qzdoom/src/dobjtype.cpp

1031 lines
29 KiB
C++

/*
** dobjtype.cpp
** Implements the type information class
**
**---------------------------------------------------------------------------
** Copyright 1998-2016 Randy Heit
** Copyright 2005-2016 Christoph Oelckers
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
// HEADER FILES ------------------------------------------------------------
#include <limits>
#include "dobject.h"
#include "serializer.h"
#include "actor.h"
#include "autosegs.h"
#include "v_text.h"
#include "a_pickups.h"
#include "d_player.h"
#include "fragglescript/t_fs.h"
#include "a_keys.h"
#include "vm.h"
#include "types.h"
#include "scriptutil.h"
// MACROS ------------------------------------------------------------------
// TYPES -------------------------------------------------------------------
// EXTERNAL FUNCTION PROTOTYPES --------------------------------------------
// PUBLIC FUNCTION PROTOTYPES ----------------------------------------------
// PRIVATE FUNCTION PROTOTYPES ---------------------------------------------
// EXTERNAL DATA DECLARATIONS ----------------------------------------------
EXTERN_CVAR(Bool, strictdecorate);
// PUBLIC DATA DEFINITIONS -------------------------------------------------
FMemArena ClassDataAllocator(32768); // use this for all static class data that can be released in bulk when the type system is shut down.
TArray<PClass *> PClass::AllClasses;
TMap<FName, PClass*> PClass::ClassMap;
TArray<VMFunction**> PClass::FunctionPtrList;
bool PClass::bShutdown;
bool PClass::bVMOperational;
// Originally this was just a bogus pointer, but with the VM performing a read barrier on every object pointer write
// that does not work anymore. WP_NOCHANGE needs to point to a vaild object to work as intended.
// This Object does not need to be garbage collected, though, but it needs to provide the proper structure so that the
// GC can process it.
AActor *WP_NOCHANGE;
DEFINE_GLOBAL(WP_NOCHANGE);
// PRIVATE DATA DEFINITIONS ------------------------------------------------
// A harmless non-nullptr FlatPointer for classes without pointers.
static const size_t TheEnd = ~(size_t)0;
//==========================================================================
//
// PClass :: WriteValue
//
// Similar to PStruct's version, except it also needs to traverse parent
// classes.
//
//==========================================================================
static void RecurseWriteFields(const PClass *type, FSerializer &ar, const void *addr)
{
if (type != nullptr)
{
RecurseWriteFields(type->ParentClass, ar, addr);
// Don't write this part if it has no non-transient variables
for (unsigned i = 0; i < type->Fields.Size(); ++i)
{
if (!(type->Fields[i]->Flags & (VARF_Transient|VARF_Meta)))
{
// Tag this section with the class it came from in case
// a more-derived class has variables that shadow a less-
// derived class. Whether or not that is a language feature
// that will actually be allowed remains to be seen.
FString key;
key.Format("class:%s", type->TypeName.GetChars());
if (ar.BeginObject(key.GetChars()))
{
type->VMType->Symbols.WriteFields(ar, addr);
ar.EndObject();
}
break;
}
}
}
}
// Same as WriteValue, but does not create a new object in the serializer
// This is so that user variables do not contain unnecessary subblocks.
void PClass::WriteAllFields(FSerializer &ar, const void *addr) const
{
RecurseWriteFields(this, ar, addr);
}
//==========================================================================
//
// PClass :: ReadAllFields
//
//==========================================================================
bool PClass::ReadAllFields(FSerializer &ar, void *addr) const
{
bool readsomething = false;
bool foundsomething = false;
const char *key;
key = ar.GetKey();
if (strcmp(key, "classtype"))
{
// this does not represent a DObject
Printf(TEXTCOLOR_RED "trying to read user variables but got a non-object (first key is '%s')\n", key);
ar.mErrors++;
return false;
}
while ((key = ar.GetKey()))
{
if (strncmp(key, "class:", 6))
{
// We have read all user variable blocks.
break;
}
foundsomething = true;
PClass *type = PClass::FindClass(key + 6);
if (type != nullptr)
{
// Only read it if the type is related to this one.
if (IsDescendantOf(type))
{
if (ar.BeginObject(nullptr))
{
readsomething |= type->VMType->Symbols.ReadFields(ar, addr, type->TypeName.GetChars());
ar.EndObject();
}
}
else
{
DPrintf(DMSG_ERROR, "Unknown superclass %s of class %s\n",
type->TypeName.GetChars(), TypeName.GetChars());
}
}
else
{
DPrintf(DMSG_ERROR, "Unknown superclass %s of class %s\n",
key+6, TypeName.GetChars());
}
}
return readsomething || !foundsomething;
}
//==========================================================================
//
// cregcmp
//
// Sorter to keep built-in types in a deterministic order. (Needed?)
