qzdoom/src/p_sectors.cpp
Christoph Oelckers de6969997a - scriptified Hexen's flies.
A few notes:

 * this accesses the lines array in sector_t which effectively is a pointer to an array of pointers - a type the parser can not represent. The compiler has no problems with it, so for now it is defined internally.
 * array sizes were limited to 65536 entries because the 'bound' instruction only existed as an immediate version with no provisions for larger values. For the static map arrays 65536 is not sufficient so now there are alternative instructions for these cases.
 * despite the above, at the moment there is no proper bounds checking for arrays that have no fixed size. To do this, a lot more work is needed. The type system as-is is not prepared for such a scenario.
2016-11-27 18:52:24 +01:00

1328 lines
32 KiB
C++

// Emacs style mode select -*- C++ -*-
//-----------------------------------------------------------------------------
//
// $Id:$
//
// Copyright (C) 1993-1996 by id Software, Inc.
//
// This source is available for distribution and/or modification
// only under the terms of the DOOM Source Code License as
// published by id Software. All rights reserved.
//
// The source is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// FITNESS FOR A PARTICULAR PURPOSE. See the DOOM Source Code License
// for more details.
//
// $Log:$
//
// DESCRIPTION:
// Sector utility functions.
//
//-----------------------------------------------------------------------------
#include "p_spec.h"
#include "c_cvars.h"
#include "doomstat.h"
#include "g_level.h"
#include "nodebuild.h"
#include "p_terrain.h"
#include "po_man.h"
#include "serializer.h"
#include "r_utility.h"
#include "a_sharedglobal.h"
#include "p_local.h"
#include "r_sky.h"
#include "r_data/colormaps.h"
// [RH]
// P_NextSpecialSector()
//
// Returns the next special sector attached to this sector
// with a certain special.
sector_t *sector_t::NextSpecialSector (int type, sector_t *nogood) const
{
sector_t *tsec;
int i;
for (i = 0; i < linecount; i++)
{
line_t *ln = lines[i];
if (NULL != (tsec = getNextSector (ln, this)) &&
tsec != nogood &&
tsec->special == type)
{
return tsec;
}
}
return NULL;
}
//
// P_FindLowestFloorSurrounding()
// FIND LOWEST FLOOR HEIGHT IN SURROUNDING SECTORS
//
double sector_t::FindLowestFloorSurrounding (vertex_t **v) const
{
int i;
sector_t *other;
line_t *check;
double floor;
double ofloor;
vertex_t *spot;
if (linecount == 0) return GetPlaneTexZ(sector_t::floor);
spot = lines[0]->v1;
floor = floorplane.ZatPoint(spot);
for (i = 0; i < linecount; i++)
{
check = lines[i];
if (NULL != (other = getNextSector (check, this)))
{
ofloor = other->floorplane.ZatPoint (check->v1);
if (ofloor < floor && ofloor < floorplane.ZatPoint (check->v1))
{
floor = ofloor;
spot = check->v1;
}
ofloor = other->floorplane.ZatPoint (check->v2);
if (ofloor < floor && ofloor < floorplane.ZatPoint (check->v2))
{
floor = ofloor;
spot = check->v2;
}
}
}
if (v != NULL)
*v = spot;
return floor;
}
//
// P_FindHighestFloorSurrounding()
// FIND HIGHEST FLOOR HEIGHT IN SURROUNDING SECTORS
//
double sector_t::FindHighestFloorSurrounding (vertex_t **v) const
{
int i;
line_t *check;
sector_t *other;
double floor;
double ofloor;
vertex_t *spot;
if (linecount == 0) return GetPlaneTexZ(sector_t::floor);
spot = lines[0]->v1;
floor = -FLT_MAX;
for (i = 0; i < linecount; i++)
{
check = lines[i];
if (NULL != (other = getNextSector (check, this)))
{
ofloor = other->floorplane.ZatPoint (check->v1);
if (ofloor > floor)
{
floor = ofloor;
spot = check->v1;
}
ofloor = other->floorplane.ZatPoint (check->v2);
if (ofloor > floor)
{
floor = ofloor;
spot = check->v2;
}
}
}
if (v != NULL)
*v = spot;
return floor;
}
//
// P_FindNextHighestFloor()
//
// Passed a sector and a floor height, returns the fixed point value
// of the smallest floor height in a surrounding sector larger than
// the floor height passed. If no such height exists the floorheight
// passed is returned.
