qzdoom/src/p_sectors.cpp

1248 lines
29 KiB
C++

// Emacs style mode select -*- C++ -*-
//-----------------------------------------------------------------------------
//
// $Id:$
//
// Copyright (C) 1993-1996 by id Software, Inc.
//
// This source is available for distribution and/or modification
// only under the terms of the DOOM Source Code License as
// published by id Software. All rights reserved.
//
// The source is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// FITNESS FOR A PARTICULAR PURPOSE. See the DOOM Source Code License
// for more details.
//
// $Log:$
//
// DESCRIPTION:
// Sector utility functions.
//
//-----------------------------------------------------------------------------
#include "p_spec.h"
#include "c_cvars.h"
#include "doomstat.h"
#include "g_level.h"
#include "nodebuild.h"
#include "p_terrain.h"
#include "po_man.h"
#include "farchive.h"
#include "r_utility.h"
#include "a_sharedglobal.h"
#include "p_local.h"
#include "r_sky.h"
#include "r_data/colormaps.h"
// [RH]
// P_NextSpecialSector()
//
// Returns the next special sector attached to this sector
// with a certain special.
sector_t *sector_t::NextSpecialSector (int type, sector_t *nogood) const
{
sector_t *tsec;
int i;
for (i = 0; i < linecount; i++)
{
line_t *ln = lines[i];
if (NULL != (tsec = getNextSector (ln, this)) &&
tsec != nogood &&
tsec->special == type)
{
return tsec;
}
}
return NULL;
}
//
// P_FindLowestFloorSurrounding()
// FIND LOWEST FLOOR HEIGHT IN SURROUNDING SECTORS
//
double sector_t::FindLowestFloorSurrounding (vertex_t **v) const
{
int i;
sector_t *other;
line_t *check;
double floor;
double ofloor;
vertex_t *spot;
if (linecount == 0) return GetPlaneTexZ(sector_t::floor);
spot = lines[0]->v1;
floor = floorplane.ZatPoint(spot);
for (i = 0; i < linecount; i++)
{
check = lines[i];
if (NULL != (other = getNextSector (check, this)))
{
ofloor = other->floorplane.ZatPoint (check->v1);
if (ofloor < floor && ofloor < floorplane.ZatPoint (check->v1))
{
floor = ofloor;
spot = check->v1;
}
ofloor = other->floorplane.ZatPoint (check->v2);
if (ofloor < floor && ofloor < floorplane.ZatPoint (check->v2))
{
floor = ofloor;
spot = check->v2;
}
}
}
if (v != NULL)
*v = spot;
return floor;
}
//
// P_FindHighestFloorSurrounding()
// FIND HIGHEST FLOOR HEIGHT IN SURROUNDING SECTORS
//
double sector_t::FindHighestFloorSurrounding (vertex_t **v) const
{
int i;
line_t *check;
sector_t *other;
double floor;
double ofloor;
vertex_t *spot;
if (linecount == 0) return GetPlaneTexZ(sector_t::floor);
spot = lines[0]->v1;
floor = -FLT_MAX;
for (i = 0; i < linecount; i++)
{
check = lines[i];
if (NULL != (other = getNextSector (check, this)))
{
ofloor = other->floorplane.ZatPoint (check->v1);
if (ofloor > floor)
{
floor = ofloor;
spot = check->v1;
}
ofloor = other->floorplane.ZatPoint (check->v2);
if (ofloor > floor)
{
floor = ofloor;
spot = check->v2;
}
}
}
if (v != NULL)
*v = spot;
return floor;
}
//
// P_FindNextHighestFloor()
//
// Passed a sector and a floor height, returns the fixed point value
// of the smallest floor height in a surrounding sector larger than
// the floor height passed. If no such height exists the floorheight
// passed is returned.
