qzdoom/libraries/adlmidi/adlmidi.cpp
Christoph Oelckers 84cc7cbdd2 - made libadl its own library subproject.
This is to improve compile times because the MSVC compiler tends to become slow with large lists of source files in a single project.
This new project is still our stripped down copy of libadl, not the original, because that project contains a large amount of baggage we do not need.
2019-09-23 10:03:17 +02:00

1635 lines
47 KiB
C++

/*
* libADLMIDI is a free MIDI to WAV conversion library with OPL3 emulation
*
* Original ADLMIDI code: Copyright (c) 2010-2014 Joel Yliluoma <bisqwit@iki.fi>
* ADLMIDI Library API: Copyright (c) 2015-2018 Vitaly Novichkov <admin@wohlnet.ru>
*
* Library is based on the ADLMIDI, a MIDI player for Linux and Windows with OPL3 emulation:
* http://iki.fi/bisqwit/source/adlmidi.html
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "adlmidi_private.hpp"
/* Unify MIDI player casting and interface between ADLMIDI and OPNMIDI */
#define GET_MIDI_PLAYER(device) reinterpret_cast<MIDIplay *>((device)->adl_midiPlayer)
typedef MIDIplay MidiPlayer;
static ADL_Version adl_version = {
ADLMIDI_VERSION_MAJOR,
ADLMIDI_VERSION_MINOR,
ADLMIDI_VERSION_PATCHLEVEL
};
static const ADLMIDI_AudioFormat adl_DefaultAudioFormat =
{
ADLMIDI_SampleType_S16,
sizeof(int16_t),
2 * sizeof(int16_t),
};
/*---------------------------EXPORTS---------------------------*/
ADLMIDI_EXPORT struct ADL_MIDIPlayer *adl_init(long sample_rate)
{
ADL_MIDIPlayer *midi_device;
midi_device = (ADL_MIDIPlayer *)malloc(sizeof(ADL_MIDIPlayer));
if(!midi_device)
{
ADLMIDI_ErrorString = "Can't initialize ADLMIDI: out of memory!";
return NULL;
}
MIDIplay *player = new(std::nothrow) MIDIplay(static_cast<unsigned long>(sample_rate));
if(!player)
{
free(midi_device);
ADLMIDI_ErrorString = "Can't initialize ADLMIDI: out of memory!";
return NULL;
}
midi_device->adl_midiPlayer = player;
adlCalculateFourOpChannels(player);
return midi_device;
}
ADLMIDI_EXPORT void adl_close(struct ADL_MIDIPlayer *device)
{
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
delete play;
device->adl_midiPlayer = NULL;
free(device);
device = NULL;
}
ADLMIDI_EXPORT int adl_setDeviceIdentifier(ADL_MIDIPlayer *device, unsigned id)
{
if(!device || id > 0x0f)
return -1;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->setDeviceId(static_cast<uint8_t>(id));
return 0;
}
ADLMIDI_EXPORT int adl_setNumChips(ADL_MIDIPlayer *device, int numChips)
{
if(device == NULL)
return -2;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
#ifdef ADLMIDI_HW_OPL
ADL_UNUSED(numChips);
play->m_setup.numChips = 1;
#else
play->m_setup.numChips = static_cast<unsigned int>(numChips);
#endif
if(play->m_setup.numChips < 1 || play->m_setup.numChips > ADL_MAX_CHIPS)
{
play->setErrorString("number of chips may only be 1.." ADL_MAX_CHIPS_STR ".\n");
return -1;
}
int maxFourOps = static_cast<int>(play->m_setup.numChips * 6);
if(play->m_setup.numFourOps > maxFourOps)
play->m_setup.numFourOps = maxFourOps;
else if(play->m_setup.numFourOps < -1)
play->m_setup.numFourOps = -1;
if(!play->m_synth.setupLocked())
{
play->m_synth.m_numChips = play->m_setup.numChips;
if(play->m_setup.numFourOps < 0)
adlCalculateFourOpChannels(play, true);
else
play->m_synth.m_numFourOps = static_cast<uint32_t>(play->m_setup.numFourOps);
play->partialReset();
return 0;
}
return 0;
}
ADLMIDI_EXPORT int adl_getNumChips(struct ADL_MIDIPlayer *device)
{
if(device == NULL)
return -2;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
return (int)play->m_setup.numChips;
}
ADLMIDI_EXPORT int adl_getNumChipsObtained(struct ADL_MIDIPlayer *device)
{
if(device == NULL)
return -2;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
return (int)play->m_synth.m_numChips;
}
ADLMIDI_EXPORT int adl_setBank(ADL_MIDIPlayer *device, int bank)
{
#ifdef DISABLE_EMBEDDED_BANKS
ADL_UNUSED(bank);
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->setErrorString("This build of libADLMIDI has no embedded banks. "
"Please load banks by using adl_openBankFile() or "
"adl_openBankData() functions instead of adl_setBank().");
return -1;
#else
const uint32_t NumBanks = static_cast<uint32_t>(maxAdlBanks());
int32_t bankno = bank;
if(bankno < 0)
bankno = 0;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
if(static_cast<uint32_t>(bankno) >= NumBanks)
{
char errBuf[150];
snprintf(errBuf, 150, "Embedded bank number may only be 0..%u!\n", static_cast<unsigned int>(NumBanks - 1));
play->setErrorString(errBuf);
return -1;
}
play->m_setup.bankId = static_cast<uint32_t>(bankno);
play->m_synth.setEmbeddedBank(play->m_setup.bankId);
play->applySetup();
return 0;
#endif
}
ADLMIDI_EXPORT int adl_getBanksCount()
{
#ifndef DISABLE_EMBEDDED_BANKS
return maxAdlBanks();
#else
return 0;
#endif
}
ADLMIDI_EXPORT const char *const *adl_getBankNames()
{
#ifndef DISABLE_EMBEDDED_BANKS
return banknames;
#else
return NULL;
#endif
}
ADLMIDI_EXPORT int adl_reserveBanks(ADL_MIDIPlayer *device, unsigned banks)
{
if(!device)
return -1;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
OPL3::BankMap &map = play->m_synth.m_insBanks;
map.reserve(banks);
return (int)map.capacity();
}
ADLMIDI_EXPORT int adl_getBank(ADL_MIDIPlayer *device, const ADL_BankId *idp, int flags, ADL_Bank *bank)