//
// Rewritten by Lee Killough to avoid fixed array and to be faster
//
double sector_t::FindNextHighestFloor (vertex_t **v) const
{
double height;
double heightdiff;
double ofloor, floor;
sector_t *other;
vertex_t *spot;
line_t *check;
int i;
if (linecount == 0) return GetPlaneTexZ(sector_t::floor);
spot = lines[0]->v1;
height = floorplane.ZatPoint(spot);
heightdiff = FLT_MAX;
for (i = 0; i < linecount; i++)
{
check = lines[i];
if (NULL != (other = getNextSector (check, this)))
{
ofloor = other->floorplane.ZatPoint (check->v1);
floor = floorplane.ZatPoint (check->v1);
if (ofloor > floor && ofloor - floor < heightdiff && !IsLinked(other, false))
{
heightdiff = ofloor - floor;
height = ofloor;
spot = check->v1;
}
ofloor = other->floorplane.ZatPoint (check->v2);
floor = floorplane.ZatPoint (check->v2);
if (ofloor > floor && ofloor - floor < heightdiff && !IsLinked(other, false))
{
heightdiff = ofloor - floor;
height = ofloor;
spot = check->v2;
}
}
}
if (v != NULL)
*v = spot;
return height;
}
//
// P_FindNextLowestFloor()
//
// Passed a sector and a floor height, returns the fixed point value
// of the largest floor height in a surrounding sector smaller than
// the floor height passed. If no such height exists the floorheight
// passed is returned.
//
// jff 02/03/98 Twiddled Lee's P_FindNextHighestFloor to make this
//
double sector_t::FindNextLowestFloor (vertex_t **v) const
{
double height;
double heightdiff;
double ofloor, floor;
sector_t *other;
vertex_t *spot;
line_t *check;
int i;
if (linecount == 0) return GetPlaneTexZ(sector_t::floor);
spot = lines[0]->v1;
height = floorplane.ZatPoint (spot);
heightdiff = FLT_MAX;
for (i = 0; i < linecount; i++)
{
check = lines[i];
if (NULL != (other = getNextSector (check, this)))
{
ofloor = other->floorplane.ZatPoint (check->v1);
floor = floorplane.ZatPoint (check->v1);
if (ofloor < floor && floor - ofloor < heightdiff && !IsLinked(other, false))
{
heightdiff = floor - ofloor;
height = ofloor;
spot = check->v1;
}
ofloor = other->floorplane.ZatPoint (check->v2);
floor = floorplane.ZatPoint(check->v2);
if (ofloor < floor && floor - ofloor < heightdiff && !IsLinked(other, false))
{
heightdiff = floor - ofloor;
height = ofloor;
spot = check->v2;
}
}
}
if (v != NULL)
*v = spot;
return height;
}
//
// P_FindNextLowestCeiling()
//
// Passed a sector and a ceiling height, returns the fixed point value
// of the largest ceiling height in a surrounding sector smaller than
// the ceiling height passed. If no such height exists the ceiling height
// passed is returned.
//
// jff 02/03/98 Twiddled Lee's P_FindNextHighestFloor to make this
//
double sector_t::FindNextLowestCeiling (vertex_t **v) const
{
double height;
double heightdiff;
double oceil, ceil;
sector_t *other;
vertex_t *spot;
line_t *check;
int i;
if (linecount == 0) return GetPlaneTexZ(sector_t::ceiling);
spot = lines[0]->v1;
height = ceilingplane.ZatPoint(spot);
heightdiff = FLT_MAX;
for (i = 0; i < linecount; i++)
{
check = lines[i];
if (NULL != (other = getNextSector (check, this)))
{
oceil = other->ceilingplane.ZatPoint(check->v1);
ceil = ceilingplane.ZatPoint(check->v1);
if (oceil < ceil && ceil - oceil < heightdiff && !IsLinked(other, true))
{
heightdiff = ceil - oceil;
height = oceil;
spot = check->v1;
}
oceil = other->ceilingplane.ZatPoint(check->v2);
ceil = ceilingplane.ZatPoint(check->v2);
if (oceil < ceil && ceil - oceil < heightdiff && !IsLinked(other, true))
{
heightdiff = ceil - oceil;
height = oceil;
spot = check->v2;
}
}
}
if (v != NULL)
*v = spot;
return height;
}
//
// P_FindNextHighestCeiling()
//
// Passed a sector and a ceiling height, returns the fixed point value
// of the smallest ceiling height in a surrounding sector larger than
// the ceiling height passed. If no such height exists the ceiling height
// passed is returned.