//
// Rewritten by Lee Killough to avoid fixed array and to be faster
//
double sector_t::FindNextHighestFloor (vertex_t **v) const
{
double height;
double heightdiff;
double ofloor, floor;
sector_t *other;
vertex_t *spot;
line_t *check;
int i;
if (linecount == 0) return GetPlaneTexZ(sector_t::floor);
spot = lines[0]->v1;
height = floorplane.ZatPoint(spot);
heightdiff = FLT_MAX;
for (i = 0; i < linecount; i++)
{
check = lines[i];
if (NULL != (other = getNextSector (check, this)))
{
ofloor = other->floorplane.ZatPoint (check->v1);
floor = floorplane.ZatPoint (check->v1);
if (ofloor > floor && ofloor - floor < heightdiff && !IsLinked(other, false))
{
heightdiff = ofloor - floor;
height = ofloor;
spot = check->v1;
}
ofloor = other->floorplane.ZatPoint (check->v2);
floor = floorplane.ZatPoint (check->v2);
if (ofloor > floor && ofloor - floor < heightdiff && !IsLinked(other, false))
{
heightdiff = ofloor - floor;
height = ofloor;
spot = check->v2;
}
}
}
if (v != NULL)
*v = spot;
return height;
}
//
// P_FindNextLowestFloor()
//
// Passed a sector and a floor height, returns the fixed point value
// of the largest floor height in a surrounding sector smaller than
// the floor height passed. If no such height exists the floorheight
// passed is returned.
//
// jff 02/03/98 Twiddled Lee's P_FindNextHighestFloor to make this
//
double sector_t::FindNextLowestFloor (vertex_t **v) const
{
double height;
double heightdiff;
double ofloor, floor;
sector_t *other;
vertex_t *spot;
line_t *check;
int i;
if (linecount == 0) return GetPlaneTexZ(sector_t::floor);
spot = lines[0]->v1;
height = floorplane.ZatPoint (spot);
heightdiff = FLT_MAX;
for (i = 0; i < linecount; i++)
{
check = lines[i];
if (NULL != (other = getNextSector (check, this)))
{
ofloor = other->floorplane.ZatPoint (check->v1);
floor = floorplane.ZatPoint (check->v1);
if (ofloor < floor && floor - ofloor < heightdiff && !IsLinked(other, false))
{
heightdiff = floor - ofloor;
height = ofloor;
spot = check->v1;
}
ofloor = other->floorplane.ZatPoint (check->v2);
floor = floorplane.ZatPoint(check->v2);
if (ofloor < floor && floor - ofloor < heightdiff && !IsLinked(other, false))
{
heightdiff = floor - ofloor;
height = ofloor;
spot = check->v2;
}
}
}
if (v != NULL)
*v = spot;
return height;
}
//
// P_FindNextLowestCeiling()
//
// Passed a sector and a ceiling height, returns the fixed point value
// of the largest ceiling height in a surrounding sector smaller than
// the ceiling height passed. If no such height exists the ceiling height
// passed is returned.
//
// jff 02/03/98 Twiddled Lee's P_FindNextHighestFloor to make this
//
double sector_t::FindNextLowestCeiling (vertex_t **v) const
{
double height;
double heightdiff;
double oceil, ceil;
sector_t *other;
vertex_t *spot;
line_t *check;
int i;
if (linecount == 0) return GetPlaneTexZ(sector_t::ceiling);
spot = lines[0]->v1;
height = ceilingplane.ZatPoint(spot);
heightdiff = FLT_MAX;
for (i = 0; i < linecount; i++)
{
check = lines[i];
if (NULL != (other = getNextSector (check, this)))
{
oceil = other->ceilingplane.ZatPoint(check->v1);
ceil = ceilingplane.ZatPoint(check->v1);
if (oceil < ceil && ceil - oceil < heightdiff && !IsLinked(other, true))
{
heightdiff = ceil - oceil;
height = oceil;
spot = check->v1;
}
oceil = other->ceilingplane.ZatPoint(check->v2);
ceil = ceilingplane.ZatPoint(check->v2);
if (oceil < ceil && ceil - oceil < heightdiff && !IsLinked(other, true))
{
heightdiff = ceil - oceil;
height = oceil;
spot = check->v2;
}
}
}
if (v != NULL)
*v = spot;
return height;
}
//
// P_FindNextHighestCeiling()
//
// Passed a sector and a ceiling height, returns the fixed point value
// of the smallest ceiling height in a surrounding sector larger than
// the ceiling height passed. If no such height exists the ceiling height
// passed is returned.
