qzdoom/src/po_man.cpp
Christoph Oelckers 3ed7a25d61 - added polyportal offset updates.
- removed the nodebuilder message for splitting polyobject subsectors because it is no longer relevant.
2016-04-17 17:10:11 +02:00

2322 lines
53 KiB
C++

//**************************************************************************
//**
//** PO_MAN.C : Heretic 2 : Raven Software, Corp.
//**
//** $RCSfile: po_man.c,v $
//** $Revision: 1.22 $
//** $Date: 95/09/28 18:20:56 $
//** $Author: cjr $
//**
//**************************************************************************
// HEADER FILES ------------------------------------------------------------
#include "doomdef.h"
#include "p_local.h"
#include "i_system.h"
#include "w_wad.h"
#include "m_swap.h"
#include "m_bbox.h"
#include "tables.h"
#include "s_sndseq.h"
#include "a_sharedglobal.h"
#include "p_3dmidtex.h"
#include "p_lnspec.h"
#include "r_data/r_interpolate.h"
#include "g_level.h"
#include "po_man.h"
#include "p_setup.h"
#include "vectors.h"
#include "farchive.h"
#include "p_blockmap.h"
#include "p_maputl.h"
#include "r_utility.h"
#include "p_blockmap.h"
// MACROS ------------------------------------------------------------------
#define PO_MAXPOLYSEGS 64
// TYPES -------------------------------------------------------------------
inline vertex_t *side_t::V1() const
{
return this == linedef->sidedef[0]? linedef->v1 : linedef->v2;
}
inline vertex_t *side_t::V2() const
{
return this == linedef->sidedef[0]? linedef->v2 : linedef->v1;
}
FArchive &operator<< (FArchive &arc, FPolyObj *&poly)
{
return arc.SerializePointer (polyobjs, (BYTE **)&poly, sizeof(FPolyObj));
}
FArchive &operator<< (FArchive &arc, const FPolyObj *&poly)
{
return arc.SerializePointer (polyobjs, (BYTE **)&poly, sizeof(FPolyObj));
}
inline FArchive &operator<< (FArchive &arc, podoortype_t &type)
{
BYTE val = (BYTE)type;
arc << val;
type = (podoortype_t)val;
return arc;
}
class DPolyAction : public DThinker
{
DECLARE_CLASS (DPolyAction, DThinker)
HAS_OBJECT_POINTERS
public:
DPolyAction (int polyNum);
void Serialize (FArchive &arc);
void Destroy();
void Stop();
double GetSpeed() const { return m_Speed; }
void StopInterpolation ();
protected:
DPolyAction ();
int m_PolyObj;
double m_Speed;
double m_Dist;
TObjPtr<DInterpolation> m_Interpolation;
void SetInterpolation ();
};
class DRotatePoly : public DPolyAction
{
DECLARE_CLASS (DRotatePoly, DPolyAction)
public:
DRotatePoly (int polyNum);
void Tick ();
private:
DRotatePoly ();
friend bool EV_RotatePoly (line_t *line, int polyNum, int speed, int byteAngle, int direction, bool overRide);
};
class DMovePoly : public DPolyAction
{
DECLARE_CLASS (DMovePoly, DPolyAction)
public:
DMovePoly (int polyNum);
void Serialize (FArchive &arc);
void Tick ();
protected:
DMovePoly ();
DAngle m_Angle;
DVector2 m_Speedv;
friend bool EV_MovePoly(line_t *line, int polyNum, double speed, DAngle angle, double dist, bool overRide);
};
class DMovePolyTo : public DPolyAction
{
DECLARE_CLASS(DMovePolyTo, DPolyAction)
public:
DMovePolyTo(int polyNum);
void Serialize(FArchive &arc);
void Tick();
protected:
DMovePolyTo();
DVector2 m_Speedv;
DVector2 m_Target;
friend bool EV_MovePolyTo(line_t *line, int polyNum, double speed, const DVector2 &pos, bool overRide);
};
class DPolyDoor : public DMovePoly
{
DECLARE_CLASS (DPolyDoor, DMovePoly)
public:
DPolyDoor (int polyNum, podoortype_t type);
void Serialize (FArchive &arc);
void Tick ();
protected:
DAngle m_Direction;
double m_TotalDist;
int m_Tics;
int m_WaitTics;
podoortype_t m_Type;
bool m_Close;
friend bool EV_OpenPolyDoor(line_t *line, int polyNum, double speed, DAngle angle, int delay, double distance, podoortype_t type);
private:
DPolyDoor ();
};
class FPolyMirrorIterator
{
FPolyObj *CurPoly;
int UsedPolys[100]; // tracks mirrored polyobjects we've seen
int NumUsedPolys;
public:
FPolyMirrorIterator(FPolyObj *poly);
FPolyObj *NextMirror();
};
// EXTERNAL FUNCTION PROTOTYPES --------------------------------------------
void PO_Init (void);
void P_AdjustLine(line_t *ld);
// PRIVATE FUNCTION PROTOTYPES ---------------------------------------------
static void UnLinkPolyobj (FPolyObj *po);
static void LinkPolyobj (FPolyObj *po);
static bool CheckMobjBlocking (side_t *seg, FPolyObj *po);
static void InitBlockMap (void);
static void IterFindPolySides (FPolyObj *po, side_t *side);
static void SpawnPolyobj (int index, int tag, int type);
static void TranslateToStartSpot (int tag, const DVector2 &origin);
static void DoMovePolyobj (FPolyObj *po, const DVector2 & move);
static void InitSegLists ();
static void KillSegLists ();
static FPolyNode *NewPolyNode();
static void FreePolyNode();
static void ReleaseAllPolyNodes();
// EXTERNAL DATA DECLARATIONS ----------------------------------------------
extern seg_t *segs;
// PUBLIC DATA DEFINITIONS -------------------------------------------------
polyblock_t **PolyBlockMap;
FPolyObj *polyobjs; // list of all poly-objects on the level
int po_NumPolyobjs;
polyspawns_t *polyspawns; // [RH] Let P_SpawnMapThings() find our thingies for us
// PRIVATE DATA DEFINITIONS ------------------------------------------------
static TArray<SDWORD> KnownPolySides;
static FPolyNode *FreePolyNodes;
// CODE --------------------------------------------------------------------
//==========================================================================
//
//
//
//==========================================================================
IMPLEMENT_POINTY_CLASS (DPolyAction)
DECLARE_POINTER(m_Interpolation)
END_POINTERS
DPolyAction::DPolyAction ()
{
}
void DPolyAction::Serialize (FArchive &arc)
{
Super::Serialize (arc);
arc << m_PolyObj << m_Speed << m_Dist << m_Interpolation;
}
DPolyAction::DPolyAction (int polyNum)
{
m_PolyObj = polyNum;
m_Speed = 0;
m_Dist = 0;
SetInterpolation ();
}
void DPolyAction::Destroy()
{
FPolyObj *poly = PO_GetPolyobj (m_PolyObj);
if (poly->specialdata == this)
{
poly->specialdata = NULL;
}
StopInterpolation();
Super::Destroy();
}
void DPolyAction::Stop()
{
FPolyObj *poly = PO_GetPolyobj(m_PolyObj);
SN_StopSequence(poly);
Destroy();
}
void DPolyAction::SetInterpolation ()
{
FPolyObj *poly = PO_GetPolyobj (m_PolyObj);
m_Interpolation = poly->SetInterpolation();
}
void DPolyAction::StopInterpolation ()
{
if (m_Interpolation != NULL)
{
m_Interpolation->DelRef();
m_Interpolation = NULL;
}
}
//==========================================================================
//
//
//
//==========================================================================
IMPLEMENT_CLASS (DRotatePoly)
DRotatePoly::DRotatePoly ()
{
}
DRotatePoly::DRotatePoly (int polyNum)
: Super (polyNum)
{
}
//==========================================================================
//
//
//
//==========================================================================
IMPLEMENT_CLASS (DMovePoly)
DMovePoly::DMovePoly ()
{
}
void DMovePoly::Serialize (FArchive &arc)
{
Super::Serialize (arc);
arc << m_Angle << m_Speed;
}
DMovePoly::DMovePoly (int polyNum)
: Super (polyNum)
{
m_Angle = 0.;
m_Speedv = { 0,0 };
}
//==========================================================================
//
//
//
//
//==========================================================================
IMPLEMENT_CLASS(DMovePolyTo)
DMovePolyTo::DMovePolyTo()
{
}
void DMovePolyTo::Serialize(FArchive &arc)
{
Super::Serialize(arc);
arc << m_Speedv << m_Target;
}
DMovePolyTo::DMovePolyTo(int polyNum)
: Super(polyNum)
{
m_Speedv = m_Target = { 0,0 };
}
//==========================================================================
//
//
//
//==========================================================================
IMPLEMENT_CLASS (DPolyDoor)
DPolyDoor::DPolyDoor ()
{
}
void DPolyDoor::Serialize (FArchive &arc)
{
Super::Serialize (arc);
arc << m_Direction << m_TotalDist << m_Tics << m_WaitTics << m_Type << m_Close;
}
DPolyDoor::DPolyDoor (int polyNum, podoortype_t type)
: Super (polyNum), m_Type (type)
{
m_Direction = 0.;
m_TotalDist = 0;
m_Tics = 0;
m_WaitTics = 0;
m_Close = false;
}
// ===== Polyobj Event Code =====
//==========================================================================
//
// T_RotatePoly
//
//==========================================================================
void DRotatePoly::Tick ()
{
FPolyObj *poly = PO_GetPolyobj (m_PolyObj);
if (poly == NULL) return;
// Don't let non-perpetual polyobjs overshoot their targets.