//
//==========================================================================
static int cregcmp (const void *a, const void *b) NO_SANITIZE
{
const PClass *class1 = *(const PClass **)a;
const PClass *class2 = *(const PClass **)b;
return strcmp(class1->TypeName, class2->TypeName);
}
//==========================================================================
//
// PClass :: StaticInit STATIC
//
// Creates class metadata for all built-in types.
//
//==========================================================================
void PClass::StaticInit ()
{
atterm (StaticShutdown);
Namespaces.GlobalNamespace = Namespaces.NewNamespace(0);
FAutoSegIterator probe(CRegHead, CRegTail);
while (*++probe != nullptr)
{
((ClassReg *)*probe)->RegisterClass ();
}
probe.Reset();
for(auto cls : AllClasses)
{
if (cls->IsDescendantOf(RUNTIME_CLASS(AActor)))
{
PClassActor::AllActorClasses.Push(static_cast<PClassActor*>(cls));
}
}
// Keep built-in classes in consistant order. I did this before, though
// I'm not sure if this is really necessary to maintain any sort of sync.
qsort(&AllClasses[0], AllClasses.Size(), sizeof(AllClasses[0]), cregcmp);
// WP_NOCHANGE must point to a valid object, although it does not need to be a weapon.
// A simple DObject is enough to give the GC the ability to deal with it, if subjected to it.
WP_NOCHANGE = (AActor*)Create<DObject>();
WP_NOCHANGE->Release();
}
//==========================================================================
//
// PClass :: StaticShutdown STATIC
//
// Frees all static class data.
//
//==========================================================================
void PClass::StaticShutdown ()
{
if (WP_NOCHANGE != nullptr)
{
delete WP_NOCHANGE;
}
// delete all variables containing pointers to script functions.
for (auto p : FunctionPtrList)
{
*p = nullptr;
}
ScriptUtil::Clear();
FunctionPtrList.Clear();
VMFunction::DeleteAll();
// Make a full garbage collection here so that all destroyed but uncollected higher level objects
// that still exist are properly taken down before the low level data is deleted.
GC::FullGC();
// From this point onward no scripts may be called anymore because the data needed by the VM is getting deleted now.
// This flags DObject::Destroy not to call any scripted OnDestroy methods anymore.
bVMOperational = false;
for (auto &p : players)
{
p.PendingWeapon = nullptr;
}
Namespaces.ReleaseSymbols();
// This must be done in two steps because the native classes are not ordered by inheritance,
// so all meta data must be gone before deleting the actual class objects.
for (auto cls : AllClasses) if (cls->Meta != nullptr) cls->DestroyMeta(cls->Meta);
for (auto cls : AllClasses) delete cls;
// Unless something went wrong, anything left here should be class and type objects only, which do not own any scripts.
bShutdown = true;
TypeTable.Clear();
ClassDataAllocator.FreeAllBlocks();
AllClasses.Clear();
PClassActor::AllActorClasses.Clear();
ClassMap.Clear();
FAutoSegIterator probe(CRegHead, CRegTail);
while (*++probe != nullptr)
{
auto cr = ((ClassReg *)*probe);
cr->MyClass = nullptr;
}
}
//==========================================================================
//
// PClass Constructor
//
//==========================================================================
PClass::PClass()
{
PClass::AllClasses.Push(this);
}
//==========================================================================
//
// PClass Destructor
//
//==========================================================================
PClass::~PClass()
{
if (Defaults != nullptr)
{
M_Free(Defaults);
Defaults = nullptr;
}
if (Meta != nullptr)
{
M_Free(Meta);
Meta = nullptr;
}
}
//==========================================================================
//
// ClassReg :: RegisterClass
//
// Create metadata describing the built-in class this struct is intended
// for.
//
//==========================================================================
PClass *ClassReg::RegisterClass()
{
// Skip classes that have already been registered
if (MyClass != nullptr)
{
return MyClass;
}
// Add type to list
PClass *cls = new PClass;
SetupClass(cls);
cls->InsertIntoHash(true);
if (ParentType != nullptr)
{
cls->ParentClass = ParentType->RegisterClass();
}
return cls;
}
//==========================================================================
//
// ClassReg :: SetupClass
//
// Copies the class-defining parameters from a ClassReg to the Class object
// created for it.
//
//==========================================================================
void ClassReg::SetupClass(PClass *cls)
{
assert(MyClass == nullptr);
MyClass = cls;
cls->TypeName = FName(Name+1);
cls->Size = SizeOf;
cls->Pointers = Pointers;
cls->ConstructNative = ConstructNative;
}
//==========================================================================
//
// PClass :: InsertIntoHash
//
// Add class to the type table.