//
// jff 02/03/98 Twiddled Lee's P_FindNextHighestFloor to make this
//
double sector_t::FindNextHighestCeiling (vertex_t **v) const
{
double height;
double heightdiff;
double oceil, ceil;
sector_t *other;
vertex_t *spot;
line_t *check;
int i;
if (linecount == 0) return GetPlaneTexZ(sector_t::ceiling);
spot = lines[0]->v1;
height = ceilingplane.ZatPoint(spot);
heightdiff = FLT_MAX;
for (i = 0; i < linecount; i++)
{
check = lines[i];
if (NULL != (other = getNextSector (check, this)))
{
oceil = other->ceilingplane.ZatPoint(check->v1);
ceil = ceilingplane.ZatPoint(check->v1);
if (oceil > ceil && oceil - ceil < heightdiff && !IsLinked(other, true))
{
heightdiff = oceil - ceil;
height = oceil;
spot = check->v1;
}
oceil = other->ceilingplane.ZatPoint(check->v2);
ceil = ceilingplane.ZatPoint(check->v2);
if (oceil > ceil && oceil - ceil < heightdiff && !IsLinked(other, true))
{
heightdiff = oceil - ceil;
height = oceil;
spot = check->v2;
}
}
}
if (v != NULL)
*v = spot;
return height;
}
//
// FIND LOWEST CEILING IN THE SURROUNDING SECTORS
//
double sector_t::FindLowestCeilingSurrounding (vertex_t **v) const
{
double height;
double oceil;
sector_t *other;
vertex_t *spot;
line_t *check;
int i;
if (linecount == 0) return GetPlaneTexZ(sector_t::ceiling);
spot = lines[0]->v1;
height = FLT_MAX;
for (i = 0; i < linecount; i++)
{
check = lines[i];
if (NULL != (other = getNextSector (check, this)))
{
oceil = other->ceilingplane.ZatPoint(check->v1);
if (oceil < height)
{
height = oceil;
spot = check->v1;
}
oceil = other->ceilingplane.ZatPoint(check->v2);
if (oceil < height)
{
height = oceil;
spot = check->v2;
}
}
}
if (v != NULL)
*v = spot;
return height;
}
//
// FIND HIGHEST CEILING IN THE SURROUNDING SECTORS
//
double sector_t::FindHighestCeilingSurrounding (vertex_t **v) const
{
double height;
double oceil;
sector_t *other;
vertex_t *spot;
line_t *check;
int i;
if (linecount == 0) return GetPlaneTexZ(sector_t::ceiling);
spot = lines[0]->v1;
height = -FLT_MAX;
for (i = 0; i < linecount; i++)
{
check = lines[i];
if (NULL != (other = getNextSector (check, this)))
{
oceil = other->ceilingplane.ZatPoint(check->v1);
if (oceil > height)
{
height = oceil;
spot = check->v1;
}
oceil = other->ceilingplane.ZatPoint(check->v2);
if (oceil > height)
{
height = oceil;
spot = check->v2;
}
}
}
if (v != NULL)
*v = spot;
return height;
}
//
// P_FindShortestTextureAround()
//
// Passed a sector number, returns the shortest lower texture on a
// linedef bounding the sector.
//
// jff 02/03/98 Add routine to find shortest lower texture
//
static inline void CheckShortestTex (FTextureID texnum, double &minsize)
{
if (texnum.isValid() || (texnum.isNull() && (i_compatflags & COMPATF_SHORTTEX)))
{
FTexture *tex = TexMan[texnum];
if (tex != NULL)
{
double h = tex->GetScaledHeight();
if (h < minsize)
{
minsize = h;
}
}
}
}
double sector_t::FindShortestTextureAround () const
{
double minsize = FLT_MAX;
for (int i = 0; i < linecount; i++)
{
if (lines[i]->flags & ML_TWOSIDED)
{
CheckShortestTex (lines[i]->sidedef[0]->GetTexture(side_t::bottom), minsize);
CheckShortestTex (lines[i]->sidedef[1]->GetTexture(side_t::bottom), minsize);
}
}
return minsize < FLT_MAX ? minsize : TexMan[0]->GetHeight();
}
//
// P_FindShortestUpperAround()
//
// Passed a sector number, returns the shortest upper texture on a
// linedef bounding the sector.