if (m_Dist != -1 && m_Dist < fabs(m_Speed))
{
m_Speed = m_Speed < 0 ? -m_Dist : m_Dist;
}
if (poly->RotatePolyobj (m_Speed))
{
if (m_Dist == -1)
{ // perpetual polyobj
return;
}
m_Dist -= fabs(m_Speed);
if (m_Dist == 0)
{
SN_StopSequence (poly);
Destroy ();
}
}
}
//==========================================================================
//
// EV_RotatePoly
//
//==========================================================================
bool EV_RotatePoly (line_t *line, int polyNum, int speed, int byteAngle,
int direction, bool overRide)
{
DRotatePoly *pe = NULL;
FPolyObj *poly;
if ((poly = PO_GetPolyobj(polyNum)) == NULL)
{
Printf("EV_RotatePoly: Invalid polyobj num: %d\n", polyNum);
return false;
}
FPolyMirrorIterator it(poly);
while ((poly = it.NextMirror()) != NULL)
{
if ((poly->specialdata != NULL || poly->bBlocked) && !overRide)
{ // poly is already in motion
break;
}
if (poly->bHasPortals == 2)
{
// cannot do rotations on linked polyportals.
break;
}
pe = new DRotatePoly(poly->tag);
poly->specialdata = pe;
poly->bBlocked = false;
if (byteAngle != 0)
{
if (byteAngle == 255)
{
pe->m_Dist = -1.;
}
else
{
pe->m_Dist = byteAngle*(90./64); // Angle
}
}
else
{
pe->m_Dist = 360.;
}
pe->m_Speed = speed*direction*(90./(64<<3));
SN_StartSequence (poly, poly->seqType, SEQ_DOOR, 0);
direction = -direction; // Reverse the direction
}
return pe != NULL; // Return true if something started moving.
}
//==========================================================================
//
// T_MovePoly
//
//==========================================================================
void DMovePoly::Tick ()
{
FPolyObj *poly = PO_GetPolyobj (m_PolyObj);
if (poly != NULL)
{
if (poly->MovePolyobj (m_Speedv))
{
double absSpeed = fabs (m_Speed);
m_Dist -= absSpeed;
if (m_Dist <= 0)
{
SN_StopSequence (poly);
Destroy ();
}
else if (m_Dist < absSpeed)
{
m_Speed = m_Dist * (m_Speed < 0 ? -1 : 1);
m_Speedv = m_Angle.ToVector(m_Speed);
}
poly->UpdateLinks();
}
}
}
//==========================================================================
//
// EV_MovePoly
//
//==========================================================================
bool EV_MovePoly (line_t *line, int polyNum, double speed, DAngle angle,
double dist, bool overRide)
{
DMovePoly *pe = NULL;
FPolyObj *poly;
DAngle an = angle;
if ((poly = PO_GetPolyobj(polyNum)) == NULL)
{
Printf("EV_MovePoly: Invalid polyobj num: %d\n", polyNum);
return false;
}
FPolyMirrorIterator it(poly);
while ((poly = it.NextMirror()) != NULL)
{
if ((poly->specialdata != NULL || poly->bBlocked) && !overRide)
{ // poly is already in motion
break;
}
pe = new DMovePoly(poly->tag);
poly->specialdata = pe;
poly->bBlocked = false;
pe->m_Dist = dist; // Distance
pe->m_Speed = speed;
pe->m_Angle = angle;
pe->m_Speedv = angle.ToVector(speed);
SN_StartSequence (poly, poly->seqType, SEQ_DOOR, 0);
// Do not interpolate very fast moving polyobjects. The minimum tic count is
// 3 instead of 2, because the moving crate effect in Massmouth 2, Hostitality
// that this fixes isn't quite fast enough to move the crate back to its start
// in just 1 tic.
if (dist/speed <= 2)
{
pe->StopInterpolation ();
}
angle += 180.; // Reverse the angle.
}
return pe != NULL; // Return true if something started moving.
}
//==========================================================================
//
// DMovePolyTo :: Tick
//
//==========================================================================
void DMovePolyTo::Tick ()
{
FPolyObj *poly = PO_GetPolyobj (m_PolyObj);
if (poly != NULL)
{
if (poly->MovePolyobj (m_Speedv))
{
double absSpeed = fabs (m_Speed);
m_Dist -= absSpeed;
if (m_Dist <= 0)
{
SN_StopSequence (poly);
Destroy ();
}
else if (m_Dist < absSpeed)
{
m_Speed = m_Dist * (m_Speed < 0 ? -1 : 1);
m_Speedv = m_Target - poly->StartSpot.pos;
}
poly->UpdateLinks();
}
}
}
//==========================================================================
//
// EV_MovePolyTo
//
//==========================================================================
bool EV_MovePolyTo(line_t *line, int polyNum, double speed, const DVector2 &targ, bool overRide)
{
DMovePolyTo *pe = NULL;
FPolyObj *poly;
DVector2 dist;
double distlen;
if ((poly = PO_GetPolyobj(polyNum)) == NULL)
{
Printf("EV_MovePolyTo: Invalid polyobj num: %d\n", polyNum);
return false;
}
FPolyMirrorIterator it(poly);
dist = targ - poly->StartSpot.pos;
distlen = dist.MakeUnit();
while ((poly = it.NextMirror()) != NULL)
{
if ((poly->specialdata != NULL || poly->bBlocked) && !overRide)
{ // poly is already in motion
break;
}
pe = new DMovePolyTo(poly->tag);
poly->specialdata = pe;
poly->bBlocked = false;
pe->m_Dist = distlen;
pe->m_Speed = speed;
pe->m_Speedv = dist * speed;
pe->m_Target = poly->StartSpot.pos + dist * distlen;
if ((pe->m_Dist / pe->m_Speed) <= 2)
{
pe->StopInterpolation();
}
dist = -dist; // reverse the direction
}
return pe != NULL; // Return true if something started moving.
