0].Proto;
}
//==========================================================================
//
//
//
//==========================================================================
VMFunction *FxVMFunctionCall::GetDirectFunction()
{
// If this return statement calls a non-virtual function with no arguments,
// then it can be a "direct" function. That is, the DECORATE
// definition can call that function directly without wrapping
// it inside VM code.
if ((ArgList ? ArgList->Size() : 0) == 0 && !(Function->Variants[0].Flags & VARF_Virtual))
{
return Function->Variants[0].Implementation;
}
return nullptr;
}
//==========================================================================
//
// FxVMFunctionCall :: Resolve
//
//==========================================================================
FxExpression *FxVMFunctionCall::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE_OPT(Self, ctx);
bool failed = false;
auto proto = Function->Variants[0].Proto;
auto argtypes = proto->ArgumentTypes;
int implicit = Function->GetImplicitArgs();
// This should never happen.
if (Self == nullptr && !(Function->Variants[0].Flags & VARF_Static))
{
ScriptPosition.Message(MSG_ERROR, "Call to non-static function without a self pointer");
delete this;
return nullptr;
}
if (ArgList != NULL)
{
for (unsigned i = 0; i < ArgList->Size(); i++)
{
FxExpression *x = new FxTypeCast((*ArgList)[i], argtypes[i + implicit], false);
x = x->Resolve(ctx);
failed |= (x == nullptr);
(*ArgList)[i] = x;
}
}
if (failed)
{
delete this;
return NULL;
}
TArray<PType *> &rets = proto->ReturnTypes;
if (rets.Size() > 0)
{
ValueType = rets[0];
}
else
{
ValueType = TypeVoid;
}
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxVMFunctionCall::Emit(VMFunctionBuilder *build)
{
assert((build->IsActionFunc && build->Registers[REGT_POINTER].GetMostUsed() >= NAP) ||
(!build->IsActionFunc && build->Registers[REGT_POINTER].GetMostUsed() >= 1));
int count = (ArgList ? ArgList->Size() : 0);
if (count == 1)
{
ExpEmit reg;
if (CheckEmitCast(build, EmitTail, reg))
{
return reg;
}
}
// Emit code to pass implied parameters
if (Function->Variants[0].Flags & VARF_Method)
{
assert(Self != nullptr);
ExpEmit selfemit = Self->Emit(build);
assert(selfemit.RegType == REGT_POINTER);
build->Emit(OP_PARAM, 0, selfemit.RegType, selfemit.RegNum);
count += 1;
}
if (Function->Variants[0].Flags & VARF_Action)
{
static_assert(NAP == 3, "This code needs to be updated if NAP changes");
if (build->IsActionFunc)
{
build->Emit(OP_PARAM, 0, REGT_POINTER, 1);
build->Emit(OP_PARAM, 0, REGT_POINTER, 2);
}
else
{
int null = build->GetConstantAddress(nullptr, ATAG_GENERIC);
build->Emit(OP_PARAM, 0, REGT_POINTER | REGT_KONST, null);
build->Emit(OP_PARAM, 0, REGT_POINTER | REGT_KONST, null);
}
count += 2;
}
// Emit code to pass explicit parameters
if (ArgList != NULL)
{
for (unsigned i = 0; i < ArgList->Size(); ++i)
{
EmitParameter(build, (*ArgList)[i], ScriptPosition);
}
}
// Get a constant register for this function
VMFunction *vmfunc = Function->Variants[0].Implementation;
int funcaddr = build->GetConstantAddress(vmfunc, ATAG_OBJECT);
// Emit the call
if (EmitTail)
{ // Tail call
build->Emit(OP_TAIL_K, funcaddr, count, 0);
ExpEmit call;
call.Final = true;
return call;
}
else if (vmfunc->Proto->ReturnTypes.Size() > 0)
{ // Call, expecting one result
ExpEmit reg(build, vmfunc->Proto->ReturnTypes[0]->GetRegType());
build->Emit(OP_CALL_K, funcaddr, count, 1);
build->Emit(OP_RESULT, 0, reg.RegType, reg.RegNum);
return reg;
}
else
{ // Call, expecting no results
build->Emit(OP_CALL_K, funcaddr, count, 0);
return ExpEmit();
}
}
//==========================================================================
//
// If calling one of the casting kludge functions, don't bother calling the
// function; just use the parameter directly. Returns true if this was a
// kludge function, false otherwise.