//
// jff 02/03/98 Twiddled Lee's P_FindNextHighestFloor to make this
//
double sector_t::FindNextHighestCeiling (vertex_t **v) const
{
double height;
double heightdiff;
double oceil, ceil;
sector_t *other;
vertex_t *spot;
line_t *check;
int i;
if (linecount == 0) return GetPlaneTexZ(sector_t::ceiling);
spot = lines[0]->v1;
height = ceilingplane.ZatPoint(spot);
heightdiff = FLT_MAX;
for (i = 0; i < linecount; i++)
{
check = lines[i];
if (NULL != (other = getNextSector (check, this)))
{
oceil = other->ceilingplane.ZatPoint(check->v1);
ceil = ceilingplane.ZatPoint(check->v1);
if (oceil > ceil && oceil - ceil < heightdiff && !IsLinked(other, true))
{
heightdiff = oceil - ceil;
height = oceil;
spot = check->v1;
}
oceil = other->ceilingplane.ZatPoint(check->v2);
ceil = ceilingplane.ZatPoint(check->v2);
if (oceil > ceil && oceil - ceil < heightdiff && !IsLinked(other, true))
{
heightdiff = oceil - ceil;
height = oceil;
spot = check->v2;
}
}
}
if (v != NULL)
*v = spot;
return height;
}
//
// FIND LOWEST CEILING IN THE SURROUNDING SECTORS
//
double sector_t::FindLowestCeilingSurrounding (vertex_t **v) const
{
double height;
double oceil;
sector_t *other;
vertex_t *spot;
line_t *check;
int i;
if (linecount == 0) return GetPlaneTexZ(sector_t::ceiling);
spot = lines[0]->v1;
height = FLT_MAX;
for (i = 0; i < linecount; i++)
{
check = lines[i];
if (NULL != (other = getNextSector (check, this)))
{
oceil = other->ceilingplane.ZatPoint(check->v1);
if (oceil < height)
{
height = oceil;
spot = check->v1;
}
oceil = other->ceilingplane.ZatPoint(check->v2);
if (oceil < height)
{
height = oceil;
spot = check->v2;
}
}
}
if (v != NULL)
*v = spot;
return height;
}
//
// FIND HIGHEST CEILING IN THE SURROUNDING SECTORS
//
double sector_t::FindHighestCeilingSurrounding (vertex_t **v) const
{
double height;
double oceil;
sector_t *other;
vertex_t *spot;
line_t *check;
int i;
if (linecount == 0) return GetPlaneTexZ(sector_t::ceiling);
spot = lines[0]->v1;
height = -FLT_MAX;
for (i = 0; i < linecount; i++)
{
check = lines[i];
if (NULL != (other = getNextSector (check, this)))
{
oceil = other->ceilingplane.ZatPoint(check->v1);
if (oceil > height)
{
height = oceil;
spot = check->v1;
}
oceil = other->ceilingplane.ZatPoint(check->v2);
if (oceil > height)
{
height = oceil;
spot = check->v2;
}
}
}
if (v != NULL)
*v = spot;
return height;
}
//
// P_FindShortestTextureAround()
//
// Passed a sector number, returns the shortest lower texture on a
// linedef bounding the sector.
//
// jff 02/03/98 Add routine to find shortest lower texture
//
static inline void CheckShortestTex (FTextureID texnum, double &minsize)
{
if (texnum.isValid() || (texnum.isNull() && (i_compatflags & COMPATF_SHORTTEX)))
{
FTexture *tex = TexMan[texnum];
if (tex != NULL)
{
double h = tex->GetScaledHeight();
if (h < minsize)
{
minsize = h;
}
}
}
}
double sector_t::FindShortestTextureAround () const
{
double minsize = FLT_MAX;
for (int i = 0; i < linecount; i++)
{
if (lines[i]->flags & ML_TWOSIDED)
{
CheckShortestTex (lines[i]->sidedef[0]->GetTexture(side_t::bottom), minsize);
CheckShortestTex (lines[i]->sidedef[1]->GetTexture(side_t::bottom), minsize);
}
}
return minsize < FLT_MAX ? minsize : TexMan[0]->GetHeight();
}
//
// P_FindShortestUpperAround()
//
// Passed a sector number, returns the shortest upper texture on a
// linedef bounding the sector.
//
// Note: If no upper texture exists MAXINT is returned.
//
// jff 03/20/98 Add routine to find shortest upper texture
//
double sector_t::FindShortestUpperAround () const
{
double minsize = FLT_MAX;
for (int i = 0; i < linecount; i++)
{
if (lines[i]->flags & ML_TWOSIDED)
{
CheckShortestTex (lines[i]->sidedef[0]->GetTexture(side_t::top), minsize);
CheckShortestTex (lines[i]->sidedef[1]->GetTexture(side_t::top), minsize);
}
}
return minsize < FLT_MAX ? minsize : TexMan[0]->GetHeight();
}
//
// P_FindModelFloorSector()
//
// Passed a floor height and a sector number, return a pointer to a
// a sector with that floor height across the lowest numbered two sided
// line surrounding the sector.