}
//==========================================================================
//
// T_PolyDoor
//
//==========================================================================
void DPolyDoor::Tick ()
{
FPolyObj *poly = PO_GetPolyobj (m_PolyObj);
if (poly == NULL) return;
if (m_Tics)
{
if (!--m_Tics)
{
SN_StartSequence (poly, poly->seqType, SEQ_DOOR, m_Close);
}
return;
}
switch (m_Type)
{
case PODOOR_SLIDE:
if (m_Dist <= 0 || poly->MovePolyobj (m_Speedv))
{
double absSpeed = fabs (m_Speed);
m_Dist -= absSpeed;
if (m_Dist <= 0)
{
SN_StopSequence (poly);
if (!m_Close && m_WaitTics >= 0)
{
m_Dist = m_TotalDist;
m_Close = true;
m_Tics = m_WaitTics;
m_Direction = -m_Direction;
m_Speedv = -m_Speedv;
}
else
{
// if set to wait infinitely, Hexen kept the dead thinker to block the polyobject from getting activated again but that causes some problems
// with the subsectorlinks and the interpolation. Better delete the thinker and use a different means to block it.
if (!m_Close) poly->bBlocked = true;
Destroy ();
}
}
poly->UpdateLinks();
}
else
{
if (poly->crush || !m_Close)
{ // continue moving if the poly is a crusher, or is opening
return;
}
else
{ // open back up
m_Dist = m_TotalDist - m_Dist;
m_Direction = -m_Direction;
m_Speedv = -m_Speedv;
m_Close = false;
SN_StartSequence (poly, poly->seqType, SEQ_DOOR, 0);
}
}
break;
case PODOOR_SWING:
if (m_Dist <= 0 || poly->RotatePolyobj (m_Speed))
{
double absSpeed = fabs (m_Speed);
m_Dist -= absSpeed;
if (m_Dist <= 0)
{
SN_StopSequence (poly);
if (!m_Close && m_WaitTics >= 0)
{
m_Dist = m_TotalDist;
m_Close = true;
m_Tics = m_WaitTics;
m_Speed = -m_Speed;
}
else
{
if (!m_Close) poly->bBlocked = true;
Destroy ();
}
}
}
else
{
if(poly->crush || !m_Close)
{ // continue moving if the poly is a crusher, or is opening
return;
}
else
{ // open back up and rewait
m_Dist = m_TotalDist - m_Dist;
m_Speed = -m_Speed;
m_Close = false;
SN_StartSequence (poly, poly->seqType, SEQ_DOOR, 0);
}
}
break;
default:
break;
}
}
//==========================================================================
//
// EV_OpenPolyDoor
//
//==========================================================================
bool EV_OpenPolyDoor(line_t *line, int polyNum, double speed, DAngle angle, int delay, double distance, podoortype_t type)
{
DPolyDoor *pd = NULL;
FPolyObj *poly;
int swingdir = 1; // ADD: PODOOR_SWINGL, PODOOR_SWINGR
if ((poly = PO_GetPolyobj(polyNum)) == NULL)
{
Printf("EV_OpenPolyDoor: Invalid polyobj num: %d\n", polyNum);
return false;
}
FPolyMirrorIterator it(poly);
while ((poly = it.NextMirror()) != NULL)
{
if ((poly->specialdata != NULL || poly->bBlocked))
{ // poly is already moving
break;
}
if (poly->bHasPortals == 2 && type == PODOOR_SWING)
{
// cannot do rotations on linked polyportals.
break;
}
pd = new DPolyDoor(poly->tag, type);
poly->specialdata = pd;
if (type == PODOOR_SLIDE)
{
pd->m_WaitTics = delay;
pd->m_Speed = speed;
pd->m_Dist = pd->m_TotalDist = distance; // Distance
pd->m_Direction = angle;
pd->m_Speedv = angle.ToVector(speed);
SN_StartSequence (poly, poly->seqType, SEQ_DOOR, 0);
angle += 180.; // reverse the angle
}
else if (type == PODOOR_SWING)
{
pd->m_WaitTics = delay;
pd->m_Direction.Degrees = swingdir;
pd->m_Speed = (speed*swingdir*(90. / 64)) / 8;
pd->m_Dist = pd->m_TotalDist = angle.Degrees;
SN_StartSequence (poly, poly->seqType, SEQ_DOOR, 0);
swingdir = -swingdir; // reverse the direction
}
}
return pd != NULL; // Return true if something started moving.
}
//==========================================================================
//
// EV_StopPoly
//
//==========================================================================
bool EV_StopPoly(int polynum)
{
FPolyObj *poly;
if (NULL != (poly = PO_GetPolyobj(polynum)))
{
if (poly->specialdata != NULL)
{
poly->specialdata->Stop();
}
return true;
}
return false;
}
// ===== Higher Level Poly Interface code =====
//==========================================================================
//
// PO_GetPolyobj
//
//==========================================================================
FPolyObj *PO_GetPolyobj (int polyNum)
{
int i;
for (i = 0; i < po_NumPolyobjs; i++)
{
if (polyobjs[i].tag == polyNum)
{
return &polyobjs[i];
}
}
return NULL;
}
//==========================================================================
//
//
//
//==========================================================================
FPolyObj::FPolyObj()
{
StartSpot.pos = { 0,0 };
Angle = 0.;
tag = 0;
memset(bbox, 0, sizeof(bbox));
validcount = 0;
crush = 0;
bHurtOnTouch = false;
seqType = 0;
Size = 0;
bBlocked = false;
subsectorlinks = NULL;
specialdata = NULL;
interpolation = NULL;
}
//==========================================================================
//
// GetPolyobjMirror
//
//==========================================================================
int FPolyObj::GetMirror()
{
return MirrorNum;
}
//==========================================================================
//
// ThrustMobj
//
//==========================================================================
void FPolyObj::ThrustMobj (AActor *actor, side_t *side)
{
DAngle thrustAngle;
DPolyAction *pe;
double force;
if (!(actor->flags&MF_SHOOTABLE) && !actor->player)
{
return;
}
vertex_t *v1 = side->V1();
vertex_t *v2 = side->V2();
thrustAngle = (v2->fPos() - v1->fPos()).Angle() - 90.;
pe = static_cast<DPolyAction *>(specialdata);
if (pe)
{
if (pe->IsKindOf (RUNTIME_CLASS (DRotatePoly)))
{
force = pe->GetSpeed() * (90. / 2048); // For DRotatePoly m_Speed stores an angle which needs to be converted differently
}
else
{
force = pe->GetSpeed() / 8;
}
force = clamp(force, 1., 4.);
}
else
{
force = 1;
}
DVector2 thrust = thrustAngle.ToVector(force);
actor->Vel += thrust;
if (crush)
{
DVector2 pos = actor->Vec2Offset(thrust.X, thrust.Y);
if (bHurtOnTouch || !P_CheckMove (actor, pos))
{
int newdam = P_DamageMobj (actor, NULL, NULL, crush, NAME_Crush);
P_TraceBleed (newdam > 0 ? newdam : crush, actor);
}
}
if (level.flags2 & LEVEL2_POLYGRIND) actor->Grind(false); // crush corpses that get caught in a polyobject's way
}