//
//==========================================================================
bool FxVMFunctionCall::CheckEmitCast(VMFunctionBuilder *build, bool returnit, ExpEmit &reg)
{
FName funcname = Function->SymbolName;
if (funcname == NAME___decorate_internal_int__ ||
funcname == NAME___decorate_internal_bool__ ||
funcname == NAME___decorate_internal_state__ ||
funcname == NAME___decorate_internal_float__)
{
FxExpression *arg = (*ArgList)[0];
if (returnit)
{
if (arg->isConstant() &&
(funcname == NAME___decorate_internal_int__ ||
funcname == NAME___decorate_internal_bool__))
{ // Use immediate version for integers in range
build->EmitRetInt(0, true, static_cast<FxConstant *>(arg)->GetValue().Int);
}
else
{
ExpEmit where = arg->Emit(build);
build->Emit(OP_RET, RET_FINAL, where.RegType | (where.Konst ? REGT_KONST : 0), where.RegNum);
where.Free(build);
}
reg = ExpEmit();
reg.Final = true;
}
else
{
reg = arg->Emit(build);
}
return true;
}
return false;
}
//==========================================================================
//
//
//
//==========================================================================
FxFlopFunctionCall::FxFlopFunctionCall(size_t index, FArgumentList *args, const FScriptPosition &pos)
: FxExpression(EFX_FlopFunctionCall, pos)
{
assert(index < countof(FxFlops) && "FLOP index out of range");
Index = (int)index;
ArgList = args;
}
//==========================================================================
//
//
//
//==========================================================================
FxFlopFunctionCall::~FxFlopFunctionCall()
{
SAFE_DELETE(ArgList);
}
FxExpression *FxFlopFunctionCall::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (ArgList == NULL || ArgList->Size() != 1)
{
ScriptPosition.Message(MSG_ERROR, "%s only has one parameter", FName(FxFlops[Index].Name).GetChars());
delete this;
return NULL;
}
(*ArgList)[0] = (*ArgList)[0]->Resolve(ctx);
if ((*ArgList)[0] == NULL)
{
delete this;
return NULL;
}
if (!(*ArgList)[0]->IsNumeric())
{
ScriptPosition.Message(MSG_ERROR, "numeric value expected for parameter");
delete this;
return NULL;
}
if ((*ArgList)[0]->isConstant())
{
double v = static_cast<FxConstant *>((*ArgList)[0])->GetValue().GetFloat();
v = FxFlops[Index].Evaluate(v);
FxExpression *x = new FxConstant(v, ScriptPosition);
delete this;
return x;
}
if ((*ArgList)[0]->ValueType->GetRegType() == REGT_INT)
{
(*ArgList)[0] = new FxFloatCast((*ArgList)[0]);
}
ValueType = TypeFloat64;
return this;
}
//==========================================================================
//
//
//==========================================================================
ExpEmit FxFlopFunctionCall::Emit(VMFunctionBuilder *build)
{
ExpEmit v = (*ArgList)[0]->Emit(build);
assert(!v.Konst && v.RegType == REGT_FLOAT);
build->Emit(OP_FLOP, v.RegNum, v.RegNum, FxFlops[Index].Flop);
return v;
}
//==========================================================================
//
// FxSequence :: Resolve
//
//==========================================================================
FxExpression *FxSequence::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
for (unsigned i = 0; i < Expressions.Size(); ++i)
{
if (NULL == (Expressions[i] = Expressions[i]->Resolve(ctx)))
{
delete this;
return nullptr;
}
}
return this;
}
//==========================================================================
//
// FxSequence :: Emit
//
//==========================================================================
ExpEmit FxSequence::Emit(VMFunctionBuilder *build)
{
for (unsigned i = 0; i < Expressions.Size(); ++i)
{
ExpEmit v = Expressions[i]->Emit(build);
// Throw away any result. We don't care about it.
v.Free(build);
}
return ExpEmit();
}
//==========================================================================
//
// FxSequence :: GetDirectFunction
//
//==========================================================================
VMFunction *FxSequence::GetDirectFunction()
{
if (Expressions.Size() == 1)
{
return Expressions[0]->GetDirectFunction();
}
return NULL;
}
//==========================================================================
//
// FxCompoundStatement :: Resolve
//
//==========================================================================
FxExpression *FxCompoundStatement::Resolve(FCompileContext &ctx)
{
auto outer = ctx.Block;
Outer = ctx.Block;
ctx.Block = this;
auto x = FxSequence::Resolve(ctx);
ctx.Block = outer;
return x;
}
//==========================================================================
//
// FxCompoundStatement :: Emit
//
//==========================================================================
ExpEmit FxCompoundStatement::Emit(VMFunctionBuilder *build)
{
auto e = FxSequence::Emit(build);
// Release all local variables in this block.
for (auto l : LocalVars)
{
l->Release(build);
}
return e;
}
//==========================================================================
//
// FxCompoundStatement :: FindLocalVariable
//
// Looks for a variable name in any of the containing compound statements
// This does a simple linear search on each block's variables.
// The lists here normally don't get large enough to justify something more complex.
//
//==========================================================================
FxLocalVariableDeclaration *FxCompoundStatement::FindLocalVariable(FName name, FCompileContext &ctx)
{
auto block = this;
while (block != nullptr)
{
for (auto l : block->LocalVars)
{
if (l->Name == name)
{
return l;
}
}
block = block->Outer;
}
// finally check the context for function arguments
for (auto arg : ctx.FunctionArgs)
{
if (arg->Name == name)
{
return arg;
}
}
return nullptr;
}
//==========================================================================
//
// FxCompoundStatement :: CheckLocalVariable
//
// Checks if the current block already contains a local variable
// of the given name.
//
//==========================================================================
bool FxCompoundStatement::CheckLocalVariable(FName name)
{
for (auto l : LocalVars)
{
if (l->Name == name)
{
return true;
}
}
return false;
}
//==========================================================================
//
// FxSwitchStatement
//
//==========================================================================
FxSwitchStatement::FxSwitchStatement(FxExpression *cond, FArgumentList *content, const FScriptPosition &pos)
: FxExpression(EFX_SwitchStatement, pos)
{
Condition = new FxIntCast(cond, false);
Content = content;
}
FxSwitchStatement::~FxSwitchStatement()
{
SAFE_DELETE(Condition);
SAFE_DELETE(Content);
}
FxExpression *FxSwitchStatement::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(Condition, ctx);
if (Content == nullptr || Content->Size() == 0)
{
ScriptPosition.Message(MSG_WARNING, "Empty switch statement");
if (Condition->isConstant())
{
return new FxNop(ScriptPosition);
}
else
{
// The condition may have a side effect so it should be processed (possible to-do: Analyze all nodes in there and delete if not.)
auto x = Condition;
Condition = nullptr;
delete this;
return Condition;
}
}
for (auto &line : *Content)
{
// Do not resolve breaks, they need special treatment inside switch blocks.
if (line->ExprType != EFX_JumpStatement || static_cast<FxJumpStatement *>(line)->Token != TK_Break)
{
SAFE_RESOLVE(line, ctx);
}
}
if (Condition->isConstant())
{
ScriptPosition.Message(MSG_WARNING, "Case expression is constant");
auto &content = *Content;
unsigned defaultindex = -1;
unsigned defaultbreak = -1;
unsigned caseindex = -1;
unsigned casebreak = -1;
// look for a case label with a matching value
for (unsigned i = 0; i < content.Size(); i++)
{
if (content[i] != nullptr)
{
if (content[i]->ExprType == EFX_CaseStatement)
{
auto casestmt = static_cast<FxCaseStatement *>(content[i]);
if (casestmt->Condition == nullptr) defaultindex = i;
else if (casestmt->CaseValue == static_cast<FxConstant *>(Condition)->GetValue().GetInt()) caseindex = i;
}
if (content[i]->ExprType == EFX_JumpStatement && static_cast<FxJumpStatement *>(content[i])->Token == TK_Break)
{
if (defaultindex >= 0 && defaultbreak < 0) defaultbreak = i;
if (caseindex >= 0 && casebreak < 0)
{
casebreak = i;
break; // when we find this we do not need to look any further.