//
// Note: If no sector at that height bounds the sector passed, return NULL
//
// jff 02/03/98 Add routine to find numeric model floor
// around a sector specified by sector number
// jff 3/14/98 change first parameter to plain height to allow call
// from routine not using floormove_t
//
sector_t *sector_t::FindModelFloorSector (double floordestheight) const
{
int i;
sector_t *sec;
//jff 5/23/98 don't disturb sec->linecount while searching
// but allow early exit in old demos
for (i = 0; i < linecount; i++)
{
sec = getNextSector (lines[i], this);
if (sec != NULL &&
(sec->floorplane.ZatPoint(lines[i]->v1) == floordestheight ||
sec->floorplane.ZatPoint(lines[i]->v2) == floordestheight))
{
return sec;
}
}
return NULL;
}
//
// P_FindModelCeilingSector()
//
// Passed a ceiling height and a sector number, return a pointer to a
// a sector with that ceiling height across the lowest numbered two sided
// line surrounding the sector.
//
// Note: If no sector at that height bounds the sector passed, return NULL
//
// jff 02/03/98 Add routine to find numeric model ceiling
// around a sector specified by sector number
// used only from generalized ceiling types
// jff 3/14/98 change first parameter to plain height to allow call
// from routine not using ceiling_t
//
sector_t *sector_t::FindModelCeilingSector (double floordestheight) const
{
int i;
sector_t *sec;
//jff 5/23/98 don't disturb sec->linecount while searching
// but allow early exit in old demos
for (i = 0; i < linecount; i++)
{
sec = getNextSector (lines[i], this);
if (sec != NULL &&
(sec->ceilingplane.ZatPoint(lines[i]->v1) == floordestheight ||
sec->ceilingplane.ZatPoint(lines[i]->v2) == floordestheight))
{
return sec;
}
}
return NULL;
}
//
// Find minimum light from an adjacent sector
//
int sector_t::FindMinSurroundingLight (int min) const
{
int i;
line_t* line;
sector_t* check;
for (i = 0; i < linecount; i++)
{
line = lines[i];
if (NULL != (check = getNextSector (line, this)) &&
check->lightlevel < min)
{
min = check->lightlevel;
}
}
return min;
}
//
// Find the highest point on the floor of the sector
//
double sector_t::FindHighestFloorPoint (vertex_t **v) const
{
int i;
line_t *line;
double height = -FLT_MAX;
double probeheight;
vertex_t *spot = NULL;
if (!floorplane.isSlope())
{
if (v != NULL)
{
if (linecount == 0) *v = &vertexes[0];
else *v = lines[0]->v1;
}
return -floorplane.fD();
}
for (i = 0; i < linecount; i++)
{
line = lines[i];
probeheight = floorplane.ZatPoint(line->v1);
if (probeheight > height)
{
height = probeheight;
spot = line->v1;
}
probeheight = floorplane.ZatPoint(line->v2);
if (probeheight > height)
{
height = probeheight;
spot = line->v2;
}
}
if (v != NULL)
*v = spot;
return height;
}
//
// Find the lowest point on the ceiling of the sector
//
double sector_t::FindLowestCeilingPoint (vertex_t **v) const
{
int i;
line_t *line;
double height = FLT_MAX;
double probeheight;
vertex_t *spot = NULL;
if (!ceilingplane.isSlope())
{
if (v != NULL)
{
if (linecount == 0) *v = &vertexes[0];
else *v = lines[0]->v1;
}
return ceilingplane.fD();
}
for (i = 0; i < linecount; i++)
{
line = lines[i];
probeheight = ceilingplane.ZatPoint(line->v1);
if (probeheight < height)
{
height = probeheight;
spot = line->v1;
}
probeheight = ceilingplane.ZatPoint(line->v2);
if (probeheight < height)
{
height = probeheight;
spot = line->v2;
}
}
if (v != NULL)
*v = spot;
return height;
}
void sector_t::SetColor(int r, int g, int b, int desat)
{
PalEntry color = PalEntry (r,g,b);
ColorMap = GetSpecialLights (color, ColorMap->Fade, desat);
P_RecalculateAttachedLights(this);
}
void sector_t::SetFade(int r, int g, int b)
{
PalEntry fade = PalEntry (r,g,b);
ColorMap = GetSpecialLights (ColorMap->Color, fade, ColorMap->Desaturate);
P_RecalculateAttachedLights(this);
}
//===========================================================================
//
// sector_t :: ClosestPoint
//
// Given a point (x,y), returns the point (ox,oy) on the sector's defining
// lines that is nearest to (x,y).