//==========================================================================
//
// UpdateSegBBox
//
//==========================================================================
void FPolyObj::UpdateLinks()
{
if (bHasPortals == 2)
{
TMap<int, bool> processed;
for (unsigned i = 0; i < Linedefs.Size(); i++)
{
if (Linedefs[i]->isLinePortal())
{
FLinePortal *port = Linedefs[i]->getPortal();
if (port->mType == PORTT_LINKED)
{
DVector2 old = port->mDisplacement;
port->mDisplacement = port->mDestination->v2->fPos() - port->mOrigin->v1->fPos();
FLinePortal *port2 = port->mDestination->getPortal();
if (port2) port2->mDisplacement = -port->mDisplacement;
int destgroup = port->mDestination->frontsector->PortalGroup;
bool *done = processed.CheckKey(destgroup);
if (!done || !*done)
{
processed[destgroup] = true;
DVector2 delta = port->mDisplacement - old;
Displacements.MoveGroup(destgroup, delta);
}
}
}
}
}
}
void FPolyObj::UpdateBBox ()
{
for(unsigned i=0;i<Linedefs.Size(); i++)
{
P_AdjustLine(Linedefs[i]);
}
CalcCenter();
}
void FPolyObj::CalcCenter()
{
DVector2 c = { 0, 0 };
for(unsigned i=0;i<Vertices.Size(); i++)
{
c += Vertices[i]->fPos();
}
CenterSpot.pos = c / Vertices.Size();
}
//==========================================================================
//
// PO_MovePolyobj
//
//==========================================================================
bool FPolyObj::MovePolyobj (const DVector2 &pos, bool force)
{
FBoundingBox oldbounds = Bounds;
UnLinkPolyobj ();
DoMovePolyobj (pos);
if (!force)
{
bool blocked = false;
for(unsigned i=0;i < Sidedefs.Size(); i++)
{
if (CheckMobjBlocking(Sidedefs[i]))
{
blocked = true;
}
}
if (blocked)
{
DoMovePolyobj (-pos);
LinkPolyobj();
return false;
}
}
StartSpot.pos += pos;
CenterSpot.pos += pos;
LinkPolyobj ();
ClearSubsectorLinks();
RecalcActorFloorCeil(Bounds | oldbounds);
return true;
}
//==========================================================================
//
// DoMovePolyobj
//
//==========================================================================
void FPolyObj::DoMovePolyobj (const DVector2 &pos)
{
for(unsigned i=0;i < Vertices.Size(); i++)
{
Vertices[i]->set(Vertices[i]->fX() + pos.X, Vertices[i]->fY() + pos.Y);
PrevPts[i].pos += pos;
}
for (unsigned i = 0; i < Linedefs.Size(); i++)
{
Linedefs[i]->bbox[BOXTOP] += pos.Y;
Linedefs[i]->bbox[BOXBOTTOM] += pos.Y;
Linedefs[i]->bbox[BOXLEFT] += pos.X;
Linedefs[i]->bbox[BOXRIGHT] += pos.X;
}
}
//==========================================================================
//
// RotatePt
//
//==========================================================================
static void RotatePt (DAngle an, DVector2 &out, const DVector2 &start)
{
DVector2 tr = out;
double s = an.Sin();
double c = an.Cos();
out.X = tr.X * c - tr.Y * s + start.X;
out.Y = tr.X * s + tr.Y * c + start.Y;
}
//==========================================================================
//
// PO_RotatePolyobj
//
//==========================================================================
bool FPolyObj::RotatePolyobj (DAngle angle, bool fromsave)
{
DAngle an;
bool blocked;
FBoundingBox oldbounds = Bounds;
an = Angle + angle;
UnLinkPolyobj();
for(unsigned i=0;i < Vertices.Size(); i++)
{
PrevPts[i].pos = Vertices[i]->fPos();
FPolyVertex torot = OriginalPts[i];
RotatePt(an, torot.pos, StartSpot.pos);
Vertices[i]->set(torot.pos.X, torot.pos.Y);
}
blocked = false;
validcount++;
UpdateBBox();
// If we are loading a savegame we do not really want to damage actors and be blocked by them. This can also cause crashes when trying to damage incompletely deserialized player pawns.
if (!fromsave)
{
for (unsigned i = 0; i < Sidedefs.Size(); i++)
{
if (CheckMobjBlocking(Sidedefs[i]))
{
blocked = true;
}
}
if (blocked)
{
for(unsigned i=0;i < Vertices.Size(); i++)
{
Vertices[i]->set(PrevPts[i].pos.X, PrevPts[i].pos.Y);
}
UpdateBBox();
LinkPolyobj();
return false;
}
}
Angle += angle;
LinkPolyobj();
ClearSubsectorLinks();
RecalcActorFloorCeil(Bounds | oldbounds);
return true;
}
//==========================================================================
//
// UnLinkPolyobj
//
//==========================================================================
void FPolyObj::UnLinkPolyobj ()
{
polyblock_t *link;
int i, j;
int index;
// remove the polyobj from each blockmap section
for(j = bbox[BOXBOTTOM]; j <= bbox[BOXTOP]; j++)
{
index = j*bmapwidth;
for(i = bbox[BOXLEFT]; i <= bbox[BOXRIGHT]; i++)
{
if(i >= 0 && i < bmapwidth && j >= 0 && j < bmapheight)
{
link = PolyBlockMap[index+i];
while(link != NULL && link->polyobj != this)
{
link = link->next;
}
if(link == NULL)
{ // polyobj not located in the link cell
continue;
}
link->polyobj = NULL;
}
}
}
}
//==========================================================================
//
// CheckMobjBlocking
//
//==========================================================================
bool FPolyObj::CheckMobjBlocking (side_t *sd)
{
static TArray<AActor *> checker;
FBlockNode *block;
AActor *mobj;
int i, j, k;
int left, right, top, bottom;
line_t *ld;
bool blocked;
bool performBlockingThrust;
ld = sd->linedef;
top = GetBlockY(ld->bbox[BOXTOP]);
bottom = GetBlockY(ld->bbox[BOXBOTTOM]);
left = GetBlockX(ld->bbox[BOXLEFT]);
right = GetBlockX(ld->bbox[BOXRIGHT]);
blocked = false;
checker.Clear();
bottom = bottom < 0 ? 0 : bottom;
bottom = bottom >= bmapheight ? bmapheight-1 : bottom;
top = top < 0 ? 0 : top;
top = top >= bmapheight ? bmapheight-1 : top;
left = left < 0 ? 0 : left;
left = left >= bmapwidth ? bmapwidth-1 : left;
right = right < 0 ? 0 : right;
right = right >= bmapwidth ? bmapwidth-1 : right;
for (j = bottom*bmapwidth; j <= top*bmapwidth; j += bmapwidth)
{
for (i = left; i <= right; i++)
{
for (block = blocklinks[j+i]; block != NULL; block = block->NextActor)
{
mobj = block->Me;
for (k = (int)checker.Size()-1; k >= 0; --k)
{
if (checker[k] == mobj)
{
break;
}
}
if (k < 0)
{
checker.Push (mobj);
if ((mobj->flags&MF_SOLID) && !(mobj->flags&MF_NOCLIP))
{
FLineOpening open;
open.top = LINEOPEN_MAX;
open.bottom = LINEOPEN_MIN;
// [TN] Check wether this actor gets blocked by the line.