}
}
}
}
if (caseindex < 0)
{
caseindex = defaultindex;
casebreak = defaultbreak;
}
if (caseindex > 0 && casebreak - caseindex > 1)
{
auto seq = new FxSequence(ScriptPosition);
for (unsigned i = caseindex + 1; i < casebreak; i++)
{
if (content[i] != nullptr && content[i]->ExprType != EFX_CaseStatement)
{
seq->Add(content[i]);
content[i] = nullptr;
}
}
delete this;
return seq->Resolve(ctx);
}
delete this;
return new FxNop(ScriptPosition);
}
int mincase = INT_MAX;
int maxcase = INT_MIN;
for (auto line : *Content)
{
if (line->ExprType == EFX_CaseStatement)
{
auto casestmt = static_cast<FxCaseStatement *>(line);
if (casestmt->Condition != nullptr)
{
CaseAddr ca = { casestmt->CaseValue, 0 };
CaseAddresses.Push(ca);
if (ca.casevalue < mincase) mincase = ca.casevalue;
if (ca.casevalue > maxcase) maxcase = ca.casevalue;
}
}
}
return this;
}
ExpEmit FxSwitchStatement::Emit(VMFunctionBuilder *build)
{
assert(Condition != nullptr);
ExpEmit emit = Condition->Emit(build);
assert(emit.RegType == REGT_INT);
// todo:
// - sort jump table by value.
// - optimize the switch dispatcher to run in native code instead of executing each single branch instruction on its own.
// e.g.: build->Emit(OP_SWITCH, emit.RegNum, build->GetConstantInt(CaseAddresses.Size());
for (auto &ca : CaseAddresses)
{
if (ca.casevalue >= 0 && ca.casevalue <= 0xffff)
{
build->Emit(OP_TEST, emit.RegNum, (VM_SHALF)ca.casevalue);
}
else if (ca.casevalue < 0 && ca.casevalue >= -0xffff)
{
build->Emit(OP_TESTN, emit.RegNum, (VM_SHALF)-ca.casevalue);
}
else
{
build->Emit(OP_EQ_K, 1, emit.RegNum, build->GetConstantInt(ca.casevalue));
}
ca.jumpaddress = build->Emit(OP_JMP, 0);
}
size_t DefaultAddress = build->Emit(OP_JMP, 0);
TArray<size_t> BreakAddresses;
for (auto line : *Content)
{
switch (line->ExprType)
{
case EFX_CaseStatement:
if (static_cast<FxCaseStatement *>(line)->Condition != nullptr)
{
for (auto &ca : CaseAddresses)
{
if (ca.casevalue == static_cast<FxCaseStatement *>(line)->CaseValue)
{
build->BackpatchToHere(ca.jumpaddress);
break;
}
}
}
else
{
build->BackpatchToHere(DefaultAddress);
}
break;
case EFX_JumpStatement:
if (static_cast<FxJumpStatement *>(line)->Token == TK_Break)
{
BreakAddresses.Push(build->Emit(OP_JMP, 0));
break;
}
// fall through for continue.
default:
line->Emit(build);
break;
}
}
for (auto addr : BreakAddresses)
{
build->BackpatchToHere(addr);
}
return ExpEmit();
}
//==========================================================================
//
// FxCaseStatement
//
//==========================================================================
FxCaseStatement::FxCaseStatement(FxExpression *cond, const FScriptPosition &pos)
: FxExpression(EFX_CaseStatement, pos)
{
Condition = cond? new FxIntCast(cond, false) : nullptr;
}
FxCaseStatement::~FxCaseStatement()
{
SAFE_DELETE(Condition);
}
FxExpression *FxCaseStatement::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE_OPT(Condition, ctx);
if (Condition != nullptr)
{
if (!Condition->isConstant())
{
ScriptPosition.Message(MSG_ERROR, "Case label must be a constant value");
delete this;
return nullptr;
}
CaseValue = static_cast<FxConstant *>(Condition)->GetValue().GetInt();
}
return this;
}
//==========================================================================
//
// FxIfStatement
//
//==========================================================================
FxIfStatement::FxIfStatement(FxExpression *cond, FxExpression *true_part,
FxExpression *false_part, const FScriptPosition &pos)
: FxExpression(EFX_IfStatement, pos)
{
Condition = cond;
WhenTrue = true_part;
WhenFalse = false_part;
assert(cond != NULL);
}
FxIfStatement::~FxIfStatement()
{
SAFE_DELETE(Condition);
SAFE_DELETE(WhenTrue);
SAFE_DELETE(WhenFalse);
}
FxExpression *FxIfStatement::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
if (WhenTrue == nullptr && WhenFalse == nullptr)
{ // We don't do anything either way, so disappear
delete this;
return nullptr;
}
SAFE_RESOLVE(Condition, ctx);
if (Condition->ValueType != TypeBool)
{
Condition = new FxBoolCast(Condition, false);
SAFE_RESOLVE(Condition, ctx);
}
if (WhenTrue != nullptr)
{
WhenTrue = WhenTrue->Resolve(ctx);
ABORT(WhenTrue);
}
if (WhenFalse != nullptr)
{
WhenFalse = WhenFalse->Resolve(ctx);
ABORT(WhenFalse);
}
ValueType = TypeVoid;
if (Condition->isConstant())
{
ExpVal condval = static_cast<FxConstant *>(Condition)->GetValue();
bool result = condval.GetBool();
FxExpression *e = result ? WhenTrue : WhenFalse;
delete (result ? WhenFalse : WhenTrue);
WhenTrue = WhenFalse = NULL;
if (e == NULL) e = new FxNop(ScriptPosition); // create a dummy if this statement gets completely removed by optimizing out the constant parts.
delete this;
return e;
}
return this;
}
ExpEmit FxIfStatement::Emit(VMFunctionBuilder *build)
{
ExpEmit v;
size_t jumpspot;
FxExpression *path1, *path2;
int condcheck;
// This is pretty much copied from FxConditional, except we don't
// keep any results.