{
if(!device || !idp || !bank)
return -1;
ADL_BankId id = *idp;
if(id.lsb > 127 || id.msb > 127 || id.percussive > 1)
return -1;
size_t idnumber = ((id.msb << 8) | id.lsb | (id.percussive ? size_t(OPL3::PercussionTag) : 0));
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
OPL3::BankMap &map = play->m_synth.m_insBanks;
OPL3::BankMap::iterator it;
if(!(flags & ADLMIDI_Bank_Create))
{
it = map.find(idnumber);
if(it == map.end())
return -1;
}
else
{
std::pair<size_t, OPL3::Bank> value;
value.first = idnumber;
memset(&value.second, 0, sizeof(value.second));
for (unsigned i = 0; i < 128; ++i)
value.second.ins[i].flags = adlinsdata::Flag_NoSound;
std::pair<OPL3::BankMap::iterator, bool> ir;
if(flags & ADLMIDI_Bank_CreateRt)
{
ir = map.insert(value, OPL3::BankMap::do_not_expand_t());
if(ir.first == map.end())
return -1;
}
else
ir = map.insert(value);
it = ir.first;
}
it.to_ptrs(bank->pointer);
return 0;
}
ADLMIDI_EXPORT int adl_getBankId(ADL_MIDIPlayer *device, const ADL_Bank *bank, ADL_BankId *id)
{
if(!device || !bank)
return -1;
OPL3::BankMap::iterator it = OPL3::BankMap::iterator::from_ptrs(bank->pointer);
OPL3::BankMap::key_type idnumber = it->first;
id->msb = (idnumber >> 8) & 127;
id->lsb = idnumber & 127;
id->percussive = (idnumber & OPL3::PercussionTag) ? 1 : 0;
return 0;
}
ADLMIDI_EXPORT int adl_removeBank(ADL_MIDIPlayer *device, ADL_Bank *bank)
{
if(!device || !bank)
return -1;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
OPL3::BankMap &map = play->m_synth.m_insBanks;
OPL3::BankMap::iterator it = OPL3::BankMap::iterator::from_ptrs(bank->pointer);
size_t size = map.size();
map.erase(it);
return (map.size() != size) ? 0 : -1;
}
ADLMIDI_EXPORT int adl_getFirstBank(ADL_MIDIPlayer *device, ADL_Bank *bank)
{
if(!device)
return -1;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
OPL3::BankMap &map = play->m_synth.m_insBanks;
OPL3::BankMap::iterator it = map.begin();
if(it == map.end())
return -1;
it.to_ptrs(bank->pointer);
return 0;
}
ADLMIDI_EXPORT int adl_getNextBank(ADL_MIDIPlayer *device, ADL_Bank *bank)
{
if(!device)
return -1;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
OPL3::BankMap &map = play->m_synth.m_insBanks;
OPL3::BankMap::iterator it = OPL3::BankMap::iterator::from_ptrs(bank->pointer);
if(++it == map.end())
return -1;
it.to_ptrs(bank->pointer);
return 0;
}
ADLMIDI_EXPORT int adl_getInstrument(ADL_MIDIPlayer *device, const ADL_Bank *bank, unsigned index, ADL_Instrument *ins)
{
if(!device || !bank || index > 127 || !ins)
return -1;
OPL3::BankMap::iterator it = OPL3::BankMap::iterator::from_ptrs(bank->pointer);
cvt_FMIns_to_ADLI(*ins, it->second.ins[index]);
ins->version = 0;
return 0;
}
ADLMIDI_EXPORT int adl_setInstrument(ADL_MIDIPlayer *device, ADL_Bank *bank, unsigned index, const ADL_Instrument *ins)
{
if(!device || !bank || index > 127 || !ins)
return -1;
if(ins->version != 0)
return -1;
OPL3::BankMap::iterator it = OPL3::BankMap::iterator::from_ptrs(bank->pointer);
cvt_ADLI_to_FMIns(it->second.ins[index], *ins);
return 0;
}
ADLMIDI_EXPORT int adl_loadEmbeddedBank(struct ADL_MIDIPlayer *device, ADL_Bank *bank, int num)
{
if(!device)
return -1;
#ifdef DISABLE_EMBEDDED_BANKS
ADL_UNUSED(bank);
ADL_UNUSED(num);
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->setErrorString("This build of libADLMIDI has no embedded banks. "
"Please load banks by using adl_openBankFile() or "
"adl_openBankData() functions instead of adl_loadEmbeddedBank().");
return -1;
#else
if(num < 0 || num >= maxAdlBanks())
return -1;
OPL3::BankMap::iterator it = OPL3::BankMap::iterator::from_ptrs(bank->pointer);
size_t id = it->first;
for (unsigned i = 0; i < 128; ++i) {
size_t insno = i + ((id & OPL3::PercussionTag) ? 128 : 0);
size_t adlmeta = ::banks[num][insno];
it->second.ins[i] = adlinsdata2::from_adldata(::adlins[adlmeta]);
}
return 0;
#endif
}
ADLMIDI_EXPORT int adl_setNumFourOpsChn(ADL_MIDIPlayer *device, int ops4)
{
if(!device)
return -1;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
if(ops4 > 6 * static_cast<int>(play->m_setup.numChips))
{
char errBuff[250];
snprintf(errBuff, 250, "number of four-op channels may only be 0..%u when %u OPL3 cards are used.\n", (6 * (play->m_setup.numChips)), play->m_setup.numChips);
play->setErrorString(errBuff);
return -1;
}
play->m_setup.numFourOps = ops4;
if(!play->m_synth.setupLocked())
{
if(play->m_setup.numFourOps < 0)
adlCalculateFourOpChannels(play, true);
else
play->m_synth.m_numFourOps = static_cast<uint32_t>(play->m_setup.numFourOps);
play->m_synth.updateChannelCategories();
}
return 0;
}
ADLMIDI_EXPORT int adl_getNumFourOpsChn(struct ADL_MIDIPlayer *device)
{
if(!device)
return -2;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
return play->m_setup.numFourOps;
}
ADLMIDI_EXPORT int adl_getNumFourOpsChnObtained(struct ADL_MIDIPlayer *device)
{
if(!device)
return -2;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
return (int)play->m_synth.m_numFourOps;
}
ADLMIDI_EXPORT void adl_setPercMode(ADL_MIDIPlayer *device, int percmod)
{
if(!device) return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->m_setup.rhythmMode = percmod;
if(!play->m_synth.setupLocked())
{
play->m_synth.m_rhythmMode = play->m_setup.rhythmMode < 0 ?