if (ld->backsector != NULL &&
!(ld->flags & (ML_BLOCKING|ML_BLOCKEVERYTHING))
&& !(ld->flags & ML_BLOCK_PLAYERS && mobj->player)
&& !(ld->flags & ML_BLOCKMONSTERS && mobj->flags3 & MF3_ISMONSTER)
&& !((mobj->flags & MF_FLOAT) && (ld->flags & ML_BLOCK_FLOATERS))
&& (!(ld->flags & ML_3DMIDTEX) ||
(!P_LineOpening_3dMidtex(mobj, ld, open) &&
(mobj->Top() < open.top)
) || (open.abovemidtex && mobj->Z() > mobj->floorz))
)
{
// [BL] We can't just continue here since we must
// determine if the line's backsector is going to
// be blocked.
performBlockingThrust = false;
}
else
{
performBlockingThrust = true;
}
DVector2 pos = mobj->PosRelative(ld);
FBoundingBox box(pos.X, pos.Y, mobj->radius);
if (!box.inRange(ld) || box.BoxOnLineSide(ld) != -1)
{
continue;
}
if (ld->isLinePortal())
{
// Fixme: this still needs to figure out if the polyobject move made the player cross the portal line.
if (P_TryMove(mobj, mobj->Pos(), false))
{
continue;
}
}
// We have a two-sided linedef so we should only check one side
// so that the thrust from both sides doesn't cancel each other out.
// Best use the one facing the player and ignore the back side.
if (ld->sidedef[1] != NULL)
{
int side = P_PointOnLineSidePrecise(mobj->Pos(), ld);
if (ld->sidedef[side] != sd)
{
continue;
}
// [BL] See if we hit below the floor/ceiling of the poly.
else if(!performBlockingThrust && (
mobj->Z() < ld->sidedef[!side]->sector->GetSecPlane(sector_t::floor).ZatPoint(mobj) ||
mobj->Top() > ld->sidedef[!side]->sector->GetSecPlane(sector_t::ceiling).ZatPoint(mobj)
))
{
performBlockingThrust = true;
}
}
if(performBlockingThrust)
{
ThrustMobj (mobj, sd);
blocked = true;
}
else
continue;
}
}
}
}
}
return blocked;
}
//==========================================================================
//
// LinkPolyobj
//
//==========================================================================
void FPolyObj::LinkPolyobj ()
{
polyblock_t **link;
polyblock_t *tempLink;
// calculate the polyobj bbox
Bounds.ClearBox();
for(unsigned i = 0; i < Sidedefs.Size(); i++)
{
vertex_t *vt;
vt = Sidedefs[i]->linedef->v1;
Bounds.AddToBox(vt->fPos());
vt = Sidedefs[i]->linedef->v2;
Bounds.AddToBox(vt->fPos());
}
bbox[BOXRIGHT] = GetBlockX(Bounds.Right());
bbox[BOXLEFT] = GetBlockX(Bounds.Left());
bbox[BOXTOP] = GetBlockY(Bounds.Top());
bbox[BOXBOTTOM] = GetBlockY(Bounds.Bottom());
// add the polyobj to each blockmap section
for(int j = bbox[BOXBOTTOM]*bmapwidth; j <= bbox[BOXTOP]*bmapwidth;
j += bmapwidth)
{
for(int i = bbox[BOXLEFT]; i <= bbox[BOXRIGHT]; i++)
{
if(i >= 0 && i < bmapwidth && j >= 0 && j < bmapheight*bmapwidth)
{
link = &PolyBlockMap[j+i];
if(!(*link))
{ // Create a new link at the current block cell
*link = new polyblock_t;
(*link)->next = NULL;
(*link)->prev = NULL;
(*link)->polyobj = this;
continue;
}
else
{
tempLink = *link;
while(tempLink->next != NULL && tempLink->polyobj != NULL)
{
tempLink = tempLink->next;
}
}
if(tempLink->polyobj == NULL)
{
tempLink->polyobj = this;
continue;
}
else
{
tempLink->next = new polyblock_t;
tempLink->next->next = NULL;
tempLink->next->prev = tempLink;
tempLink->next->polyobj = this;
}
}
// else, don't link the polyobj, since it's off the map
}
}
}
//===========================================================================
//
// FPolyObj :: RecalcActorFloorCeil
//
// For each actor within the bounding box, recalculate its floorz, ceilingz,
// and related values.
//
//===========================================================================
void FPolyObj::RecalcActorFloorCeil(FBoundingBox bounds) const
{
FBlockThingsIterator it(bounds);
AActor *actor;
while ((actor = it.Next()) != NULL)
{
P_FindFloorCeiling(actor);
}
}
//===========================================================================
//
// PO_ClosestPoint
//
// Given a point (x,y), returns the point (ox,oy) on the polyobject's walls
// that is nearest to (x,y). Also returns the seg this point came from.
//
//===========================================================================
void FPolyObj::ClosestPoint(const DVector2 &fpos, DVector2 &out, side_t **side) const
{
unsigned int i;
double x = fpos.X, y = fpos.Y;
double bestdist = HUGE_VAL;
double bestx = 0, besty = 0;
side_t *bestline = NULL;
for (i = 0; i < Sidedefs.Size(); ++i)
{
vertex_t *v1 = Sidedefs[i]->V1();
vertex_t *v2 = Sidedefs[i]->V2();
double a = v2->fX() - v1->fX();
double b = v2->fY() - v1->fY();
double den = a*a + b*b;
double ix, iy, dist;
if (den == 0)
{ // Line is actually a point!
ix = v1->fX();
iy = v1->fY();
}
else
{
double num = (x - v1->fX()) * a + (y - v1->fY()) * b;
double u = num / den;
if (u <= 0)
{
ix = v1->fX();
iy = v1->fY();
}
else if (u >= 1)
{
ix = v2->fX();
iy = v2->fY();
}
else
{
ix = v1->fX() + u * a;
iy = v1->fY() + u * b;
}
}
a = (ix - x);
b = (iy - y);
dist = a*a + b*b;
if (dist < bestdist)
{
bestdist = dist;
bestx = ix;
besty = iy;
bestline = Sidedefs[i];
}
}
out = { bestx, besty };
if (side != NULL)
{
*side = bestline;
}
}
//==========================================================================
//
// InitBlockMap
//
//==========================================================================
static void InitBlockMap (void)
{
int i;
PolyBlockMap = new polyblock_t *[bmapwidth*bmapheight];
memset (PolyBlockMap, 0, bmapwidth*bmapheight*sizeof(polyblock_t *));
for (i = 0; i < po_NumPolyobjs; i++)
{
polyobjs[i].LinkPolyobj();
}
}
//==========================================================================
//
// InitSideLists [RH]
//
// Group sides by vertex and collect side that are known to belong to a
// polyobject so that they can be initialized fast.
//==========================================================================
static void InitSideLists ()
{
for (int i = 0; i < numsides; ++i)
{
if (sides[i].linedef != NULL &&
(sides[i].linedef->special == Polyobj_StartLine ||
sides[i].linedef->special == Polyobj_ExplicitLine))
{
KnownPolySides.Push (i);
}
}
}
//==========================================================================
//
// KillSideLists [RH]
//
//==========================================================================
static void KillSideLists ()
{
KnownPolySides.Clear ();
KnownPolySides.ShrinkToFit ();
}
//==========================================================================
//
// AddPolyVert
//
// Helper function for IterFindPolySides()
//
//==========================================================================
static void AddPolyVert(TArray<DWORD> &vnum, DWORD vert)
{
for (unsigned int i = vnum.Size() - 1; i-- != 0; )
{
if (vnum[i] == vert)
{ // Already in the set. No need to add it.
return;
}
}
vnum.Push(vert);
}
//==========================================================================
//
// IterFindPolySides
//
// Beginning with the first vertex of the starting side, for each vertex
// in vnum, add all the sides that use it as a first vertex to the polyobj,
// and add all their second vertices to vnum. This continues until there
// are no new vertices in vnum.