ExpEmit cond = Condition->Emit(build);
assert(cond.RegType != REGT_STRING && !cond.Konst);
if (WhenTrue != NULL)
{
path1 = WhenTrue;
path2 = WhenFalse;
condcheck = 1;
}
else
{
// When there is only a false path, reverse the condition so we can
// treat it as a true path.
assert(WhenFalse != NULL);
path1 = WhenFalse;
path2 = NULL;
condcheck = 0;
}
// Test condition.
switch (cond.RegType)
{
default:
case REGT_INT:
build->Emit(OP_EQ_K, condcheck, cond.RegNum, build->GetConstantInt(0));
break;
case REGT_FLOAT:
build->Emit(OP_EQF_K, condcheck, cond.RegNum, build->GetConstantFloat(0));
break;
case REGT_POINTER:
build->Emit(OP_EQA_K, condcheck, cond.RegNum, build->GetConstantAddress(nullptr, ATAG_GENERIC));
break;
}
jumpspot = build->Emit(OP_JMP, 0);
cond.Free(build);
// Evaluate first path
v = path1->Emit(build);
v.Free(build);
if (path2 != NULL)
{
size_t path1jump = build->Emit(OP_JMP, 0);
// Evaluate second path
build->BackpatchToHere(jumpspot);
v = path2->Emit(build);
v.Free(build);
jumpspot = path1jump;
}
build->BackpatchToHere(jumpspot);
return ExpEmit();
}
//==========================================================================
//
// FxLoopStatement :: Resolve
//
// saves the loop pointer in the context and sets this object as the current loop
// so that continues and breaks always resolve to the innermost loop.
//
//==========================================================================
FxExpression *FxLoopStatement::Resolve(FCompileContext &ctx)
{
auto outer = ctx.Loop;
ctx.Loop = this;
auto x = DoResolve(ctx);
ctx.Loop = outer;
return x;
}
void FxLoopStatement::Backpatch(VMFunctionBuilder *build, size_t loopstart, size_t loopend)
{
// Give a proper address to any break/continue statement within this loop.
for (unsigned int i = 0; i < Jumps.Size(); i++)
{
if (Jumps[i]->Token == TK_Break)
{
build->Backpatch(Jumps[i]->Address, loopend);
}
else
{ // Continue statement.
build->Backpatch(Jumps[i]->Address, loopstart);
}
}
}
//==========================================================================
//
// FxWhileLoop
//
//==========================================================================
FxWhileLoop::FxWhileLoop(FxExpression *condition, FxExpression *code, const FScriptPosition &pos)
: FxLoopStatement(EFX_WhileLoop, pos), Condition(condition), Code(code)
{
ValueType = TypeVoid;
}
FxWhileLoop::~FxWhileLoop()
{
SAFE_DELETE(Condition);
SAFE_DELETE(Code);
}
FxExpression *FxWhileLoop::DoResolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(Condition, ctx);
SAFE_RESOLVE_OPT(Code, ctx);
if (Condition->ValueType != TypeBool)
{
Condition = new FxBoolCast(Condition);
SAFE_RESOLVE(Condition, ctx);
}
if (Condition->isConstant())
{
if (static_cast<FxConstant *>(Condition)->GetValue().GetBool() == false)
{ // Nothing happens
FxExpression *nop = new FxNop(ScriptPosition);
delete this;
return nop;
}
else if (Code == nullptr)
{ // "while (true) { }"
// Someone could be using this for testing.
ScriptPosition.Message(MSG_WARNING, "Infinite empty loop");
}
}
return this;
}
ExpEmit FxWhileLoop::Emit(VMFunctionBuilder *build)
{
assert(Condition->ValueType == TypeBool);
size_t loopstart, loopend;
size_t jumpspot;
// Evaluate the condition and execute/break out of the loop.
loopstart = build->GetAddress();
if (!Condition->isConstant())
{
ExpEmit cond = Condition->Emit(build);
build->Emit(OP_TEST, cond.RegNum, 0);
jumpspot = build->Emit(OP_JMP, 0);
cond.Free(build);
}
else assert(static_cast<FxConstant *>(Condition)->GetValue().GetBool() == true);
// Execute the loop's content.
if (Code != nullptr)
{
ExpEmit code = Code->Emit(build);
code.Free(build);
}
// Loop back.
build->Backpatch(build->Emit(OP_JMP, 0), loopstart);
loopend = build->GetAddress();
if (!Condition->isConstant())
{
build->Backpatch(jumpspot, loopend);
}
Backpatch(build, loopstart, loopend);
return ExpEmit();
}
//==========================================================================
//
// FxDoWhileLoop
//
//==========================================================================
FxDoWhileLoop::FxDoWhileLoop(FxExpression *condition, FxExpression *code, const FScriptPosition &pos)
: FxLoopStatement(EFX_DoWhileLoop, pos), Condition(condition), Code(code)
{
ValueType = TypeVoid;
}
FxDoWhileLoop::~FxDoWhileLoop()
{
SAFE_DELETE(Condition);
SAFE_DELETE(Code);
}
FxExpression *FxDoWhileLoop::DoResolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(Condition, ctx);
SAFE_RESOLVE_OPT(Code, ctx);
if (Condition->ValueType != TypeBool)
{
Condition = new FxBoolCast(Condition);
SAFE_RESOLVE(Condition, ctx);
}
if (Condition->isConstant())
{
if (static_cast<FxConstant *>(Condition)->GetValue().GetBool() == false)
{ // The code executes once, if any.
if (Jumps.Size() == 0)
{ // We would still have to handle the jumps however.