(play->m_synth.m_insBankSetup.adLibPercussions) :
(play->m_setup.rhythmMode != 0);
play->m_synth.updateChannelCategories();
}
}
ADLMIDI_EXPORT void adl_setHVibrato(ADL_MIDIPlayer *device, int hvibro)
{
if(!device) return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->m_setup.deepVibratoMode = hvibro;
if(!play->m_synth.setupLocked())
{
play->m_synth.m_deepVibratoMode = play->m_setup.deepVibratoMode < 0 ?
play->m_synth.m_insBankSetup.deepVibrato :
(play->m_setup.deepVibratoMode != 0);
play->m_synth.commitDeepFlags();
}
}
ADLMIDI_EXPORT int adl_getHVibrato(struct ADL_MIDIPlayer *device)
{
if(!device) return -1;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
return play->m_synth.m_deepVibratoMode;
}
ADLMIDI_EXPORT void adl_setHTremolo(ADL_MIDIPlayer *device, int htremo)
{
if(!device) return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->m_setup.deepTremoloMode = htremo;
if(!play->m_synth.setupLocked())
{
play->m_synth.m_deepTremoloMode = play->m_setup.deepTremoloMode < 0 ?
play->m_synth.m_insBankSetup.deepTremolo :
(play->m_setup.deepTremoloMode != 0);
play->m_synth.commitDeepFlags();
}
}
ADLMIDI_EXPORT int adl_getHTremolo(struct ADL_MIDIPlayer *device)
{
if(!device) return -1;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
return play->m_synth.m_deepTremoloMode;
}
ADLMIDI_EXPORT void adl_setScaleModulators(ADL_MIDIPlayer *device, int smod)
{
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->m_setup.scaleModulators = smod;
if(!play->m_synth.setupLocked())
{
play->m_synth.m_scaleModulators = play->m_setup.scaleModulators < 0 ?
play->m_synth.m_insBankSetup.scaleModulators :
(play->m_setup.scaleModulators != 0);
}
}
ADLMIDI_EXPORT void adl_setFullRangeBrightness(struct ADL_MIDIPlayer *device, int fr_brightness)
{
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->m_setup.fullRangeBrightnessCC74 = (fr_brightness != 0);
}
ADLMIDI_EXPORT void adl_setLoopEnabled(ADL_MIDIPlayer *device, int loopEn)
{
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
#ifndef ADLMIDI_DISABLE_MIDI_SEQUENCER
play->m_sequencer.setLoopEnabled(loopEn != 0);
#else
ADL_UNUSED(loopEn);
#endif
}
ADLMIDI_EXPORT void adl_setSoftPanEnabled(ADL_MIDIPlayer *device, int softPanEn)
{
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->m_synth.m_softPanning = (softPanEn != 0);
}
/* !!!DEPRECATED!!! */
ADLMIDI_EXPORT void adl_setLogarithmicVolumes(struct ADL_MIDIPlayer *device, int logvol)
{
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->m_setup.logarithmicVolumes = (logvol != 0);
if(!play->m_synth.setupLocked())
{
if(play->m_setup.logarithmicVolumes)
play->m_synth.setVolumeScaleModel(ADLMIDI_VolumeModel_NativeOPL3);
else
play->m_synth.setVolumeScaleModel(static_cast<ADLMIDI_VolumeModels>(play->m_synth.m_volumeScale));
}
}
ADLMIDI_EXPORT void adl_setVolumeRangeModel(struct ADL_MIDIPlayer *device, int volumeModel)
{
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->m_setup.volumeScaleModel = volumeModel;
if(!play->m_synth.setupLocked())
{
if(play->m_setup.volumeScaleModel == ADLMIDI_VolumeModel_AUTO)//Use bank default volume model
play->m_synth.m_volumeScale = (OPL3::VolumesScale)play->m_synth.m_insBankSetup.volumeModel;
else
play->m_synth.setVolumeScaleModel(static_cast<ADLMIDI_VolumeModels>(volumeModel));
}
}
ADLMIDI_EXPORT int adl_getVolumeRangeModel(struct ADL_MIDIPlayer *device)
{
if(!device)
return -1;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
return play->m_synth.getVolumeScaleModel();
}
ADLMIDI_EXPORT int adl_openBankFile(struct ADL_MIDIPlayer *device, const char *filePath)
{
if(device)
{
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->m_setup.tick_skip_samples_delay = 0;
if(!play->LoadBank(filePath))
{
std::string err = play->getErrorString();
if(err.empty())
play->setErrorString("ADL MIDI: Can't load file");
return -1;
}
else
return adlCalculateFourOpChannels(play, true);
}
ADLMIDI_ErrorString = "Can't load file: ADLMIDI is not initialized";
return -1;
}
ADLMIDI_EXPORT int adl_openBankData(struct ADL_MIDIPlayer *device, const void *mem, unsigned long size)
{
if(device)
{
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->m_setup.tick_skip_samples_delay = 0;
if(!play->LoadBank(mem, static_cast<size_t>(size)))
{
std::string err = play->getErrorString();
if(err.empty())
play->setErrorString("ADL MIDI: Can't load data from memory");
return -1;
}
else
return adlCalculateFourOpChannels(play, true);
}
ADLMIDI_ErrorString = "Can't load file: ADL MIDI is not initialized";
return -1;
}
ADLMIDI_EXPORT int adl_openFile(ADL_MIDIPlayer *device, const char *filePath)
{
if(device)
{
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
#ifndef ADLMIDI_DISABLE_MIDI_SEQUENCER
play->m_setup.tick_skip_samples_delay = 0;
if(!play->LoadMIDI(filePath))
{
std::string err = play->getErrorString();
if(err.empty())
play->setErrorString("ADL MIDI: Can't load file");
return -1;
}
else return 0;