//
//==========================================================================
static void IterFindPolySides (FPolyObj *po, side_t *side)
{
static TArray<DWORD> vnum;
unsigned int vnumat;
assert(sidetemp != NULL);
vnum.Clear();
vnum.Push(DWORD(side->V1() - vertexes));
vnumat = 0;
while (vnum.Size() != vnumat)
{
DWORD sidenum = sidetemp[vnum[vnumat++]].b.first;
while (sidenum != NO_SIDE)
{
po->Sidedefs.Push(&sides[sidenum]);
AddPolyVert(vnum, DWORD(sides[sidenum].V2() - vertexes));
sidenum = sidetemp[sidenum].b.next;
}
}
}
//==========================================================================
//
// SpawnPolyobj
//
//==========================================================================
static int posicmp(const void *a, const void *b)
{
return (*(const side_t **)a)->linedef->args[1] - (*(const side_t **)b)->linedef->args[1];
}
static void SpawnPolyobj (int index, int tag, int type)
{
unsigned int ii;
int i;
FPolyObj *po = &polyobjs[index];
for (ii = 0; ii < KnownPolySides.Size(); ++ii)
{
i = KnownPolySides[ii];
if (i < 0)
{
continue;
}
po->bBlocked = false;
po->bHasPortals = 0;
side_t *sd = &sides[i];
if (sd->linedef->special == Polyobj_StartLine &&
sd->linedef->args[0] == tag)
{
if (po->Sidedefs.Size() > 0)
{
I_Error ("SpawnPolyobj: Polyobj %d already spawned.\n", tag);
}
sd->linedef->special = 0;
sd->linedef->args[0] = 0;
IterFindPolySides(&polyobjs[index], sd);
po->MirrorNum = sd->linedef->args[1];
po->crush = (type != SMT_PolySpawn) ? 3 : 0;
po->bHurtOnTouch = (type == SMT_PolySpawnHurt);
po->tag = tag;
po->seqType = sd->linedef->args[2];
if (po->seqType < 0 || po->seqType > 63)
{
po->seqType = 0;
}
break;
}
}
if (po->Sidedefs.Size() == 0)
{
// didn't find a polyobj through PO_LINE_START
TArray<side_t *> polySideList;
unsigned int psIndexOld;
psIndexOld = po->Sidedefs.Size();
for (ii = 0; ii < KnownPolySides.Size(); ++ii)
{
i = KnownPolySides[ii];
if (i >= 0 &&
sides[i].linedef->special == Polyobj_ExplicitLine &&
sides[i].linedef->args[0] == tag)
{
if (!sides[i].linedef->args[1])
{
I_Error("SpawnPolyobj: Explicit line missing order number in poly %d, linedef %d.\n", tag, int(sides[i].linedef - lines));
}
po->Sidedefs.Push (&sides[i]);
}
}
qsort(&po->Sidedefs[0], po->Sidedefs.Size(), sizeof(po->Sidedefs[0]), posicmp);
if (po->Sidedefs.Size() > 0)
{
po->crush = (type != SMT_PolySpawn) ? 3 : 0;
po->bHurtOnTouch = (type == SMT_PolySpawnHurt);
po->tag = tag;
po->seqType = po->Sidedefs[0]->linedef->args[3];
po->MirrorNum = po->Sidedefs[0]->linedef->args[2];
}
else
I_Error ("SpawnPolyobj: Poly %d does not exist\n", tag);
}
validcount++;
for(unsigned int i=0; i<po->Sidedefs.Size(); i++)
{
line_t *l = po->Sidedefs[i]->linedef;
if (l->validcount != validcount)
{
FLinePortal *port = l->getPortal();
if (port && (port->mDefFlags & PORTF_PASSABLE))
{
int type = port->mType == PORTT_LINKED ? 2 : 1;
if (po->bHasPortals < type) po->bHasPortals = (BYTE)type;
}
l->validcount = validcount;
po->Linedefs.Push(l);
vertex_t *v = l->v1;
int j;
for(j = po->Vertices.Size() - 1; j >= 0; j--)
{
if (po->Vertices[j] == v) break;
}
if (j < 0) po->Vertices.Push(v);
v = l->v2;
for(j = po->Vertices.Size() - 1; j >= 0; j--)
{
if (po->Vertices[j] == v) break;
}
if (j < 0) po->Vertices.Push(v);
}
}
po->Sidedefs.ShrinkToFit();
po->Linedefs.ShrinkToFit();
po->Vertices.ShrinkToFit();
}
//==========================================================================
//
// TranslateToStartSpot
//
//==========================================================================
static void TranslateToStartSpot (int tag, const DVector2 &origin)
{
FPolyObj *po;
DVector2 delta;
po = NULL;
for (int i = 0; i < po_NumPolyobjs; i++)
{
if (polyobjs[i].tag == tag)
{
po = &polyobjs[i];
break;
}
}
if (po == NULL)
{ // didn't match the tag with a polyobj tag
I_Error("TranslateToStartSpot: Unable to match polyobj tag: %d\n", tag);
}
if (po->Sidedefs.Size() == 0)
{
I_Error ("TranslateToStartSpot: Anchor point located without a StartSpot point: %d\n", tag);
}
po->OriginalPts.Resize(po->Sidedefs.Size());
po->PrevPts.Resize(po->Sidedefs.Size());
delta = origin - po->StartSpot.pos;
for (unsigned i = 0; i < po->Sidedefs.Size(); i++)
{
po->Sidedefs[i]->Flags |= WALLF_POLYOBJ;
}
for (unsigned i = 0; i < po->Linedefs.Size(); i++)
{
po->Linedefs[i]->bbox[BOXTOP] -= delta.Y;
po->Linedefs[i]->bbox[BOXBOTTOM] -= delta.Y;
po->Linedefs[i]->bbox[BOXLEFT] -= delta.X;
po->Linedefs[i]->bbox[BOXRIGHT] -= delta.X;
}
for (unsigned i = 0; i < po->Vertices.Size(); i++)
{
po->Vertices[i]->set(po->Vertices[i]->fX() - delta.X, po->Vertices[i]->fY() - delta.Y);
po->OriginalPts[i].pos = po->Vertices[i]->fPos() - po->StartSpot.pos;
}
po->CalcCenter();
// For compatibility purposes
po->CenterSubsector = R_PointInSubsector(po->CenterSpot.pos);
}
//==========================================================================
//
// PO_Init
//
//==========================================================================
void PO_Init (void)
{
// [RH] Hexen found the polyobject-related things by reloading the map's
// THINGS lump here and scanning through it. I have P_SpawnMapThing()
// record those things instead, so that in here we simply need to
// look at the polyspawns list.
polyspawns_t *polyspawn, **prev;
int polyIndex;
// [RH] Make this faster
InitSideLists ();
polyobjs = new FPolyObj[po_NumPolyobjs];
polyIndex = 0; // index polyobj number
// Find the startSpot points, and spawn each polyobj
for (polyspawn = polyspawns, prev = &polyspawns; polyspawn;)
{
// 9301 (3001) = no crush, 9302 (3002) = crushing, 9303 = hurting touch
if (polyspawn->type >= SMT_PolySpawn && polyspawn->type <= SMT_PolySpawnHurt)
{
// Polyobj StartSpot Pt.
polyobjs[polyIndex].StartSpot.pos = polyspawn->pos;
SpawnPolyobj(polyIndex, polyspawn->angle, polyspawn->type);
polyIndex++;
*prev = polyspawn->next;
delete polyspawn;
polyspawn = *prev;
}
else
{
prev = &polyspawn->next;
polyspawn = polyspawn->next;
}
}
for (polyspawn = polyspawns; polyspawn;)
{
polyspawns_t *next = polyspawn->next;
if (polyspawn->type == SMT_PolyAnchor)
{
// Polyobj Anchor Pt.