FxExpression *e = Code;
if (e == nullptr) e = new FxNop(ScriptPosition);
Code = nullptr;
delete this;
return e;
}
}
else if (Code == nullptr)
{ // "do { } while (true);"
// Someone could be using this for testing.
ScriptPosition.Message(MSG_WARNING, "Infinite empty loop");
}
}
return this;
}
ExpEmit FxDoWhileLoop::Emit(VMFunctionBuilder *build)
{
assert(Condition->ValueType == TypeBool);
size_t loopstart, loopend;
size_t codestart;
// Execute the loop's content.
codestart = build->GetAddress();
if (Code != nullptr)
{
ExpEmit code = Code->Emit(build);
code.Free(build);
}
// Evaluate the condition and execute/break out of the loop.
loopstart = build->GetAddress();
if (!Condition->isConstant())
{
ExpEmit cond = Condition->Emit(build);
build->Emit(OP_TEST, cond.RegNum, 1);
cond.Free(build);
build->Backpatch(build->Emit(OP_JMP, 0), codestart);
}
else if (static_cast<FxConstant *>(Condition)->GetValue().GetBool() == true)
{ // Always looping
build->Backpatch(build->Emit(OP_JMP, 0), codestart);
}
loopend = build->GetAddress();
Backpatch(build, loopstart, loopend);
return ExpEmit();
}
//==========================================================================
//
// FxForLoop
//
//==========================================================================
FxForLoop::FxForLoop(FxExpression *init, FxExpression *condition, FxExpression *iteration, FxExpression *code, const FScriptPosition &pos)
: FxLoopStatement(EFX_ForLoop, pos), Init(init), Condition(condition), Iteration(iteration), Code(code)
{
ValueType = TypeVoid;
}
FxForLoop::~FxForLoop()
{
SAFE_DELETE(Init);
SAFE_DELETE(Condition);
SAFE_DELETE(Iteration);
SAFE_DELETE(Code);
}
FxExpression *FxForLoop::DoResolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE_OPT(Init, ctx);
SAFE_RESOLVE_OPT(Condition, ctx);
SAFE_RESOLVE_OPT(Iteration, ctx);
SAFE_RESOLVE_OPT(Code, ctx);
if (Condition != nullptr)
{
if (Condition->ValueType != TypeBool)
{
Condition = new FxBoolCast(Condition);
SAFE_RESOLVE(Condition, ctx);
}
if (Condition->isConstant())
{
if (static_cast<FxConstant *>(Condition)->GetValue().GetBool() == false)
{ // Nothing happens
FxExpression *nop = new FxNop(ScriptPosition);
delete this;
return nop;
}
else
{ // "for (..; true; ..)"
delete Condition;
Condition = nullptr;
}
}
}
if (Condition == nullptr && Code == nullptr)
{ // "for (..; ; ..) { }"
// Someone could be using this for testing.
ScriptPosition.Message(MSG_WARNING, "Infinite empty loop");
}
return this;
}
ExpEmit FxForLoop::Emit(VMFunctionBuilder *build)
{
assert((Condition && Condition->ValueType == TypeBool && !Condition->isConstant()) || Condition == nullptr);
size_t loopstart, loopend;
size_t codestart;
size_t jumpspot;
// Init statement (only used by DECORATE. ZScript is pulling it before the loop statement and enclosing the entire loop in a compound statement so that Init can have local variables.)
if (Init != nullptr)
{
ExpEmit init = Init->Emit(build);
init.Free(build);
}
// Evaluate the condition and execute/break out of the loop.
codestart = build->GetAddress();
if (Condition != nullptr)
{
ExpEmit cond = Condition->Emit(build);
build->Emit(OP_TEST, cond.RegNum, 0);
cond.Free(build);
jumpspot = build->Emit(OP_JMP, 0);
}
// Execute the loop's content.
if (Code != nullptr)
{
ExpEmit code = Code->Emit(build);
code.Free(build);
}
// Iteration statement.
loopstart = build->GetAddress();
if (Iteration != nullptr)
{
ExpEmit iter = Iteration->Emit(build);
iter.Free(build);
}
build->Backpatch(build->Emit(OP_JMP, 0), codestart);
// End of loop.
loopend = build->GetAddress();
if (Condition != nullptr)
{
build->Backpatch(jumpspot, loopend);
}
Backpatch(build, loopstart, loopend);
return ExpEmit();
}
//==========================================================================
//
// FxJumpStatement
//
//==========================================================================
FxJumpStatement::FxJumpStatement(int token, const FScriptPosition &pos)
: FxExpression(EFX_JumpStatement, pos), Token(token)
{
ValueType = TypeVoid;
}
FxExpression *FxJumpStatement::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
if (ctx.Loop != nullptr)
{
ctx.Loop->Jumps.Push(this);
return this;
}
else
{
ScriptPosition.Message(MSG_ERROR, "'%s' outside of a loop", Token == TK_Break ? "break" : "continue");
delete this;
return nullptr;
}
}
ExpEmit FxJumpStatement::Emit(VMFunctionBuilder *build)
{
Address = build->Emit(OP_JMP, 0);
return ExpEmit();
}
//==========================================================================
//
//==========================================================================
FxReturnStatement::FxReturnStatement(FxExpression *value, const FScriptPosition &pos)
: FxExpression(EFX_ReturnStatement, pos), Value(value)
{
ValueType = TypeVoid;
}
FxReturnStatement::~FxReturnStatement()
{
SAFE_DELETE(Value);
}
FxExpression *FxReturnStatement::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE_OPT(Value, ctx);
PPrototype *retproto;
if (Value == nullptr)
{
TArray<PType *> none(0);
retproto = NewPrototype(none, none);
}
else
{
retproto = Value->ReturnProto();
}
ctx.CheckReturn(retproto, ScriptPosition);
return this;
}
ExpEmit FxReturnStatement::Emit(VMFunctionBuilder *build)
{
ExpEmit out(0, REGT_NIL);
// If we return nothing, use a regular RET opcode.