//
//===========================================================================
void sector_t::ClosestPoint(const DVector2 &in, DVector2 &out) const
{
int i;
double x = in.X, y = in.Y;
double bestdist = HUGE_VAL;
double bestx = 0, besty = 0;
for (i = 0; i < linecount; ++i)
{
vertex_t *v1 = lines[i]->v1;
vertex_t *v2 = lines[i]->v2;
double a = v2->fX() - v1->fX();
double b = v2->fY() - v1->fY();
double den = a*a + b*b;
double ix, iy, dist;
if (den == 0)
{ // Line is actually a point!
ix = v1->fX();
iy = v1->fY();
}
else
{
double num = (x - v1->fX()) * a + (y - v1->fY()) * b;
double u = num / den;
if (u <= 0)
{
ix = v1->fX();
iy = v1->fY();
}
else if (u >= 1)
{
ix = v2->fX();
iy = v2->fY();
}
else
{
ix = v1->fX() + u * a;
iy = v1->fY() + u * b;
}
}
a = (ix - x);
b = (iy - y);
dist = a*a + b*b;
if (dist < bestdist)
{
bestdist = dist;
bestx = ix;
besty = iy;
}
}
out = { bestx, besty };
}
bool sector_t::PlaneMoving(int pos)
{
if (pos == floor)
return (floordata != NULL || (planes[floor].Flags & PLANEF_BLOCKED));
else
return (ceilingdata != NULL || (planes[ceiling].Flags & PLANEF_BLOCKED));
}
int sector_t::GetFloorLight () const
{
if (GetFlags(sector_t::floor) & PLANEF_ABSLIGHTING)
{
return GetPlaneLight(floor);
}
else
{
return ClampLight(lightlevel + GetPlaneLight(floor));
}
}
int sector_t::GetCeilingLight () const
{
if (GetFlags(ceiling) & PLANEF_ABSLIGHTING)
{
return GetPlaneLight(ceiling);
}
else
{
return ClampLight(lightlevel + GetPlaneLight(ceiling));
}
}
FSectorPortal *sector_t::ValidatePortal(int which)
{
FSectorPortal *port = GetPortal(which);
if (port->mType == PORTS_SKYVIEWPOINT && port->mSkybox == nullptr) return nullptr; // A skybox without a viewpoint is just a regular sky.
if (PortalBlocksView(which)) return nullptr; // disabled or obstructed linked portal.
if ((port->mFlags & PORTSF_SKYFLATONLY) && GetTexture(which) != skyflatnum) return nullptr; // Skybox without skyflat texture
return port;
}
sector_t *sector_t::GetHeightSec() const
{
if (heightsec == NULL)
{
return NULL;
}
if (heightsec->MoreFlags & SECF_IGNOREHEIGHTSEC)
{
return NULL;
}
if (e && e->XFloor.ffloors.Size())
{
// If any of these fake floors render their planes, ignore heightsec.
for (unsigned i = e->XFloor.ffloors.Size(); i-- > 0; )
{
if ((e->XFloor.ffloors[i]->flags & (FF_EXISTS | FF_RENDERPLANES)) == (FF_EXISTS | FF_RENDERPLANES))
{
return NULL;
}
}
}
return heightsec;
}
void sector_t::GetSpecial(secspecial_t *spec)
{
spec->special = special;
spec->damageamount = damageamount;
spec->damagetype = damagetype;
spec->damageinterval = damageinterval;
spec->leakydamage = leakydamage;
spec->Flags = Flags & SECF_SPECIALFLAGS;
}
void sector_t::SetSpecial(const secspecial_t *spec)
{
special = spec->special;
damageamount = spec->damageamount;
damagetype = spec->damagetype;
damageinterval = spec->damageinterval;
leakydamage = spec->leakydamage;
Flags = (Flags & ~SECF_SPECIALFLAGS) | (spec->Flags & SECF_SPECIALFLAGS);
}
void sector_t::TransferSpecial(sector_t *model)
{
special = model->special;
damageamount = model->damageamount;
damagetype = model->damagetype;
damageinterval = model->damageinterval;
leakydamage = model->leakydamage;
Flags = (Flags&~SECF_SPECIALFLAGS) | (model->Flags & SECF_SPECIALFLAGS);
}
int sector_t::GetTerrain(int pos) const
{
return terrainnum[pos] >= 0 ? terrainnum[pos] : TerrainTypes[GetTexture(pos)];
}
void sector_t::CheckPortalPlane(int plane)
{
if (GetPortalType(plane) == PORTS_LINKEDPORTAL)
{
double portalh = GetPortalPlaneZ(plane);
double planeh = GetPlaneTexZ(plane);
int obstructed = PLANEF_OBSTRUCTED * (plane == sector_t::floor ? planeh > portalh : planeh < portalh);
planes[plane].Flags = (planes[plane].Flags & ~PLANEF_OBSTRUCTED) | obstructed;
}
}
//===========================================================================
//
// Finds the highest ceiling at the given position, all portals considered
//
//===========================================================================
double sector_t::HighestCeilingAt(const DVector2 &p, sector_t **resultsec)
{
sector_t *check = this;
double planeheight = -FLT_MAX;
DVector2 pos = p;
// Continue until we find a blocking portal or a portal below where we actually are.