TranslateToStartSpot (polyspawn->angle, polyspawn->pos);
}
delete polyspawn;
polyspawn = next;
}
polyspawns = NULL;
// check for a startspot without an anchor point
for (polyIndex = 0; polyIndex < po_NumPolyobjs; polyIndex++)
{
if (polyobjs[polyIndex].OriginalPts.Size() == 0)
{
I_Error ("PO_Init: StartSpot located without an Anchor point: %d\n",
polyobjs[polyIndex].tag);
}
}
InitBlockMap();
// [RH] Don't need the side lists anymore
KillSideLists ();
for(int i=0;i<numnodes;i++)
{
node_t *no = &nodes[i];
double fdx = FIXED2DBL(no->dx);
double fdy = FIXED2DBL(no->dy);
no->len = (float)g_sqrt(fdx * fdx + fdy * fdy);
}
// mark all subsectors which have a seg belonging to a polyobj
// These ones should not be rendered on the textured automap.
for (int i = 0; i < numsubsectors; i++)
{
subsector_t *ss = &subsectors[i];
for(DWORD j=0;j<ss->numlines; j++)
{
if (ss->firstline[j].sidedef != NULL &&
ss->firstline[j].sidedef->Flags & WALLF_POLYOBJ)
{
ss->flags |= SSECF_POLYORG;
break;
}
}
}
}
//==========================================================================
//
// PO_Busy
//
//==========================================================================
bool PO_Busy (int polyobj)
{
FPolyObj *poly;
poly = PO_GetPolyobj (polyobj);
return (poly != NULL && poly->specialdata != NULL);
}
//==========================================================================
//
//
//
//==========================================================================
void FPolyObj::ClearSubsectorLinks()
{
while (subsectorlinks != NULL)
{
assert(subsectorlinks->state == 1337);
FPolyNode *next = subsectorlinks->snext;
if (subsectorlinks->pnext != NULL)
{
assert(subsectorlinks->pnext->state == 1337);
subsectorlinks->pnext->pprev = subsectorlinks->pprev;
}
if (subsectorlinks->pprev != NULL)
{
assert(subsectorlinks->pprev->state == 1337);
subsectorlinks->pprev->pnext = subsectorlinks->pnext;
}
else
{
subsectorlinks->subsector->polys = subsectorlinks->pnext;
}
if (subsectorlinks->subsector->BSP != NULL)
{
subsectorlinks->subsector->BSP->bDirty = true;
}
subsectorlinks->state = -1;
delete subsectorlinks;
subsectorlinks = next;
}
subsectorlinks = NULL;
}
void FPolyObj::ClearAllSubsectorLinks()
{
for (int i = 0; i < po_NumPolyobjs; i++)
{
polyobjs[i].ClearSubsectorLinks();
}
ReleaseAllPolyNodes();
}
//==========================================================================
//
// GetIntersection
//
// adapted from P_InterceptVector
//
//==========================================================================
static bool GetIntersection(FPolySeg *seg, node_t *bsp, FPolyVertex *v)
{
double frac;
double num;
double den;
double v2x = seg->v1.pos.X;
double v2y = seg->v1.pos.Y;
double v2dx = seg->v2.pos.X - v2x;
double v2dy = seg->v2.pos.Y - v2y;
double v1x = FIXED2DBL(bsp->x);
double v1y = FIXED2DBL(bsp->y);
double v1dx = FIXED2DBL(bsp->dx);
double v1dy = FIXED2DBL(bsp->dy);
den = v1dy*v2dx - v1dx*v2dy;
if (den == 0)
return false; // parallel
num = (v1x - v2x)*v1dy + (v2y - v1y)*v1dx;
frac = num / den;
if (frac < 0. || frac > 1.) return false;
v->pos.X = v2x + frac * v2dx;
v->pos.Y = v2y + frac * v2dy;
return true;
}
//==========================================================================
//
// PartitionDistance
//
// Determine the distance of a vertex to a node's partition line.
//
//==========================================================================
static double PartitionDistance(FPolyVertex *vt, node_t *node)
{
return fabs(FIXED2DBL(-node->dy) * (vt->pos.X - FIXED2DBL(node->x)) + FIXED2DBL(node->dx) * (vt->pos.Y - FIXED2DBL(node->y))) / node->len;
}
//==========================================================================
//
// AddToBBox
//
//==========================================================================
static void AddToBBox(fixed_t child[4], fixed_t parent[4])
{
if (child[BOXTOP] > parent[BOXTOP])
{
parent[BOXTOP] = child[BOXTOP];
}
if (child[BOXBOTTOM] < parent[BOXBOTTOM])
{
parent[BOXBOTTOM] = child[BOXBOTTOM];
}
if (child[BOXLEFT] < parent[BOXLEFT])
{
parent[BOXLEFT] = child[BOXLEFT];
}
if (child[BOXRIGHT] > parent[BOXRIGHT])
{
parent[BOXRIGHT] = child[BOXRIGHT];
}
}
//==========================================================================
//
// AddToBBox
//
//==========================================================================
static void AddToBBox(FPolyVertex *v, fixed_t bbox[4])
{
fixed_t x = FLOAT2FIXED(v->pos.X);
fixed_t y = FLOAT2FIXED(v->pos.Y);
if (x < bbox[BOXLEFT])
{
bbox[BOXLEFT] = x;
}
if (x > bbox[BOXRIGHT])
{
bbox[BOXRIGHT] = x;
}
if (y < bbox[BOXBOTTOM])
{
bbox[BOXBOTTOM] = y;
}
if (y > bbox[BOXTOP])
{
bbox[BOXTOP] = y;
}
}
//==========================================================================
//
// SplitPoly
//
//==========================================================================
static void SplitPoly(FPolyNode *pnode, void *node, fixed_t bbox[4])
{
static TArray<FPolySeg> lists[2];
static const double POLY_EPSILON = 0.3125;
if (!((size_t)node & 1)) // Keep going until found a subsector
{
node_t *bsp = (node_t *)node;
int centerside = R_PointOnSide(pnode->poly->CenterSpot.pos, bsp);
lists[0].Clear();
lists[1].Clear();
for(unsigned i=0;i<pnode->segs.Size(); i++)
{
FPolySeg *seg = &pnode->segs[i];
// Parts of the following code were taken from Eternity and are
// being used with permission.
// get distance of vertices from partition line
// If the distance is too small, we may decide to
// change our idea of sidedness.
double dist_v1 = PartitionDistance(&seg->v1, bsp);
double dist_v2 = PartitionDistance(&seg->v2, bsp);
// If the distances are less than epsilon, consider the points as being
// on the same side as the polyobj origin. Why? People like to build
// polyobject doors flush with their door tracks. This breaks using the
// usual assumptions.