#else
ADL_UNUSED(filePath);
play->setErrorString("ADLMIDI: MIDI Sequencer is not supported in this build of library!");
return -1;
#endif //ADLMIDI_DISABLE_MIDI_SEQUENCER
}
ADLMIDI_ErrorString = "Can't load file: ADL MIDI is not initialized";
return -1;
}
ADLMIDI_EXPORT int adl_openData(ADL_MIDIPlayer *device, const void *mem, unsigned long size)
{
if(device)
{
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
#ifndef ADLMIDI_DISABLE_MIDI_SEQUENCER
play->m_setup.tick_skip_samples_delay = 0;
if(!play->LoadMIDI(mem, static_cast<size_t>(size)))
{
std::string err = play->getErrorString();
if(err.empty())
play->setErrorString("ADL MIDI: Can't load data from memory");
return -1;
}
else return 0;
#else
ADL_UNUSED(mem);
ADL_UNUSED(size);
play->setErrorString("ADLMIDI: MIDI Sequencer is not supported in this build of library!");
return -1;
#endif //ADLMIDI_DISABLE_MIDI_SEQUENCER
}
ADLMIDI_ErrorString = "Can't load file: ADL MIDI is not initialized";
return -1;
}
ADLMIDI_EXPORT const char *adl_emulatorName()
{
return "<adl_emulatorName() is deprecated! Use adl_chipEmulatorName() instead!>";
}
ADLMIDI_EXPORT const char *adl_chipEmulatorName(struct ADL_MIDIPlayer *device)
{
if(device)
{
#ifndef ADLMIDI_HW_OPL
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
if(!play->m_synth.m_chips.empty())
return play->m_synth.m_chips[0]->emulatorName();
#else
return "Hardware OPL3 chip on 0x330";
#endif
}
return "Unknown";
}
ADLMIDI_EXPORT int adl_switchEmulator(struct ADL_MIDIPlayer *device, int emulator)
{
if(device)
{
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
if(adl_isEmulatorAvailable(emulator))
{
play->m_setup.emulator = emulator;
play->partialReset();
return 0;
}
play->setErrorString("OPL3 MIDI: Unknown emulation core!");
}
return -1;
}
ADLMIDI_EXPORT int adl_setRunAtPcmRate(ADL_MIDIPlayer *device, int enabled)
{
if(device)
{
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->m_setup.runAtPcmRate = (enabled != 0);
if(!play->m_synth.setupLocked())
play->partialReset();
return 0;
}
return -1;
}
ADLMIDI_EXPORT const char *adl_linkedLibraryVersion()
{
#if !defined(ADLMIDI_ENABLE_HQ_RESAMPLER)
return ADLMIDI_VERSION;
#else
return ADLMIDI_VERSION " (HQ)";
#endif
}
ADLMIDI_EXPORT const ADL_Version *adl_linkedVersion()
{
return &adl_version;
}
ADLMIDI_EXPORT const char *adl_errorString()
{
return ADLMIDI_ErrorString.c_str();
}
ADLMIDI_EXPORT const char *adl_errorInfo(struct ADL_MIDIPlayer *device)
{
if(!device)
return adl_errorString();
MidiPlayer *play = GET_MIDI_PLAYER(device);
if(!play)
return adl_errorString();
return play->getErrorString().c_str();
}
ADLMIDI_EXPORT void adl_reset(struct ADL_MIDIPlayer *device)
{
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->partialReset();
play->resetMIDI();
}
ADLMIDI_EXPORT double adl_totalTimeLength(struct ADL_MIDIPlayer *device)
{
#ifndef ADLMIDI_DISABLE_MIDI_SEQUENCER
if(!device)
return -1.0;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
return play->m_sequencer.timeLength();
#else
ADL_UNUSED(device);
return -1.0;
#endif
}
ADLMIDI_EXPORT double adl_loopStartTime(struct ADL_MIDIPlayer *device)
{
#ifndef ADLMIDI_DISABLE_MIDI_SEQUENCER
if(!device)
return -1.0;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
return play->m_sequencer.getLoopStart();
#else
ADL_UNUSED(device);
return -1.0;
#endif
}
ADLMIDI_EXPORT double adl_loopEndTime(struct ADL_MIDIPlayer *device)
{
#ifndef ADLMIDI_DISABLE_MIDI_SEQUENCER
if(!device)
return -1.0;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
return play->m_sequencer.getLoopEnd();
#else
ADL_UNUSED(device);
return -1.0;
#endif
}
ADLMIDI_EXPORT double adl_positionTell(struct ADL_MIDIPlayer *device)
{
#ifndef ADLMIDI_DISABLE_MIDI_SEQUENCER
if(!device)
return -1.0;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
return play->m_sequencer.tell();
#else
ADL_UNUSED(device);
return -1.0;
#endif
}
ADLMIDI_EXPORT void adl_positionSeek(struct ADL_MIDIPlayer *device, double seconds)
{
#ifndef ADLMIDI_DISABLE_MIDI_SEQUENCER
if(seconds < 0.0)
return;//Seeking negative position is forbidden! :-P
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->realTime_panic();
play->m_setup.delay = play->m_sequencer.seek(seconds, play->m_setup.mindelay);
play->m_setup.carry = 0.0;
#else
ADL_UNUSED(device);
ADL_UNUSED(seconds);
#endif
}
ADLMIDI_EXPORT void adl_positionRewind(struct ADL_MIDIPlayer *device)
{
#ifndef ADLMIDI_DISABLE_MIDI_SEQUENCER
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->realTime_panic();
play->m_sequencer.rewind();
#else
ADL_UNUSED(device);
#endif
}
ADLMIDI_EXPORT void adl_setTempo(struct ADL_MIDIPlayer *device, double tempo)
{
#ifndef ADLMIDI_DISABLE_MIDI_SEQUENCER
if(!device || (tempo <= 0.0))
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->m_sequencer.setTempo(tempo);
#else
ADL_UNUSED(device);
ADL_UNUSED(tempo);
#endif
}
ADLMIDI_EXPORT int adl_describeChannels(struct ADL_MIDIPlayer *device, char *str, char *attr, size_t size)