//
// Note: If no upper texture exists MAXINT is returned.
//
// jff 03/20/98 Add routine to find shortest upper texture
//
double sector_t::FindShortestUpperAround () const
{
double minsize = FLT_MAX;
for (int i = 0; i < linecount; i++)
{
if (lines[i]->flags & ML_TWOSIDED)
{
CheckShortestTex (lines[i]->sidedef[0]->GetTexture(side_t::top), minsize);
CheckShortestTex (lines[i]->sidedef[1]->GetTexture(side_t::top), minsize);
}
}
return minsize < FLT_MAX ? minsize : TexMan[0]->GetHeight();
}
//
// P_FindModelFloorSector()
//
// Passed a floor height and a sector number, return a pointer to a
// a sector with that floor height across the lowest numbered two sided
// line surrounding the sector.
//
// Note: If no sector at that height bounds the sector passed, return NULL
//
// jff 02/03/98 Add routine to find numeric model floor
// around a sector specified by sector number
// jff 3/14/98 change first parameter to plain height to allow call
// from routine not using floormove_t
//
sector_t *sector_t::FindModelFloorSector (double floordestheight) const
{
int i;
sector_t *sec;
//jff 5/23/98 don't disturb sec->linecount while searching
// but allow early exit in old demos
for (i = 0; i < linecount; i++)
{
sec = getNextSector (lines[i], this);
if (sec != NULL &&
(sec->floorplane.ZatPoint(lines[i]->v1) == floordestheight ||
sec->floorplane.ZatPoint(lines[i]->v2) == floordestheight))
{
return sec;
}
}
return NULL;
}
//
// P_FindModelCeilingSector()
//
// Passed a ceiling height and a sector number, return a pointer to a
// a sector with that ceiling height across the lowest numbered two sided
// line surrounding the sector.
//
// Note: If no sector at that height bounds the sector passed, return NULL
//
// jff 02/03/98 Add routine to find numeric model ceiling
// around a sector specified by sector number
// used only from generalized ceiling types
// jff 3/14/98 change first parameter to plain height to allow call
// from routine not using ceiling_t
//
sector_t *sector_t::FindModelCeilingSector (double floordestheight) const
{
int i;
sector_t *sec;
//jff 5/23/98 don't disturb sec->linecount while searching
// but allow early exit in old demos
for (i = 0; i < linecount; i++)
{
sec = getNextSector (lines[i], this);
if (sec != NULL &&
(sec->ceilingplane.ZatPoint(lines[i]->v1) == floordestheight ||
sec->ceilingplane.ZatPoint(lines[i]->v2) == floordestheight))
{
return sec;
}
}
return NULL;
}
//
// Find minimum light from an adjacent sector
//
int sector_t::FindMinSurroundingLight (int min) const
{
int i;
line_t* line;
sector_t* check;
for (i = 0; i < linecount; i++)
{
line = lines[i];
if (NULL != (check = getNextSector (line, this)) &&
check->lightlevel < min)
{
min = check->lightlevel;
}
}
return min;
}
//
// Find the highest point on the floor of the sector
//
double sector_t::FindHighestFloorPoint (vertex_t **v) const
{
int i;
line_t *line;
double height = -FLT_MAX;
double probeheight;
vertex_t *spot = NULL;
if (!floorplane.isSlope())
{
if (v != NULL)
{
if (linecount == 0) *v = &vertexes[0];
else *v = lines[0]->v1;
}
return -floorplane.fD();
}
for (i = 0; i < linecount; i++)
{
line = lines[i];
probeheight = floorplane.ZatPoint(line->v1);
if (probeheight > height)
{
height = probeheight;
spot = line->v1;
}
probeheight = floorplane.ZatPoint(line->v2);
if (probeheight > height)
{
height = probeheight;
spot = line->v2;
}
}
if (v != NULL)
*v = spot;
return height;
}
//
// Find the lowest point on the ceiling of the sector