// Otherwise just return the value we're given.
if (Value == nullptr)
{
build->Emit(OP_RET, RET_FINAL, REGT_NIL, 0);
}
else
{
out = Value->Emit(build);
// Check if it is a function call that simplified itself
// into a tail call in which case we don't emit anything.
if (!out.Final)
{
if (Value->ValueType == TypeVoid)
{ // Nothing is returned.
build->Emit(OP_RET, RET_FINAL, REGT_NIL, 0);
}
else
{
build->Emit(OP_RET, RET_FINAL, out.RegType | (out.Konst ? REGT_KONST : 0), out.RegNum);
}
}
}
out.Final = true;
return out;
}
VMFunction *FxReturnStatement::GetDirectFunction()
{
if (Value != nullptr)
{
return Value->GetDirectFunction();
}
return nullptr;
}
//==========================================================================
//
//==========================================================================
FxClassTypeCast::FxClassTypeCast(PClassPointer *dtype, FxExpression *x)
: FxExpression(EFX_ClassTypeCast, x->ScriptPosition)
{
ValueType = dtype;
desttype = dtype->ClassRestriction;
basex=x;
}
//==========================================================================
//
//
//
//==========================================================================
FxClassTypeCast::~FxClassTypeCast()
{
SAFE_DELETE(basex);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxClassTypeCast::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(basex, ctx);
if (basex->ValueType == TypeNullPtr)
{
basex->ValueType = ValueType;
auto x = basex;
basex = nullptr;
delete this;
return x;
}
auto to = static_cast<PClassPointer *>(ValueType);
if (basex->ValueType->GetClass() == RUNTIME_CLASS(PClassPointer))
{
auto from = static_cast<PClassPointer *>(basex->ValueType);
if (from->ClassRestriction->IsDescendantOf(to->ClassRestriction))
{
basex->ValueType = to;
auto x = basex;
basex = nullptr;
delete this;
return x;
}
ScriptPosition.Message(MSG_ERROR, "Cannot convert from %s to %s: Incompatible class types", from->ClassRestriction->TypeName.GetChars(), to->ClassRestriction->TypeName.GetChars());
delete this;
return nullptr;
}
if (basex->ValueType != TypeName && basex->ValueType != TypeString)
{
ScriptPosition.Message(MSG_ERROR, "Cannot convert %s to class type", basex->ValueType->DescriptiveName());
delete this;
return NULL;
}
if (basex->isConstant())
{
FName clsname = static_cast<FxConstant *>(basex)->GetValue().GetName();
PClass *cls = NULL;
if (clsname != NAME_None)
{
cls = PClass::FindClass(clsname);
if (cls == NULL)
{
/* lax */
// Since this happens in released WADs it must pass without a terminal error... :(
ScriptPosition.Message(MSG_OPTERROR,
"Unknown class name '%s'",
clsname.GetChars(), desttype->TypeName.GetChars());
}
else
{
if (!cls->IsDescendantOf(desttype))
{
ScriptPosition.Message(MSG_ERROR, "class '%s' is not compatible with '%s'", clsname.GetChars(), desttype->TypeName.GetChars());
delete this;
return NULL;
}
ScriptPosition.Message(MSG_DEBUG, "resolving '%s' as class name", clsname.GetChars());
}
}
FxExpression *x = new FxConstant(cls, to, ScriptPosition);
delete this;
return x;
}
if (basex->ValueType == TypeString)
{
basex = new FxNameCast(basex);
}
return this;
}
//==========================================================================
//
//
//
//==========================================================================
int DecoNameToClass(VMFrameStack *stack, VMValue *param, int numparam, VMReturn *ret, int numret)
{
assert(numparam == 2);
assert(numret == 1);
assert(param[0].Type == REGT_INT);
assert(param[1].Type == REGT_POINTER);
assert(ret->RegType == REGT_POINTER);
FName clsname = ENamedName(param[0].i);
const PClass *cls = PClass::FindClass(clsname);
const PClass *desttype = reinterpret_cast<PClass *>(param[0].a);
if (!cls->IsDescendantOf(desttype))
{
Printf("class '%s' is not compatible with '%s'", clsname.GetChars(), desttype->TypeName.GetChars());
cls = NULL;
}
ret->SetPointer(const_cast<PClass *>(cls), ATAG_OBJECT);
return 1;
}
ExpEmit FxClassTypeCast::Emit(VMFunctionBuilder *build)
{
if (basex->ValueType != TypeName)
{
return ExpEmit(build->GetConstantAddress(NULL, ATAG_OBJECT), REGT_POINTER, true);
}
ExpEmit clsname = basex->Emit(build);
assert(!clsname.Konst);
ExpEmit dest(build, REGT_POINTER);
build->Emit(OP_PARAM, 0, clsname.RegType, clsname.RegNum);
build->Emit(OP_PARAM, 0, REGT_POINTER | REGT_KONST, build->GetConstantAddress(const_cast<PClass *>(desttype), ATAG_OBJECT));
// Call the DecoNameToClass function to convert from 'name' to class.
VMFunction *callfunc;
PSymbol *sym = FindDecorateBuiltinFunction(NAME_DecoNameToClass, DecoNameToClass);
assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolVMFunction)));
assert(((PSymbolVMFunction *)sym)->Function != NULL);
callfunc = ((PSymbolVMFunction *)sym)->Function;
build->Emit(OP_CALL_K, build->GetConstantAddress(callfunc, ATAG_OBJECT), 2, 1);
build->Emit(OP_RESULT, 0, REGT_POINTER, dest.RegNum);
clsname.Free(build);
return dest;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxStateByIndex::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
ABORT(ctx.Class);
auto aclass = dyn_cast<PClassActor>(ctx.Class);
// This expression type can only be used from DECORATE, so there's no need to consider the possibility of calling it from a non-actor.
assert(aclass != nullptr && aclass->NumOwnedStates > 0);
if (aclass->NumOwnedStates <= index)
{
ScriptPosition.Message(MSG_ERROR, "%s: Attempt to jump to non existing state index %d",
ctx.Class->TypeName.GetChars(), index);
delete this;
return NULL;
}
FxExpression *x = new FxConstant(aclass->OwnedStates + index, ScriptPosition);
delete this;
return x;
}
//==========================================================================
//
//
//
//==========================================================================
FxRuntimeStateIndex::FxRuntimeStateIndex(FxExpression *index)
: FxExpression(EFX_RuntimeStateIndex, index->ScriptPosition), Index(index)
{
EmitTail = false;
ValueType = TypeState;
}
FxRuntimeStateIndex::~FxRuntimeStateIndex()
{
SAFE_DELETE(Index);
}
PPrototype *FxRuntimeStateIndex::ReturnProto()
{
EmitTail = true;
return FxExpression::ReturnProto();
}
FxExpression *FxRuntimeStateIndex::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(Index, ctx);
if (!Index->IsNumeric())
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return nullptr;
}
else if (Index->ValueType->GetRegType() != REGT_INT)
{ // Float.