{
if(!device)
return -1;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->describeChannels(str, attr, size);
return 0;
}
ADLMIDI_EXPORT const char *adl_metaMusicTitle(struct ADL_MIDIPlayer *device)
{
#ifndef ADLMIDI_DISABLE_MIDI_SEQUENCER
if(!device)
return "";
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
return play->m_sequencer.getMusicTitle().c_str();
#else
ADL_UNUSED(device);
return "";
#endif
}
ADLMIDI_EXPORT const char *adl_metaMusicCopyright(struct ADL_MIDIPlayer *device)
{
#ifndef ADLMIDI_DISABLE_MIDI_SEQUENCER
if(!device)
return "";
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
return play->m_sequencer.getMusicCopyright().c_str();
#else
ADL_UNUSED(device);
return "";
#endif
}
ADLMIDI_EXPORT size_t adl_metaTrackTitleCount(struct ADL_MIDIPlayer *device)
{
#ifndef ADLMIDI_DISABLE_MIDI_SEQUENCER
if(!device)
return 0;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
return play->m_sequencer.getTrackTitles().size();
#else
ADL_UNUSED(device);
return 0;
#endif
}
ADLMIDI_EXPORT const char *adl_metaTrackTitle(struct ADL_MIDIPlayer *device, size_t index)
{
#ifndef ADLMIDI_DISABLE_MIDI_SEQUENCER
if(!device)
return "";
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
const std::vector<std::string> &titles = play->m_sequencer.getTrackTitles();
if(index >= titles.size())
return "INVALID";
return titles[index].c_str();
#else
ADL_UNUSED(device);
ADL_UNUSED(index);
return "NOT SUPPORTED";
#endif
}
ADLMIDI_EXPORT size_t adl_metaMarkerCount(struct ADL_MIDIPlayer *device)
{
#ifndef ADLMIDI_DISABLE_MIDI_SEQUENCER
if(!device)
return 0;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
return play->m_sequencer.getMarkers().size();
#else
ADL_UNUSED(device);
return 0;
#endif
}
ADLMIDI_EXPORT Adl_MarkerEntry adl_metaMarker(struct ADL_MIDIPlayer *device, size_t index)
{
struct Adl_MarkerEntry marker;
#ifndef ADLMIDI_DISABLE_MIDI_SEQUENCER
if(!device)
{
marker.label = "INVALID";
marker.pos_time = 0.0;
marker.pos_ticks = 0;
return marker;
}
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
const std::vector<MidiSequencer::MIDI_MarkerEntry> &markers = play->m_sequencer.getMarkers();
if(index >= markers.size())
{
marker.label = "INVALID";
marker.pos_time = 0.0;
marker.pos_ticks = 0;
return marker;
}
const MidiSequencer::MIDI_MarkerEntry &mk = markers[index];
marker.label = mk.label.c_str();
marker.pos_time = mk.pos_time;
marker.pos_ticks = (unsigned long)mk.pos_ticks;
#else
ADL_UNUSED(device);
ADL_UNUSED(index);
marker.label = "NOT SUPPORTED";
marker.pos_time = 0.0;
marker.pos_ticks = 0;
#endif
return marker;
}
ADLMIDI_EXPORT void adl_setRawEventHook(struct ADL_MIDIPlayer *device, ADL_RawEventHook rawEventHook, void *userData)
{
#ifndef ADLMIDI_DISABLE_MIDI_SEQUENCER
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->m_sequencerInterface.onEvent = rawEventHook;
play->m_sequencerInterface.onEvent_userData = userData;
#else
ADL_UNUSED(device);
ADL_UNUSED(rawEventHook);
ADL_UNUSED(userData);
#endif
}
/* Set note hook */
ADLMIDI_EXPORT void adl_setNoteHook(struct ADL_MIDIPlayer *device, ADL_NoteHook noteHook, void *userData)
{
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->hooks.onNote = noteHook;
play->hooks.onNote_userData = userData;
}
/* Set debug message hook */
ADLMIDI_EXPORT void adl_setDebugMessageHook(struct ADL_MIDIPlayer *device, ADL_DebugMessageHook debugMessageHook, void *userData)
{
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->hooks.onDebugMessage = debugMessageHook;
play->hooks.onDebugMessage_userData = userData;
#ifndef ADLMIDI_DISABLE_MIDI_SEQUENCER
play->m_sequencerInterface.onDebugMessage = debugMessageHook;
play->m_sequencerInterface.onDebugMessage_userData = userData;
#endif
}
#ifndef ADLMIDI_HW_OPL
# ifndef __WATCOMC__
template <class Dst>
static void CopySamplesRaw(ADL_UInt8 *dstLeft, ADL_UInt8 *dstRight, const int32_t *src,
size_t frameCount, unsigned sampleOffset)
{
for(size_t i = 0; i < frameCount; ++i) {
*(Dst *)(dstLeft + (i * sampleOffset)) = src[2 * i];
*(Dst *)(dstRight + (i * sampleOffset)) = src[(2 * i) + 1];
}
}
template <class Dst, class Ret>
static void CopySamplesTransformed(ADL_UInt8 *dstLeft, ADL_UInt8 *dstRight, const int32_t *src,
size_t frameCount, unsigned sampleOffset,
Ret(&transform)(int32_t))
{
for(size_t i = 0; i < frameCount; ++i) {
*(Dst *)(dstLeft + (i * sampleOffset)) = static_cast<Dst>(transform(src[2 * i]));
*(Dst *)(dstRight + (i * sampleOffset)) = static_cast<Dst>(transform(src[(2 * i) + 1]));
}
}
static int SendStereoAudio(int samples_requested,
ssize_t in_size,
int32_t *_in,
ssize_t out_pos,
ADL_UInt8 *left,
ADL_UInt8 *right,
const ADLMIDI_AudioFormat *format)
{
if(!in_size)
return 0;
size_t outputOffset = static_cast<size_t>(out_pos);
size_t inSamples = static_cast<size_t>(in_size * 2);
size_t maxSamples = static_cast<size_t>(samples_requested) - outputOffset;