//
double sector_t::FindLowestCeilingPoint (vertex_t **v) const
{
int i;
line_t *line;
double height = FLT_MAX;
double probeheight;
vertex_t *spot = NULL;
if (!ceilingplane.isSlope())
{
if (v != NULL)
{
if (linecount == 0) *v = &vertexes[0];
else *v = lines[0]->v1;
}
return ceilingplane.fD();
}
for (i = 0; i < linecount; i++)
{
line = lines[i];
probeheight = ceilingplane.ZatPoint(line->v1);
if (probeheight < height)
{
height = probeheight;
spot = line->v1;
}
probeheight = ceilingplane.ZatPoint(line->v2);
if (probeheight < height)
{
height = probeheight;
spot = line->v2;
}
}
if (v != NULL)
*v = spot;
return height;
}
void sector_t::SetColor(int r, int g, int b, int desat)
{
PalEntry color = PalEntry (r,g,b);
ColorMap = GetSpecialLights (color, ColorMap->Fade, desat);
P_RecalculateAttachedLights(this);
}
void sector_t::SetFade(int r, int g, int b)
{
PalEntry fade = PalEntry (r,g,b);
ColorMap = GetSpecialLights (ColorMap->Color, fade, ColorMap->Desaturate);
P_RecalculateAttachedLights(this);
}
//===========================================================================
//
// sector_t :: ClosestPoint
//
// Given a point (x,y), returns the point (ox,oy) on the sector's defining
// lines that is nearest to (x,y).
//
//===========================================================================
void sector_t::ClosestPoint(const DVector2 &in, DVector2 &out) const
{
int i;
double x = in.X, y = in.Y;
double bestdist = HUGE_VAL;
double bestx = 0, besty = 0;
for (i = 0; i < linecount; ++i)
{
vertex_t *v1 = lines[i]->v1;
vertex_t *v2 = lines[i]->v2;
double a = v2->fX() - v1->fX();
double b = v2->fY() - v1->fY();
double den = a*a + b*b;
double ix, iy, dist;
if (den == 0)
{ // Line is actually a point!
ix = v1->fX();
iy = v1->fY();
}
else
{
double num = (x - v1->fX()) * a + (y - v1->fY()) * b;
double u = num / den;
if (u <= 0)
{
ix = v1->fX();
iy = v1->fY();
}
else if (u >= 1)
{
ix = v2->fX();
iy = v2->fY();
}
else
{
ix = v1->fX() + u * a;
iy = v1->fY() + u * b;
}
}
a = (ix - x);
b = (iy - y);
dist = a*a + b*b;
if (dist < bestdist)
{
bestdist = dist;
bestx = ix;
besty = iy;
}
}
out = { bestx, besty };
}
bool sector_t::PlaneMoving(int pos)
{
if (pos == floor)
return (floordata != NULL || (planes[floor].Flags & PLANEF_BLOCKED));
else
return (ceilingdata != NULL || (planes[ceiling].Flags & PLANEF_BLOCKED));
}
int sector_t::GetFloorLight () const
{
if (GetFlags(sector_t::floor) & PLANEF_ABSLIGHTING)
{
return GetPlaneLight(floor);
}
else
{
return ClampLight(lightlevel + GetPlaneLight(floor));
}
}
int sector_t::GetCeilingLight () const
{
if (GetFlags(ceiling) & PLANEF_ABSLIGHTING)
{
return GetPlaneLight(ceiling);
}
else
{
return ClampLight(lightlevel + GetPlaneLight(ceiling));
}
}
FSectorPortal *sector_t::ValidatePortal(int which)
{
FSectorPortal *port = GetPortal(which);
if (port->mType == PORTS_SKYVIEWPOINT && port->mSkybox == nullptr) return nullptr; // A skybox without a viewpoint is just a regular sky.
if (PortalBlocksView(which)) return nullptr; // disabled or obstructed linked portal.
if ((port->mFlags & PORTSF_SKYFLATONLY) && GetTexture(which) != skyflatnum) return nullptr; // Skybox without skyflat texture
return port;
}
sector_t *sector_t::GetHeightSec() const
{
if (heightsec == NULL)
{
return NULL;
}
if (heightsec->MoreFlags & SECF_IGNOREHEIGHTSEC)
{
return NULL;
}
if (e && e->XFloor.ffloors.Size())
{
// If any of these fake floors render their planes, ignore heightsec.