Index = new FxIntCast(Index, ctx.FromDecorate);
SAFE_RESOLVE(Index, ctx);
}
return this;
}
static bool VerifyJumpTarget(AActor *stateowner, FStateParamInfo *stateinfo, int index)
{
PClassActor *cls = stateowner->GetClass();
if (stateinfo->mCallingState != nullptr)
{
while (cls != RUNTIME_CLASS(AActor))
{
// both calling and target state need to belong to the same class.
if (cls->OwnsState(stateinfo->mCallingState))
{
return cls->OwnsState(stateinfo->mCallingState + index);
}
// We can safely assume the ParentClass is of type PClassActor
// since we stop when we see the Actor base class.
cls = static_cast<PClassActor *>(cls->ParentClass);
}
}
return false;
}
static int DecoHandleRuntimeState(VMFrameStack *stack, VMValue *param, int numparam, VMReturn *ret, int numret)
{
PARAM_PROLOGUE;
PARAM_OBJECT(stateowner, AActor);
PARAM_POINTER(stateinfo, FStateParamInfo);
PARAM_INT(index);
if (index == 0 || !VerifyJumpTarget(stateowner, stateinfo, index))
{
// Null is returned if the location was invalid which means that no jump will be performed
// if used as return value
// 0 always meant the same thing so we handle it here for compatibility
ACTION_RETURN_STATE(nullptr);
}
else
{
ACTION_RETURN_STATE(stateinfo->mCallingState + index);
}
}
ExpEmit FxRuntimeStateIndex::Emit(VMFunctionBuilder *build)
{
assert(build->IsActionFunc && build->Registers[REGT_POINTER].GetMostUsed() >= 3 &&
"FxRuntimeStateIndex is only valid inside action functions");
ExpEmit out(build, REGT_POINTER);
build->Emit(OP_PARAM, 0, REGT_POINTER, 1); // stateowner
build->Emit(OP_PARAM, 0, REGT_POINTER, 2); // stateinfo
ExpEmit id = Index->Emit(build);
build->Emit(OP_PARAM, 0, REGT_INT | (id.Konst ? REGT_KONST : 0), id.RegNum); // index
VMFunction *callfunc;
PSymbol *sym;
sym = FindDecorateBuiltinFunction(NAME_DecoHandleRuntimeState, DecoHandleRuntimeState);
assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolVMFunction)));
assert(((PSymbolVMFunction *)sym)->Function != nullptr);
callfunc = ((PSymbolVMFunction *)sym)->Function;
if (EmitTail)
{
build->Emit(OP_TAIL_K, build->GetConstantAddress(callfunc, ATAG_OBJECT), 3, 1);
out.Final = true;
}
else
{
build->Emit(OP_CALL_K, build->GetConstantAddress(callfunc, ATAG_OBJECT), 3, 1);
build->Emit(OP_RESULT, 0, REGT_POINTER, out.RegNum);
}
return out;
}
//==========================================================================
//
//
//
//==========================================================================
FxMultiNameState::FxMultiNameState(const char *_statestring, const FScriptPosition &pos)
:FxExpression(EFX_MultiNameState, pos)
{
FName scopename;
FString statestring = _statestring;
int scopeindex = statestring.IndexOf("::");
if (scopeindex >= 0)
{
scopename = FName(statestring, scopeindex, false);
statestring = statestring.Right(statestring.Len() - scopeindex - 2);
}
else
{
scopename = NAME_None;
}
names = MakeStateNameList(statestring);
names.Insert(0, scopename);
scope = NULL;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxMultiNameState::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
ABORT(ctx.Class);
if (names[0] == NAME_None)
{
scope = NULL;
}
else if (names[0] == NAME_Super)
{
scope = dyn_cast<PClassActor>(ctx.Class->ParentClass);
}
else
{
scope = PClass::FindActor(names[0]);
if (scope == NULL)
{
ScriptPosition.Message(MSG_ERROR, "Unknown class '%s' in state label", names[0].GetChars());
delete this;
return NULL;
}
else if (!scope->IsAncestorOf(ctx.Class))
{
ScriptPosition.Message(MSG_ERROR, "'%s' is not an ancestor of '%s'", names[0].GetChars(), ctx.Class->TypeName.GetChars());
delete this;
return NULL;
}
}
if (scope != NULL)
{
FState *destination = NULL;
// If the label is class specific we can resolve it right here
if (names[1] != NAME_None)
{
destination = scope->FindState(names.Size()-1, &names[1], false);
if (destination == NULL)
{
ScriptPosition.Message(MSG_OPTERROR, "Unknown state jump destination");
/* lax */
return this;
}
}
FxExpression *x = new FxConstant(destination, ScriptPosition);
delete this;
return x;
}
names.Delete(0);
names.ShrinkToFit();
ValueType = TypeState;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
static int DoFindState(VMFrameStack *stack, VMValue *param, int numparam, VMReturn *ret, FName *names, int numnames)
{
PARAM_OBJECT_AT(0, self, AActor);
FState *state = self->GetClass()->FindState(numparam - 1, names);
if (state == NULL)
{
const char *dot = "";
Printf("Jump target '");
for (int i = 0; i < numparam - 1; i++)
{
Printf("%s%s", dot, names[i].GetChars());
dot = ".";
}
Printf("' not found in %s\n", self->GetClass()->TypeName.GetChars());
}
ret->SetPointer(state, ATAG_STATE);
return 1;
}
// Find a state with any number of dots in its name.