size_t toCopy = std::min(maxSamples, inSamples);
ADLMIDI_SampleType sampleType = format->type;
const unsigned containerSize = format->containerSize;
const unsigned sampleOffset = format->sampleOffset;
left += (outputOffset / 2) * sampleOffset;
right += (outputOffset / 2) * sampleOffset;
typedef int32_t(&pfnConvert)(int32_t);
typedef float(&ffnConvert)(int32_t);
typedef double(&dfnConvert)(int32_t);
switch(sampleType) {
case ADLMIDI_SampleType_S8:
case ADLMIDI_SampleType_U8:
{
pfnConvert cvt = (sampleType == ADLMIDI_SampleType_S8) ? adl_cvtS8 : adl_cvtU8;
switch(containerSize) {
case sizeof(int8_t):
CopySamplesTransformed<int8_t>(left, right, _in, toCopy / 2, sampleOffset, cvt);
break;
case sizeof(int16_t):
CopySamplesTransformed<int16_t>(left, right, _in, toCopy / 2, sampleOffset, cvt);
break;
case sizeof(int32_t):
CopySamplesTransformed<int32_t>(left, right, _in, toCopy / 2, sampleOffset, cvt);
break;
default:
return -1;
}
break;
}
case ADLMIDI_SampleType_S16:
case ADLMIDI_SampleType_U16:
{
pfnConvert cvt = (sampleType == ADLMIDI_SampleType_S16) ? adl_cvtS16 : adl_cvtU16;
switch(containerSize) {
case sizeof(int16_t):
CopySamplesTransformed<int16_t>(left, right, _in, toCopy / 2, sampleOffset, cvt);
break;
case sizeof(int32_t):
CopySamplesRaw<int32_t>(left, right, _in, toCopy / 2, sampleOffset);
break;
default:
return -1;
}
break;
}
case ADLMIDI_SampleType_S24:
case ADLMIDI_SampleType_U24:
{
pfnConvert cvt = (sampleType == ADLMIDI_SampleType_S24) ? adl_cvtS24 : adl_cvtU24;
switch(containerSize) {
case sizeof(int32_t):
CopySamplesTransformed<int32_t>(left, right, _in, toCopy / 2, sampleOffset, cvt);
break;
default:
return -1;
}
break;
}
case ADLMIDI_SampleType_S32:
case ADLMIDI_SampleType_U32:
{
pfnConvert cvt = (sampleType == ADLMIDI_SampleType_S32) ? adl_cvtS32 : adl_cvtU32;
switch(containerSize) {
case sizeof(int32_t):
CopySamplesTransformed<int32_t>(left, right, _in, toCopy / 2, sampleOffset, cvt);
break;
default:
return -1;
}
break;
}
case ADLMIDI_SampleType_F32:
{
if(containerSize != sizeof(float))
return -1;
ffnConvert cvt = adl_cvtReal<float>;
CopySamplesTransformed<float>(left, right, _in, toCopy / 2, sampleOffset, cvt);
break;
}
case ADLMIDI_SampleType_F64:
{
if(containerSize != sizeof(double))
return -1;
dfnConvert cvt = adl_cvtReal<double>;
CopySamplesTransformed<double>(left, right, _in, toCopy / 2, sampleOffset, cvt);
break;
}
default:
return -1;
}
return 0;
}
# else // __WATCOMC__
/*
Workaround for OpenWattcom where templates are declared above are causing compiler to be crashed
*/
static void CopySamplesTransformed(ADL_UInt8 *dstLeft, ADL_UInt8 *dstRight, const int32_t *src,
size_t frameCount, unsigned sampleOffset,
int32_t(&transform)(int32_t))
{
for(size_t i = 0; i < frameCount; ++i) {
*(int16_t *)(dstLeft + (i * sampleOffset)) = (int16_t)transform(src[2 * i]);
*(int16_t *)(dstRight + (i * sampleOffset)) = (int16_t)transform(src[(2 * i) + 1]);
}
}
static int SendStereoAudio(int samples_requested,
ssize_t in_size,
int32_t *_in,
ssize_t out_pos,
ADL_UInt8 *left,
ADL_UInt8 *right,
const ADLMIDI_AudioFormat *format)
{
if(!in_size)
return 0;
size_t outputOffset = static_cast<size_t>(out_pos);
size_t inSamples = static_cast<size_t>(in_size * 2);
size_t maxSamples = static_cast<size_t>(samples_requested) - outputOffset;
size_t toCopy = std::min(maxSamples, inSamples);
ADLMIDI_SampleType sampleType = format->type;
const unsigned containerSize = format->containerSize;
const unsigned sampleOffset = format->sampleOffset;
left += (outputOffset / 2) * sampleOffset;
right += (outputOffset / 2) * sampleOffset;
if(sampleType == ADLMIDI_SampleType_U16)
{
switch(containerSize) {
case sizeof(int16_t):
CopySamplesTransformed(left, right, _in, toCopy / 2, sampleOffset, adl_cvtS16);
break;
default:
return -1;
}
}
else
return -1;
return 0;
}
# endif // __WATCOM__
#endif // ADLMIDI_HW_OPL
ADLMIDI_EXPORT int adl_play(struct ADL_MIDIPlayer *device, int sampleCount, short *out)
{
return adl_playFormat(device, sampleCount, (ADL_UInt8 *)out, (ADL_UInt8 *)(out + 1), &adl_DefaultAudioFormat);
}
ADLMIDI_EXPORT int adl_playFormat(ADL_MIDIPlayer *device, int sampleCount,
ADL_UInt8 *out_left, ADL_UInt8 *out_right,
const ADLMIDI_AudioFormat *format)
{
#if defined(ADLMIDI_DISABLE_MIDI_SEQUENCER) || defined(ADLMIDI_HW_OPL)
ADL_UNUSED(device);
ADL_UNUSED(sampleCount);
ADL_UNUSED(out_left);
ADL_UNUSED(out_right);
ADL_UNUSED(format);
return 0;
#endif
#if !defined(ADLMIDI_DISABLE_MIDI_SEQUENCER) && !defined(ADLMIDI_HW_OPL)
sampleCount -= sampleCount % 2; //Avoid even sample requests
if(sampleCount < 0)
return 0;
if(!device)
return 0;
MidiPlayer *player = GET_MIDI_PLAYER(device);
assert(player);
MidiPlayer::Setup &setup = player->m_setup;
ssize_t gotten_len = 0;
ssize_t n_periodCountStereo = 512;
//ssize_t n_periodCountPhys = n_periodCountStereo * 2;
int left = sampleCount;
bool hasSkipped = setup.tick_skip_samples_delay > 0;
while(left > 0)
{
{//...