for (unsigned i = e->XFloor.ffloors.Size(); i-- > 0; )
{
if ((e->XFloor.ffloors[i]->flags & (FF_EXISTS | FF_RENDERPLANES)) == (FF_EXISTS | FF_RENDERPLANES))
{
return NULL;
}
}
}
return heightsec;
}
void sector_t::GetSpecial(secspecial_t *spec)
{
spec->special = special;
spec->damageamount = damageamount;
spec->damagetype = damagetype;
spec->damageinterval = damageinterval;
spec->leakydamage = leakydamage;
spec->Flags = Flags & SECF_SPECIALFLAGS;
}
void sector_t::SetSpecial(const secspecial_t *spec)
{
special = spec->special;
damageamount = spec->damageamount;
damagetype = spec->damagetype;
damageinterval = spec->damageinterval;
leakydamage = spec->leakydamage;
Flags = (Flags & ~SECF_SPECIALFLAGS) | (spec->Flags & SECF_SPECIALFLAGS);
}
void sector_t::TransferSpecial(sector_t *model)
{
special = model->special;
damageamount = model->damageamount;
damagetype = model->damagetype;
damageinterval = model->damageinterval;
leakydamage = model->leakydamage;
Flags = (Flags&~SECF_SPECIALFLAGS) | (model->Flags & SECF_SPECIALFLAGS);
}
int sector_t::GetTerrain(int pos) const
{
return terrainnum[pos] >= 0 ? terrainnum[pos] : TerrainTypes[GetTexture(pos)];
}
void sector_t::CheckPortalPlane(int plane)
{
if (GetPortalType(plane) == PORTS_LINKEDPORTAL)
{
double portalh = GetPortalPlaneZ(plane);
double planeh = GetPlaneTexZ(plane);
int obstructed = PLANEF_OBSTRUCTED * (plane == sector_t::floor ? planeh > portalh : planeh < portalh);
planes[plane].Flags = (planes[plane].Flags & ~PLANEF_OBSTRUCTED) | obstructed;
}
}
//===========================================================================
//
// Finds the highest ceiling at the given position, all portals considered
//
//===========================================================================
double sector_t::HighestCeilingAt(const DVector2 &p, sector_t **resultsec)
{
sector_t *check = this;
double planeheight = -FLT_MAX;
DVector2 pos = p;
// Continue until we find a blocking portal or a portal below where we actually are.
while (!check->PortalBlocksMovement(ceiling) && planeheight < check->GetPortalPlaneZ(ceiling))
{
pos += check->GetPortalDisplacement(ceiling);
planeheight = check->GetPortalPlaneZ(ceiling);
check = P_PointInSector(pos);
}
if (resultsec) *resultsec = check;
return check->ceilingplane.ZatPoint(pos);
}
//===========================================================================
//
// Finds the lowest floor at the given position, all portals considered
//
//===========================================================================
double sector_t::LowestFloorAt(const DVector2 &p, sector_t **resultsec)
{
sector_t *check = this;
double planeheight = FLT_MAX;
DVector2 pos = p;
// Continue until we find a blocking portal or a portal above where we actually are.