while (!check->PortalBlocksMovement(ceiling) && planeheight < check->GetPortalPlaneZ(ceiling))
{
pos += check->GetPortalDisplacement(ceiling);
planeheight = check->GetPortalPlaneZ(ceiling);
check = P_PointInSector(pos);
}
if (resultsec) *resultsec = check;
return check->ceilingplane.ZatPoint(pos);
}
//===========================================================================
//
// Finds the lowest floor at the given position, all portals considered
//
//===========================================================================
double sector_t::LowestFloorAt(const DVector2 &p, sector_t **resultsec)
{
sector_t *check = this;
double planeheight = FLT_MAX;
DVector2 pos = p;
// Continue until we find a blocking portal or a portal above where we actually are.
while (!check->PortalBlocksMovement(floor) && planeheight > check->GetPortalPlaneZ(floor))
{
pos += check->GetPortalDisplacement(floor);
planeheight = check->GetPortalPlaneZ(ceiling);
check = P_PointInSector(pos);
}
if (resultsec) *resultsec = check;
return check->floorplane.ZatPoint(pos);
}
double sector_t::NextHighestCeilingAt(double x, double y, double bottomz, double topz, int flags, sector_t **resultsec, F3DFloor **resultffloor)
{
sector_t *sec = this;
double planeheight = -FLT_MAX;
while (true)
{
// Looking through planes from bottom to top
double realceil = sec->ceilingplane.ZatPoint(x, y);
for (int i = sec->e->XFloor.ffloors.Size() - 1; i >= 0; --i)
{
F3DFloor *rover = sec->e->XFloor.ffloors[i];
if (!(rover->flags & FF_SOLID) || !(rover->flags & FF_EXISTS)) continue;
double ff_bottom = rover->bottom.plane->ZatPoint(x, y);
double ff_top = rover->top.plane->ZatPoint(x, y);
double delta1 = bottomz - (ff_bottom + ((ff_top - ff_bottom) / 2));
double delta2 = topz - (ff_bottom + ((ff_top - ff_bottom) / 2));
if (ff_bottom < realceil && fabs(delta1) > fabs(delta2))
{
if (resultsec) *resultsec = sec;
if (resultffloor) *resultffloor = rover;
return ff_bottom;
}
}
if ((flags & FFCF_NOPORTALS) || sec->PortalBlocksMovement(ceiling) || planeheight >= sec->GetPortalPlaneZ(ceiling))
{ // Use sector's ceiling
if (resultffloor) *resultffloor = NULL;
if (resultsec) *resultsec = sec;
return realceil;
}
else
{
DVector2 pos = sec->GetPortalDisplacement(ceiling);
x += pos.X;
y += pos.Y;
planeheight = sec->GetPortalPlaneZ(ceiling);
sec = P_PointInSector(x, y);
}
}
}
DEFINE_ACTION_FUNCTION(_Sector, NextHighestCeilingAt)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_FLOAT(x);
PARAM_FLOAT(y);
PARAM_FLOAT(bottomz);
PARAM_FLOAT(topz);
PARAM_INT_DEF(flags);
sector_t *resultsec;
F3DFloor *resultff;
double resultheight = self->NextHighestCeilingAt(x, y, bottomz, topz, flags, &resultsec, &resultff);
if (numret > 2)
{
ret[2].SetPointer(resultff, ATAG_GENERIC);
numret = 3;
}
if (numret > 1)
{
ret[1].SetPointer(resultsec, ATAG_GENERIC);
}
if (numret > 0)
{
ret[0].SetFloat(resultheight);
}
return numret;
}
double sector_t::NextLowestFloorAt(double x, double y, double z, int flags, double steph, sector_t **resultsec, F3DFloor **resultffloor)
{
sector_t *sec = this;
double planeheight = FLT_MAX;
while (true)
{
// Looking through planes from top to bottom
unsigned numff = sec->e->XFloor.ffloors.Size();
double realfloor = sec->floorplane.ZatPoint(x, y);
for (unsigned i = 0; i < numff; ++i)
{
F3DFloor *ff = sec->e->XFloor.ffloors[i];
// either with feet above the 3D floor or feet with less than 'stepheight' map units inside
if ((ff->flags & (FF_EXISTS | FF_SOLID)) == (FF_EXISTS | FF_SOLID))
{
double ffz = ff->top.plane->ZatPoint(x, y);
double ffb = ff->bottom.plane->ZatPoint(x, y);
if (ffz > realfloor && (z >= ffz || (!(flags & FFCF_3DRESTRICT) && (ffb < z && ffz < z + steph))))
{ // This floor is beneath our feet.