const double eat_delay = setup.delay < setup.maxdelay ? setup.delay : setup.maxdelay;
if(hasSkipped)
{
size_t samples = setup.tick_skip_samples_delay > sampleCount ? sampleCount : setup.tick_skip_samples_delay;
n_periodCountStereo = samples / 2;
}
else
{
setup.delay -= eat_delay;
setup.carry += double(setup.PCM_RATE) * eat_delay;
n_periodCountStereo = static_cast<ssize_t>(setup.carry);
setup.carry -= double(n_periodCountStereo);
}
//if(setup.SkipForward > 0)
// setup.SkipForward -= 1;
//else
{
if((player->m_sequencer.positionAtEnd()) && (setup.delay <= 0.0))
break;//Stop to fetch samples at reaching the song end with disabled loop
ssize_t leftSamples = left / 2;
if(n_periodCountStereo > leftSamples)
{
setup.tick_skip_samples_delay = (n_periodCountStereo - leftSamples) * 2;
n_periodCountStereo = leftSamples;
}
//! Count of stereo samples
ssize_t in_generatedStereo = (n_periodCountStereo > 512) ? 512 : n_periodCountStereo;
//! Total count of samples
ssize_t in_generatedPhys = in_generatedStereo * 2;
//! Unsigned total sample count
//fill buffer with zeros
int32_t *out_buf = player->m_outBuf;
std::memset(out_buf, 0, static_cast<size_t>(in_generatedPhys) * sizeof(out_buf[0]));
unsigned int chips = player->m_synth.m_numChips;
if(chips == 1)
{
player->m_synth.m_chips[0]->generate32(out_buf, (size_t)in_generatedStereo);
}
else if(n_periodCountStereo > 0)
{
/* Generate data from every chip and mix result */
for(size_t card = 0; card < chips; ++card)
player->m_synth.m_chips[card]->generateAndMix32(out_buf, (size_t)in_generatedStereo);
}
/* Process it */
if(SendStereoAudio(sampleCount, in_generatedStereo, out_buf, gotten_len, out_left, out_right, format) == -1)
return 0;
left -= (int)in_generatedPhys;
gotten_len += (in_generatedPhys) /* - setup.stored_samples*/;
}
if(hasSkipped)
{
setup.tick_skip_samples_delay -= n_periodCountStereo * 2;
hasSkipped = setup.tick_skip_samples_delay > 0;
}
else
setup.delay = player->Tick(eat_delay, setup.mindelay);
}//...
}
return static_cast<int>(gotten_len);
#endif //ADLMIDI_DISABLE_MIDI_SEQUENCER
}
ADLMIDI_EXPORT int adl_generate(struct ADL_MIDIPlayer *device, int sampleCount, short *out)
{
return adl_generateFormat(device, sampleCount, (ADL_UInt8 *)out, (ADL_UInt8 *)(out + 1), &adl_DefaultAudioFormat);
}
ADLMIDI_EXPORT int adl_generateFormat(struct ADL_MIDIPlayer *device, int sampleCount,
ADL_UInt8 *out_left, ADL_UInt8 *out_right,
const ADLMIDI_AudioFormat *format)
{
#ifdef ADLMIDI_HW_OPL
ADL_UNUSED(device);
ADL_UNUSED(sampleCount);
ADL_UNUSED(out_left);
ADL_UNUSED(out_right);
ADL_UNUSED(format);
return 0;
#else
sampleCount -= sampleCount % 2; //Avoid even sample requests
if(sampleCount < 0)
return 0;
if(!device)
return 0;
MidiPlayer *player = GET_MIDI_PLAYER(device);
assert(player);
MidiPlayer::Setup &setup = player->m_setup;
ssize_t gotten_len = 0;
ssize_t n_periodCountStereo = 512;
int left = sampleCount;
double delay = double(sampleCount) / double(setup.PCM_RATE);
while(left > 0)
{
{//...
const double eat_delay = delay < setup.maxdelay ? delay : setup.maxdelay;
delay -= eat_delay;
setup.carry += double(setup.PCM_RATE) * eat_delay;
n_periodCountStereo = static_cast<ssize_t>(setup.carry);
setup.carry -= double(n_periodCountStereo);
{
ssize_t leftSamples = left / 2;
if(n_periodCountStereo > leftSamples)
n_periodCountStereo = leftSamples;
//! Count of stereo samples
ssize_t in_generatedStereo = (n_periodCountStereo > 512) ? 512 : n_periodCountStereo;
//! Total count of samples
ssize_t in_generatedPhys = in_generatedStereo * 2;
//! Unsigned total sample count
//fill buffer with zeros
int32_t *out_buf = player->m_outBuf;
std::memset(out_buf, 0, static_cast<size_t>(in_generatedPhys) * sizeof(out_buf[0]));
unsigned int chips = player->m_synth.m_numChips;
if(chips == 1)
player->m_synth.m_chips[0]->generate32(out_buf, (size_t)in_generatedStereo);
else if(n_periodCountStereo > 0)
{
/* Generate data from every chip and mix result */
for(unsigned card = 0; card < chips; ++card)
player->m_synth.m_chips[card]->generateAndMix32(out_buf, (size_t)in_generatedStereo);
}
/* Process it */
if(SendStereoAudio(sampleCount, in_generatedStereo, out_buf, gotten_len, out_left, out_right, format) == -1)
return 0;
left -= (int)in_generatedPhys;
gotten_len += (in_generatedPhys) /* - setup.stored_samples*/;
}
player->TickIterators(eat_delay);
}//...