while (!check->PortalBlocksMovement(floor) && planeheight > check->GetPortalPlaneZ(floor))
{
pos += check->GetPortalDisplacement(floor);
planeheight = check->GetPortalPlaneZ(ceiling);
check = P_PointInSector(pos);
}
if (resultsec) *resultsec = check;
return check->floorplane.ZatPoint(pos);
}
double sector_t::NextHighestCeilingAt(double x, double y, double bottomz, double topz, int flags, sector_t **resultsec, F3DFloor **resultffloor)
{
sector_t *sec = this;
double planeheight = -FLT_MAX;
while (true)
{
// Looking through planes from bottom to top
double realceil = sec->ceilingplane.ZatPoint(x, y);
for (int i = sec->e->XFloor.ffloors.Size() - 1; i >= 0; --i)
{
F3DFloor *rover = sec->e->XFloor.ffloors[i];
if (!(rover->flags & FF_SOLID) || !(rover->flags & FF_EXISTS)) continue;
double ff_bottom = rover->bottom.plane->ZatPoint(x, y);
double ff_top = rover->top.plane->ZatPoint(x, y);
double delta1 = bottomz - (ff_bottom + ((ff_top - ff_bottom) / 2));
double delta2 = topz - (ff_bottom + ((ff_top - ff_bottom) / 2));
if (ff_bottom < realceil && fabs(delta1) > fabs(delta2))
{
if (resultsec) *resultsec = sec;
if (resultffloor) *resultffloor = rover;
return ff_bottom;
}
}
if ((flags & FFCF_NOPORTALS) || sec->PortalBlocksMovement(ceiling) || planeheight >= sec->GetPortalPlaneZ(ceiling))
{ // Use sector's floor
if (resultffloor) *resultffloor = NULL;
if (resultsec) *resultsec = sec;
return realceil;
}
else
{
DVector2 pos = sec->GetPortalDisplacement(ceiling);
x += pos.X;
y += pos.Y;
planeheight = sec->GetPortalPlaneZ(ceiling);
sec = P_PointInSector(x, y);
}
}
}
double sector_t::NextLowestFloorAt(double x, double y, double z, int flags, double steph, sector_t **resultsec, F3DFloor **resultffloor)
{
sector_t *sec = this;
double planeheight = FLT_MAX;
while (true)
{
// Looking through planes from top to bottom
unsigned numff = sec->e->XFloor.ffloors.Size();
double realfloor = sec->floorplane.ZatPoint(x, y);
for (unsigned i = 0; i < numff; ++i)
{
F3DFloor *ff = sec->e->XFloor.ffloors[i];
// either with feet above the 3D floor or feet with less than 'stepheight' map units inside
if ((ff->flags & (FF_EXISTS | FF_SOLID)) == (FF_EXISTS | FF_SOLID))
{
double ffz = ff->top.plane->ZatPoint(x, y);
double ffb = ff->bottom.plane->ZatPoint(x, y);
if (ffz > realfloor && (z >= ffz || (!(flags & FFCF_3DRESTRICT) && (ffb < z && ffz < z + steph))))
{ // This floor is beneath our feet.
if (resultsec) *resultsec = sec;
if (resultffloor) *resultffloor = ff;
return ffz;
}
}
}
if ((flags & FFCF_NOPORTALS) || sec->PortalBlocksMovement(sector_t::floor) || planeheight <= sec->GetPortalPlaneZ(floor))
{ // Use sector's floor
if (resultffloor) *resultffloor = NULL;
if (resultsec) *resultsec = sec;
return realfloor;
}
else
{
DVector2 pos = sec->GetPortalDisplacement(floor);
x += pos.X;
y += pos.Y;
planeheight = sec->GetPortalPlaneZ(floor);
sec = P_PointInSector(x, y);
}
}
}
//===========================================================================
//
//
//
//===========================================================================
double sector_t::GetFriction(int plane, double *pMoveFac) const
{
if (Flags & SECF_FRICTION)
{
if (pMoveFac) *pMoveFac = movefactor;
return friction;
}
FTerrainDef *terrain = &Terrains[GetTerrain(plane)];
if (terrain->Friction != 0)
{
if (pMoveFac) *pMoveFac = terrain->MoveFactor;
return terrain->Friction;
}
else
{
if (pMoveFac) *pMoveFac = ORIG_FRICTION_FACTOR;
return ORIG_FRICTION;
}
}
//===========================================================================
//
//
//
//===========================================================================
FArchive &operator<< (FArchive &arc, secspecial_t &p)
{
arc << p.special
<< p.damageamount
<< p.damagetype
<< p.damageinterval
<< p.leakydamage
<< p.Flags;
return arc;
}
//===========================================================================
//
//
//
//===========================================================================
bool secplane_t::CopyPlaneIfValid (secplane_t *dest, const secplane_t *opp) const
{
bool copy = false;
// If the planes do not have matching slopes, then always copy them
// because clipping would require creating new sectors.