// Addition to Eternity code: We must also check any seg with only one
// vertex inside the epsilon threshold. If not, these lines will get split but
// adjoining ones with both vertices inside the threshold won't thus messing up
// the order in which they get drawn.
if(dist_v1 <= POLY_EPSILON)
{
if (dist_v2 <= POLY_EPSILON)
{
lists[centerside].Push(*seg);
}
else
{
int side = R_PointOnSide(seg->v2.pos, bsp);
lists[side].Push(*seg);
}
}
else if (dist_v2 <= POLY_EPSILON)
{
int side = R_PointOnSide(seg->v1.pos, bsp);
lists[side].Push(*seg);
}
else
{
int side1 = R_PointOnSide(seg->v1.pos, bsp);
int side2 = R_PointOnSide(seg->v2.pos, bsp);
if(side1 != side2)
{
// if the partition line crosses this seg, we must split it.
FPolyVertex vert;
if (GetIntersection(seg, bsp, &vert))
{
lists[0].Push(*seg);
lists[1].Push(*seg);
lists[side1].Last().v2 = vert;
lists[side2].Last().v1 = vert;
}
else
{
// should never happen
lists[side1].Push(*seg);
}
}
else
{
// both points on the same side.
lists[side1].Push(*seg);
}
}
}
if (lists[1].Size() == 0)
{
SplitPoly(pnode, bsp->children[0], bsp->bbox[0]);
AddToBBox(bsp->bbox[0], bbox);
}
else if (lists[0].Size() == 0)
{
SplitPoly(pnode, bsp->children[1], bsp->bbox[1]);
AddToBBox(bsp->bbox[1], bbox);
}
else
{
// create the new node
FPolyNode *newnode = NewPolyNode();
newnode->poly = pnode->poly;
newnode->segs = lists[1];
// set segs for original node
pnode->segs = lists[0];
// recurse back side
SplitPoly(newnode, bsp->children[1], bsp->bbox[1]);
// recurse front side
SplitPoly(pnode, bsp->children[0], bsp->bbox[0]);
AddToBBox(bsp->bbox[0], bbox);
AddToBBox(bsp->bbox[1], bbox);
}
}
else
{
// we reached a subsector so we can link the node with this subsector
subsector_t *sub = (subsector_t *)((BYTE *)node - 1);
// Link node to subsector
pnode->pnext = sub->polys;
if (pnode->pnext != NULL)
{
assert(pnode->pnext->state == 1337);
pnode->pnext->pprev = pnode;
}
pnode->pprev = NULL;
sub->polys = pnode;
// link node to polyobject
pnode->snext = pnode->poly->subsectorlinks;
pnode->poly->subsectorlinks = pnode;
pnode->subsector = sub;
// calculate bounding box for this polynode
assert(pnode->segs.Size() != 0);
fixed_t subbbox[4] = { FIXED_MIN, FIXED_MAX, FIXED_MAX, FIXED_MIN };
for (unsigned i = 0; i < pnode->segs.Size(); ++i)
{
AddToBBox(&pnode->segs[i].v1, subbbox);
AddToBBox(&pnode->segs[i].v2, subbbox);
}
// Potentially expand the parent node's bounding box to contain these bits of polyobject.
AddToBBox(subbbox, bbox);
}
}
//==========================================================================
//
//
//
//==========================================================================
void FPolyObj::CreateSubsectorLinks()
{
FPolyNode *node = NewPolyNode();
// Even though we don't care about it, we need to initialize this
// bounding box to something so that Valgrind won't complain about it
// when SplitPoly modifies it.
fixed_t dummybbox[4] = { 0 };
node->poly = this;
node->segs.Resize(Sidedefs.Size());
for(unsigned i=0; i<Sidedefs.Size(); i++)
{
FPolySeg *seg = &node->segs[i];
side_t *side = Sidedefs[i];
seg->v1 = side->V1();
seg->v2 = side->V2();
seg->wall = side;
}
if (!(i_compatflags & COMPATF_POLYOBJ))
{
SplitPoly(node, nodes + numnodes - 1, dummybbox);
}
else
{
subsector_t *sub = CenterSubsector;
// Link node to subsector
node->pnext = sub->polys;
if (node->pnext != NULL)
{
assert(node->pnext->state == 1337);
node->pnext->pprev = node;
}
node->pprev = NULL;
sub->polys = node;
// link node to polyobject
node->snext = node->poly->subsectorlinks;
node->poly->subsectorlinks = node;
node->subsector = sub;
}
}
//==========================================================================
//
//
//
//==========================================================================
void PO_LinkToSubsectors()
{
for (int i = 0; i < po_NumPolyobjs; i++)
{
if (polyobjs[i].subsectorlinks == NULL)
{
polyobjs[i].CreateSubsectorLinks();
}
}
}
//==========================================================================
//
// NewPolyNode
//
//==========================================================================
static FPolyNode *NewPolyNode()
{
FPolyNode *node;
if (FreePolyNodes != NULL)
{
node = FreePolyNodes;
FreePolyNodes = node->pnext;
}
else
{
node = new FPolyNode;
}
node->state = 1337;
node->poly = NULL;
node->pnext = NULL;
node->pprev = NULL;
node->subsector = NULL;
node->snext = NULL;
return node;
}
//==========================================================================
//
// FreePolyNode
//
//==========================================================================
void FreePolyNode(FPolyNode *node)
{
node->segs.Clear();
node->pnext = FreePolyNodes;
FreePolyNodes = node;
}
//==========================================================================
//
// ReleaseAllPolyNodes
//
//==========================================================================
void ReleaseAllPolyNodes()
{
FPolyNode *node, *next;
for (node = FreePolyNodes; node != NULL; node = next)
{
next = node->pnext;
delete node;
}
}
//==========================================================================
//
// FPolyMirrorIterator Constructor
//
// This class is used to avoid infinitely looping on cyclical chains of
// mirrored polyobjects.
//
//==========================================================================
FPolyMirrorIterator::FPolyMirrorIterator(FPolyObj *poly)
{
CurPoly = poly;
if (poly != NULL)
{
UsedPolys[0] = poly->tag;
NumUsedPolys = 1;
}
else
{
NumUsedPolys = 0;
}
}
//==========================================================================
//
// FPolyMirrorIterator :: NextMirror
//
// Returns the polyobject that mirrors the current one, or NULL if there
// is no mirroring polyobject, or there is a mirroring polyobject but it was
// already returned.
//
//==========================================================================
FPolyObj *FPolyMirrorIterator::NextMirror()
{
FPolyObj *poly = CurPoly, *nextpoly;
if (poly == NULL)
{
return NULL;
}
// Do the work to decide which polyobject to return the next time this
// function is called.
int mirror = poly->GetMirror(), i;
nextpoly = NULL;
// Is there a mirror and we have room to remember it?
if (mirror != 0 && NumUsedPolys != countof(UsedPolys))
{
// Has this polyobject been returned already?
for (i = 0; i < NumUsedPolys; ++i)
{
if (UsedPolys[i] == mirror)
{
break; // Yes, it has been returned.
}
}
if (i == NumUsedPolys)
{ // No, it has not been returned.
UsedPolys[NumUsedPolys++] = mirror;
nextpoly = PO_GetPolyobj(mirror);
if (nextpoly == NULL)
{
Printf("Invalid mirror polyobj num %d for polyobj num %d\n", mirror, UsedPolys[i - 1]);
}
}
}
CurPoly = nextpoly;
return poly;
}