}
return static_cast<int>(gotten_len);
#endif
}
ADLMIDI_EXPORT double adl_tickEvents(struct ADL_MIDIPlayer *device, double seconds, double granulality)
{
#ifndef ADLMIDI_DISABLE_MIDI_SEQUENCER
if(!device)
return -1.0;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
return play->Tick(seconds, granulality);
#else
ADL_UNUSED(device);
ADL_UNUSED(seconds);
ADL_UNUSED(granulality);
return -1.0;
#endif
}
ADLMIDI_EXPORT int adl_atEnd(struct ADL_MIDIPlayer *device)
{
#ifndef ADLMIDI_DISABLE_MIDI_SEQUENCER
if(!device)
return 1;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
return (int)play->m_sequencer.positionAtEnd();
#else
ADL_UNUSED(device);
return 1;
#endif
}
ADLMIDI_EXPORT size_t adl_trackCount(struct ADL_MIDIPlayer *device)
{
#ifndef ADLMIDI_DISABLE_MIDI_SEQUENCER
if(!device)
return 0;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
return play->m_sequencer.getTrackCount();
#else
ADL_UNUSED(device);
return 0;
#endif
}
ADLMIDI_EXPORT int adl_setTrackOptions(struct ADL_MIDIPlayer *device, size_t trackNumber, unsigned trackOptions)
{
#ifndef ADLMIDI_DISABLE_MIDI_SEQUENCER
if(!device)
return -1;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
MidiSequencer &seq = play->m_sequencer;
unsigned enableFlag = trackOptions & 3;
trackOptions &= ~3u;
// handle on/off/solo
switch(enableFlag)
{
default:
break;
case ADLMIDI_TrackOption_On:
case ADLMIDI_TrackOption_Off:
if(!seq.setTrackEnabled(trackNumber, enableFlag == ADLMIDI_TrackOption_On))
return -1;
break;
case ADLMIDI_TrackOption_Solo:
seq.setSoloTrack(trackNumber);
break;
}
// handle others...
if(trackOptions != 0)
return -1;
return 0;
#else
ADL_UNUSED(device);
ADL_UNUSED(trackNumber);
ADL_UNUSED(trackOptions);
return -1;
#endif
}
ADLMIDI_EXPORT int adl_setTriggerHandler(struct ADL_MIDIPlayer *device, ADL_TriggerHandler handler, void *userData)
{
#ifndef ADLMIDI_DISABLE_MIDI_SEQUENCER
if(!device)
return -1;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
MidiSequencer &seq = play->m_sequencer;
seq.setTriggerHandler(handler, userData);
return 0;
#else
ADL_UNUSED(device);
ADL_UNUSED(handler);
ADL_UNUSED(userData);
return -1;
#endif
}
ADLMIDI_EXPORT void adl_panic(struct ADL_MIDIPlayer *device)
{
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->realTime_panic();
}
ADLMIDI_EXPORT void adl_rt_resetState(struct ADL_MIDIPlayer *device)
{
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->realTime_ResetState();
}
ADLMIDI_EXPORT int adl_rt_noteOn(struct ADL_MIDIPlayer *device, ADL_UInt8 channel, ADL_UInt8 note, ADL_UInt8 velocity)
{
if(!device)
return 0;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
return (int)play->realTime_NoteOn(channel, note, velocity);
}
ADLMIDI_EXPORT void adl_rt_noteOff(struct ADL_MIDIPlayer *device, ADL_UInt8 channel, ADL_UInt8 note)
{
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->realTime_NoteOff(channel, note);
}
ADLMIDI_EXPORT void adl_rt_noteAfterTouch(struct ADL_MIDIPlayer *device, ADL_UInt8 channel, ADL_UInt8 note, ADL_UInt8 atVal)
{
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->realTime_NoteAfterTouch(channel, note, atVal);
}
ADLMIDI_EXPORT void adl_rt_channelAfterTouch(struct ADL_MIDIPlayer *device, ADL_UInt8 channel, ADL_UInt8 atVal)
{
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->realTime_ChannelAfterTouch(channel, atVal);
}
ADLMIDI_EXPORT void adl_rt_controllerChange(struct ADL_MIDIPlayer *device, ADL_UInt8 channel, ADL_UInt8 type, ADL_UInt8 value)
{
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->realTime_Controller(channel, type, value);
}
ADLMIDI_EXPORT void adl_rt_patchChange(struct ADL_MIDIPlayer *device, ADL_UInt8 channel, ADL_UInt8 patch)
{
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->realTime_PatchChange(channel, patch);
}
ADLMIDI_EXPORT void adl_rt_pitchBend(struct ADL_MIDIPlayer *device, ADL_UInt8 channel, ADL_UInt16 pitch)
{
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->realTime_PitchBend(channel, pitch);
}
ADLMIDI_EXPORT void adl_rt_pitchBendML(struct ADL_MIDIPlayer *device, ADL_UInt8 channel, ADL_UInt8 msb, ADL_UInt8 lsb)
{
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->realTime_PitchBend(channel, msb, lsb);
}
ADLMIDI_EXPORT void adl_rt_bankChangeLSB(struct ADL_MIDIPlayer *device, ADL_UInt8 channel, ADL_UInt8 lsb)
{
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->realTime_BankChangeLSB(channel, lsb);
}
ADLMIDI_EXPORT void adl_rt_bankChangeMSB(struct ADL_MIDIPlayer *device, ADL_UInt8 channel, ADL_UInt8 msb)
{
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->realTime_BankChangeMSB(channel, msb);
}
ADLMIDI_EXPORT void adl_rt_bankChange(struct ADL_MIDIPlayer *device, ADL_UInt8 channel, ADL_SInt16 bank)
{
if(!device)
return;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
play->realTime_BankChange(channel, (uint16_t)bank);
}
ADLMIDI_EXPORT int adl_rt_systemExclusive(struct ADL_MIDIPlayer *device, const ADL_UInt8 *msg, size_t size)
{
if(!device)
return -1;
MidiPlayer *play = GET_MIDI_PLAYER(device);
assert(play);
return play->realTime_SysEx(msg, size);
}