if (Normal() != dest->Normal())
{
copy = true;
}
else if (opp->Normal() != -dest->Normal())
{
if (fD() < dest->fD())
{
copy = true;
}
}
else if (fD() < dest->fD() && fD() > -opp->fD())
{
copy = true;
}
if (copy)
{
*dest = *this;
}
return copy;
}
FArchive &operator<< (FArchive &arc, secplane_t &plane)
{
arc << plane.normal << plane.D;
if (plane.normal.Z != 0)
{ // plane.c should always be non-0. Otherwise, the plane
// would be perfectly vertical. (But then, don't let this crash on a broken savegame...)
plane.negiC = -1 / plane.normal.Z;
}
return arc;
}
//==========================================================================
//
// P_AlignFlat
//
//==========================================================================
bool P_AlignFlat (int linenum, int side, int fc)
{
line_t *line = lines + linenum;
sector_t *sec = side ? line->backsector : line->frontsector;
if (!sec)
return false;
DVector2 pos = line->v1->fPos();
DVector2 pos2 = line->v2->fPos();
DAngle angle = (pos2 - pos).Angle();
DAngle norm = angle - 90;
double dist = norm.Cos() * pos.X + norm.Sin() * pos.Y;
if (side)
{
angle += 180.;
dist = -dist;
}
sec->SetBase(fc, dist, -angle);
return true;
}
//==========================================================================
//
// P_BuildPolyBSP
//
//==========================================================================
static FNodeBuilder::FLevel PolyNodeLevel;
static FNodeBuilder PolyNodeBuilder(PolyNodeLevel);
void subsector_t::BuildPolyBSP()
{
assert((BSP == NULL || BSP->bDirty) && "BSP computed more than once");
// Set up level information for the node builder.
PolyNodeLevel.Sides = sides;
PolyNodeLevel.NumSides = numsides;
PolyNodeLevel.Lines = lines;
PolyNodeLevel.NumLines = numlines;
// Feed segs to the nodebuilder and build the nodes.
PolyNodeBuilder.Clear();
PolyNodeBuilder.AddSegs(firstline, numlines);
for (FPolyNode *pn = polys; pn != NULL; pn = pn->pnext)
{
PolyNodeBuilder.AddPolySegs(&pn->segs[0], (int)pn->segs.Size());
}
PolyNodeBuilder.BuildMini(false);
if (BSP == NULL)
{
BSP = new FMiniBSP;
}
PolyNodeBuilder.ExtractMini(BSP);
for (unsigned int i = 0; i < BSP->Subsectors.Size(); ++i)
{
BSP->Subsectors[i].sector = sector;
}
}
//==========================================================================
//
//
//
//==========================================================================
CUSTOM_CVAR(Int, r_fakecontrast, true, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
{
if (self < 0) self = 1;
else if (self > 2) self = 2;
}
//==========================================================================
//
//
//
//==========================================================================
int side_t::GetLightLevel (bool foggy, int baselight, bool is3dlight, int *pfakecontrast) const
{
if (!is3dlight && (Flags & WALLF_ABSLIGHTING))
{
baselight = Light;
}
if (pfakecontrast != NULL)
{
*pfakecontrast = 0;
}
if (!foggy || level.flags3 & LEVEL3_FORCEFAKECONTRAST) // Don't do relative lighting in foggy sectors
{
if (!(Flags & WALLF_NOFAKECONTRAST) && r_fakecontrast != 0)
{
DVector2 delta = linedef->Delta();
int rel;
if (((level.flags2 & LEVEL2_SMOOTHLIGHTING) || (Flags & WALLF_SMOOTHLIGHTING) || r_fakecontrast == 2) &&
delta.X != 0)
{
rel = xs_RoundToInt // OMG LEE KILLOUGH LIVES! :/
(
level.WallHorizLight
+ fabs(atan(delta.Y / delta.X) / 1.57079)
* (level.WallVertLight - level.WallHorizLight)
);
}
else
{
rel = delta.X == 0 ? level.WallVertLight :
delta.Y == 0 ? level.WallHorizLight : 0;
}
if (pfakecontrast != NULL)
{
*pfakecontrast = rel;
}
else
{
baselight += rel;
}
}
}
if (!is3dlight && !(Flags & WALLF_ABSLIGHTING) && (!foggy || (Flags & WALLF_LIGHT_FOG)))
{
baselight += this->Light;
}
return baselight;
}