if (resultsec) *resultsec = sec;
if (resultffloor) *resultffloor = ff;
return ffz;
}
}
}
if ((flags & FFCF_NOPORTALS) || sec->PortalBlocksMovement(sector_t::floor) || planeheight <= sec->GetPortalPlaneZ(floor))
{ // Use sector's floor
if (resultffloor) *resultffloor = NULL;
if (resultsec) *resultsec = sec;
return realfloor;
}
else
{
DVector2 pos = sec->GetPortalDisplacement(floor);
x += pos.X;
y += pos.Y;
planeheight = sec->GetPortalPlaneZ(floor);
sec = P_PointInSector(x, y);
}
}
}
//===========================================================================
//
//
//
//===========================================================================
double sector_t::GetFriction(int plane, double *pMoveFac) const
{
if (Flags & SECF_FRICTION)
{
if (pMoveFac) *pMoveFac = movefactor;
return friction;
}
FTerrainDef *terrain = &Terrains[GetTerrain(plane)];
if (terrain->Friction != 0)
{
if (pMoveFac) *pMoveFac = terrain->MoveFactor;
return terrain->Friction;
}
else
{
if (pMoveFac) *pMoveFac = ORIG_FRICTION_FACTOR;
return ORIG_FRICTION;
}
}
//===========================================================================
//
//
//
//===========================================================================
FSerializer &Serialize(FSerializer &arc, const char *key, secspecial_t &spec, secspecial_t *def)
{
if (arc.BeginObject(key))
{
arc("special", spec.special)
("damageamount", spec.damageamount)
("damagetype", spec.damagetype)
("damageinterval", spec.damageinterval)
("leakydamage", spec.leakydamage)
("flags", spec.Flags)
.EndObject();
}
return arc;
}
//===========================================================================
//
//
//
//===========================================================================
bool secplane_t::CopyPlaneIfValid (secplane_t *dest, const secplane_t *opp) const
{
bool copy = false;
// If the planes do not have matching slopes, then always copy them
// because clipping would require creating new sectors.
if (Normal() != dest->Normal())
{
copy = true;
}
else if (opp->Normal() != -dest->Normal())
{
if (fD() < dest->fD())
{
copy = true;
}
}
else if (fD() < dest->fD() && fD() > -opp->fD())
{
copy = true;
}
if (copy)
{
*dest = *this;
}
return copy;
}
//==========================================================================
//
// P_AlignFlat
//
//==========================================================================
bool P_AlignFlat (int linenum, int side, int fc)
{
line_t *line = lines + linenum;
sector_t *sec = side ? line->backsector : line->frontsector;
if (!sec)
return false;
DAngle angle = line->Delta().Angle();
DAngle norm = angle - 90;
double dist = -(norm.Cos() * line->v1->fX() + norm.Sin() * line->v1->fY());
if (side)
{
angle += 180.;
dist = -dist;
}
sec->SetBase(fc, dist, -angle);
return true;
}
//==========================================================================
//
// P_BuildPolyBSP
//
//==========================================================================
static FNodeBuilder::FLevel PolyNodeLevel;
static FNodeBuilder PolyNodeBuilder(PolyNodeLevel);
void subsector_t::BuildPolyBSP()
{
assert((BSP == NULL || BSP->bDirty) && "BSP computed more than once");
// Set up level information for the node builder.
PolyNodeLevel.Sides = sides;
PolyNodeLevel.NumSides = numsides;
PolyNodeLevel.Lines = lines;
PolyNodeLevel.NumLines = numlines;
// Feed segs to the nodebuilder and build the nodes.
PolyNodeBuilder.Clear();
PolyNodeBuilder.AddSegs(firstline, numlines);
for (FPolyNode *pn = polys; pn != NULL; pn = pn->pnext)
{
PolyNodeBuilder.AddPolySegs(&pn->segs[0], (int)pn->segs.Size());
}
PolyNodeBuilder.BuildMini(false);
if (BSP == NULL)
{
BSP = new FMiniBSP;
}
PolyNodeBuilder.ExtractMini(BSP);
for (unsigned int i = 0; i < BSP->Subsectors.Size(); ++i)
{
BSP->Subsectors[i].sector = sector;
}
}
//==========================================================================
//
//
//