int BuiltinFindMultiNameState(VMFrameStack *stack, VMValue *param, int numparam, VMReturn *ret, int numret)
{
assert(numparam > 1);
assert(numret == 1);
assert(ret->RegType == REGT_POINTER);
FName *names = (FName *)alloca((numparam - 1) * sizeof(FName));
for (int i = 1; i < numparam; ++i)
{
PARAM_NAME_AT(i, zaname);
names[i - 1] = zaname;
}
return DoFindState(stack, param, numparam, ret, names, numparam - 1);
}
// Find a state without any dots in its name.
int BuiltinFindSingleNameState(VMFrameStack *stack, VMValue *param, int numparam, VMReturn *ret, int numret)
{
assert(numparam == 2);
assert(numret == 1);
assert(ret->RegType == REGT_POINTER);
PARAM_NAME_AT(1, zaname);
return DoFindState(stack, param, numparam, ret, &zaname, 1);
}
ExpEmit FxMultiNameState::Emit(VMFunctionBuilder *build)
{
ExpEmit dest(build, REGT_POINTER);
if (build->IsActionFunc)
{
build->Emit(OP_PARAM, 0, REGT_POINTER, 1); // pass stateowner
}
else
{
build->Emit(OP_PARAM, 0, REGT_POINTER, 0); // pass self
}
for (unsigned i = 0; i < names.Size(); ++i)
{
build->EmitParamInt(names[i]);
}
// For one name, use the BuiltinFindSingleNameState function. For more than
// one name, use the BuiltinFindMultiNameState function.
VMFunction *callfunc;
PSymbol *sym;
if (names.Size() == 1)
{
sym = FindDecorateBuiltinFunction(NAME_BuiltinFindSingleNameState, BuiltinFindSingleNameState);
}
else
{
sym = FindDecorateBuiltinFunction(NAME_BuiltinFindMultiNameState, BuiltinFindMultiNameState);
}
assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolVMFunction)));
assert(((PSymbolVMFunction *)sym)->Function != NULL);
callfunc = ((PSymbolVMFunction *)sym)->Function;
build->Emit(OP_CALL_K, build->GetConstantAddress(callfunc, ATAG_OBJECT), names.Size() + 1, 1);
build->Emit(OP_RESULT, 0, REGT_POINTER, dest.RegNum);
return dest;
}
//==========================================================================
//
//
//
//==========================================================================
FxDamageValue::FxDamageValue(FxExpression *v)
: FxExpression(EFX_DamageValue, v->ScriptPosition)
{
val = v;
ValueType = TypeVoid;
}
FxDamageValue::~FxDamageValue()
{
SAFE_DELETE(val);
}
FxExpression *FxDamageValue::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(val, ctx)
if (!val->IsNumeric())
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
return this;
}
// This is a highly-specialized "expression" type that emits a complete function.
ExpEmit FxDamageValue::Emit(VMFunctionBuilder *build)
{
if (val->isConstant())
{
build->EmitRetInt(0, false, static_cast<FxConstant *>(val)->GetValue().Int);
}
else
{
ExpEmit emitval = val->Emit(build);
assert(emitval.RegType == REGT_INT);
build->Emit(OP_RET, 0, REGT_INT | (emitval.Konst ? REGT_KONST : 0), emitval.RegNum);
}
build->Emit(OP_RETI, 1 | RET_FINAL, true);
return ExpEmit();
}
//==========================================================================
//
// declares a single local variable (no arrays)
//
//==========================================================================
FxLocalVariableDeclaration::FxLocalVariableDeclaration(PType *type, FName name, FxExpression *initval, int varflags, const FScriptPosition &p)
:FxExpression(EFX_LocalVariableDeclaration, p)
{
ValueType = type;
VarFlags = varflags;
Name = name;
Init = initval == nullptr? nullptr : new FxTypeCast(initval, type, false);
}
FxExpression *FxLocalVariableDeclaration::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE_OPT(Init, ctx);
if (ctx.Block == nullptr)
{
ScriptPosition.Message(MSG_ERROR, "Variable declaration outside compound statement");
delete this;
return nullptr;
}
ctx.Block->LocalVars.Push(this);
return this;
}
ExpEmit FxLocalVariableDeclaration::Emit(VMFunctionBuilder *build)
{
if (Init == nullptr)
{
RegNum = build->Registers[ValueType->GetRegType()].Get(1);
}
else
{
ExpEmit emitval = Init->Emit(build);
int regtype = emitval.RegType;
if (regtype < REGT_INT || regtype > REGT_TYPE)
{
ScriptPosition.Message(MSG_ERROR, "Attempted to assign a non-value");
return ExpEmit();
}
if (emitval.Konst)
{
auto constval = static_cast<FxConstant *>(Init);
RegNum = build->Registers[regtype].Get(1);
switch (regtype)
{
default:
case REGT_INT:
build->Emit(OP_LK, build->GetConstantInt(constval->GetValue().GetInt()), RegNum);
break;
case REGT_FLOAT:
build->Emit(OP_LKF, build->GetConstantFloat(constval->GetValue().GetFloat()), RegNum);
break;
case REGT_POINTER:
build->Emit(OP_LKP, build->GetConstantAddress(constval->GetValue().GetPointer(), ATAG_GENERIC), RegNum);
break;
case REGT_STRING:
build->Emit(OP_LKS, build->GetConstantString(constval->GetValue().GetString()), RegNum);
}
emitval.Free(build);
}
else
{
// take over the register that got allocated while emitting the Init expression.
RegNum = emitval.RegNum;
}
}
return ExpEmit();
}
void FxLocalVariableDeclaration::Release(VMFunctionBuilder *build)
{
// Release the register after the containing block gets closed
assert(RegNum != -1);
build->Registers[ValueType->GetRegType()].Return(RegNum, 1);
}