//==========================================================================
CUSTOM_CVAR(Int, r_fakecontrast, true, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
{
if (self < 0) self = 1;
else if (self > 2) self = 2;
}
//==========================================================================
//
//
//
//==========================================================================
int side_t::GetLightLevel (bool foggy, int baselight, bool is3dlight, int *pfakecontrast) const
{
if (!is3dlight && (Flags & WALLF_ABSLIGHTING))
{
baselight = Light;
}
if (pfakecontrast != NULL)
{
*pfakecontrast = 0;
}
if (!foggy || level.flags3 & LEVEL3_FORCEFAKECONTRAST) // Don't do relative lighting in foggy sectors
{
if (!(Flags & WALLF_NOFAKECONTRAST) && r_fakecontrast != 0)
{
DVector2 delta = linedef->Delta();
int rel;
if (((level.flags2 & LEVEL2_SMOOTHLIGHTING) || (Flags & WALLF_SMOOTHLIGHTING) || r_fakecontrast == 2) &&
delta.X != 0)
{
rel = xs_RoundToInt // OMG LEE KILLOUGH LIVES! :/
(
level.WallHorizLight
+ fabs(atan(delta.Y / delta.X) / 1.57079)
* (level.WallVertLight - level.WallHorizLight)
);
}
else
{
rel = delta.X == 0 ? level.WallVertLight :
delta.Y == 0 ? level.WallHorizLight : 0;
}
if (pfakecontrast != NULL)
{
*pfakecontrast = rel;
}
else
{
baselight += rel;
}
}
}
if (!is3dlight && !(Flags & WALLF_ABSLIGHTING) && (!foggy || (Flags & WALLF_LIGHT_FOG)))
{
baselight += this->Light;
}
return baselight;
}
DEFINE_FIELD_X(Sector, sector_t, floorplane)
DEFINE_FIELD_X(Sector, sector_t, ceilingplane)
DEFINE_FIELD_X(Sector, sector_t, ColorMap)
DEFINE_FIELD_X(Sector, sector_t, SoundTarget)
DEFINE_FIELD_X(Sector, sector_t, special)
DEFINE_FIELD_X(Sector, sector_t, lightlevel)
DEFINE_FIELD_X(Sector, sector_t, seqType)
DEFINE_FIELD_X(Sector, sector_t, sky)
DEFINE_FIELD_X(Sector, sector_t, SeqName)
DEFINE_FIELD_X(Sector, sector_t, centerspot)
DEFINE_FIELD_X(Sector, sector_t, validcount)
DEFINE_FIELD_X(Sector, sector_t, thinglist)
DEFINE_FIELD_X(Sector, sector_t, friction)
DEFINE_FIELD_X(Sector, sector_t, movefactor)
DEFINE_FIELD_X(Sector, sector_t, terrainnum)
DEFINE_FIELD_X(Sector, sector_t, floordata)
DEFINE_FIELD_X(Sector, sector_t, ceilingdata)
DEFINE_FIELD_X(Sector, sector_t, lightingdata)
DEFINE_FIELD_X(Sector, sector_t, interpolations)
DEFINE_FIELD_X(Sector, sector_t, soundtraversed)
DEFINE_FIELD_X(Sector, sector_t, stairlock)
DEFINE_FIELD_X(Sector, sector_t, prevsec)
DEFINE_FIELD_X(Sector, sector_t, nextsec)
DEFINE_FIELD_X(Sector, sector_t, linecount)
DEFINE_FIELD_X(Sector, sector_t, lines)
DEFINE_FIELD_X(Sector, sector_t, heightsec)
DEFINE_FIELD_X(Sector, sector_t, bottommap)
DEFINE_FIELD_X(Sector, sector_t, midmap)
DEFINE_FIELD_X(Sector, sector_t, topmap)
DEFINE_FIELD_X(Sector, sector_t, touching_thinglist)
DEFINE_FIELD_X(Sector, sector_t, render_thinglist)
DEFINE_FIELD_X(Sector, sector_t, gravity)
DEFINE_FIELD_X(Sector, sector_t, damagetype)
DEFINE_FIELD_X(Sector, sector_t, damageamount)
DEFINE_FIELD_X(Sector, sector_t, damageinterval)
DEFINE_FIELD_X(Sector, sector_t, leakydamage)
DEFINE_FIELD_X(Sector, sector_t, ZoneNumber)
DEFINE_FIELD_X(Sector, sector_t, MoreFlags)
DEFINE_FIELD_X(Sector, sector_t, Flags)
DEFINE_FIELD_X(Sector, sector_t, SecActTarget)
DEFINE_FIELD_X(Sector, sector_t, Portals)
DEFINE_FIELD_X(Sector, sector_t, PortalGroup)
DEFINE_FIELD_X(Sector, sector_t, sectornum)
DEFINE_FIELD_X(Line, line_t, v1)
DEFINE_FIELD_X(Line, line_t, v2)
DEFINE_FIELD_X(Line, line_t, delta)
DEFINE_FIELD_X(Line, line_t, flags)
DEFINE_FIELD_X(Line, line_t, activation)
DEFINE_FIELD_X(Line, line_t, special)
DEFINE_FIELD_X(Line, line_t, args)
DEFINE_FIELD_X(Line, line_t, alpha)
DEFINE_FIELD_X(Line, line_t, sidedef)
DEFINE_FIELD_X(Line, line_t, bbox)
DEFINE_FIELD_X(Line, line_t, frontsector)
DEFINE_FIELD_X(Line, line_t, backsector)
DEFINE_FIELD_X(Line, line_t, validcount)
DEFINE_FIELD_X(Line, line_t, locknumber)
DEFINE_FIELD_X(Line, line_t, portalindex)