//
//==========================================================================
void PClass::InsertIntoHash (bool native)
{
auto k = ClassMap.CheckKey(TypeName);
if (k != nullptr)
{ // This type has already been inserted
I_Error("Tried to register class '%s' more than once.\n", TypeName.GetChars());
}
else
{
ClassMap[TypeName] = this;
}
if (!native && IsDescendantOf(RUNTIME_CLASS(AActor)))
{
PClassActor::AllActorClasses.Push(static_cast<PClassActor*>(this));
}
}
//==========================================================================
//
// PClass :: FindParentClass
//
// Finds a parent class that matches the given name, including itself.
//
//==========================================================================
const PClass *PClass::FindParentClass(FName name) const
{
for (const PClass *type = this; type != nullptr; type = type->ParentClass)
{
if (type->TypeName == name)
{
return type;
}
}
return nullptr;
}
//==========================================================================
//
// PClass :: FindClass
//
// Find a type, passed the name as a name.
//
//==========================================================================
PClass *PClass::FindClass (FName zaname)
{
if (zaname == NAME_None)
{
return nullptr;
}
auto k = ClassMap.CheckKey(zaname);
return k ? *k : nullptr;
}
//==========================================================================
//
// PClass :: CreateNew
//
// Create a new object that this class represents
//
//==========================================================================
DObject *PClass::CreateNew()
{
uint8_t *mem = (uint8_t *)M_Malloc (Size);
assert (mem != nullptr);
// Set this object's defaults before constructing it.
if (Defaults != nullptr)
memcpy (mem, Defaults, Size);
else
memset (mem, 0, Size);
if (ConstructNative == nullptr)
{
M_Free(mem);
I_Error("Attempt to instantiate abstract class %s.", TypeName.GetChars());
}
ConstructNative (mem);
((DObject *)mem)->SetClass (const_cast<PClass *>(this));
InitializeSpecials(mem, Defaults, &PClass::SpecialInits);
return (DObject *)mem;
}
//==========================================================================
//
// PClass :: InitializeSpecials
//
// Initialize special fields (e.g. strings) of a newly-created instance.
//
//==========================================================================
void PClass::InitializeSpecials(void *addr, void *defaults, TArray<FTypeAndOffset> PClass::*Inits)
{
// Once we reach a native class, we can stop going up the family tree,
// since native classes handle initialization natively.
if ((!bRuntimeClass && Inits == &PClass::SpecialInits) || ParentClass == nullptr)
{
return;
}
ParentClass->InitializeSpecials(addr, defaults, Inits);
for (auto tao : (this->*Inits))
{
tao.first->InitializeValue((char*)addr + tao.second, defaults == nullptr? nullptr : ((char*)defaults) + tao.second);
}
}
//==========================================================================
//
// PClass :: DestroySpecials
//
// Destroy special fields (e.g. strings) of an instance that is about to be
// deleted.
//
//==========================================================================
void PClass::DestroySpecials(void *addr)
{
if (!bRuntimeClass)
{
return;
}
assert(ParentClass != nullptr);
ParentClass->DestroySpecials(addr);
for (auto tao : SpecialInits)
{
tao.first->DestroyValue((uint8_t *)addr + tao.second);
}
}
//==========================================================================
//
// PClass :: DestroyMeta
//
// Same for meta data
//
//==========================================================================
void PClass::DestroyMeta(void *addr)
{
if (ParentClass != nullptr) ParentClass->DestroyMeta(addr);
for (auto tao : MetaInits)
{
tao.first->DestroyValue((uint8_t *)addr + tao.second);
}
}
//==========================================================================
//
// PClass :: Derive
//
// Copies inheritable values into the derived class and other miscellaneous setup.
//
//==========================================================================
void PClass::Derive(PClass *newclass, FName name)
{
newclass->bRuntimeClass = true;
newclass->ParentClass = this;
newclass->ConstructNative = ConstructNative;
newclass->TypeName = name;
newclass->MetaSize = MetaSize;
}
//==========================================================================
//
// PClassActor :: InitializeNativeDefaults
//
//==========================================================================
void PClass::InitializeDefaults()
{
if (IsDescendantOf(RUNTIME_CLASS(AActor)))
{
assert(Defaults == nullptr);
Defaults = (uint8_t *)M_Malloc(Size);
ConstructNative(Defaults);
// We must unlink the defaults from the class list because it's just a static block of data to the engine.
DObject *optr = (DObject*)Defaults;
GC::Root = optr->ObjNext;
optr->ObjNext = nullptr;
optr->SetClass(this);
// Copy the defaults from the parent but leave the DObject part alone because it contains important data.
if (ParentClass->Defaults != nullptr)
{
memcpy(Defaults + sizeof(DObject), ParentClass->Defaults + sizeof(DObject), ParentClass->Size - sizeof(DObject));
if (Size > ParentClass->Size)
{
memset(Defaults + ParentClass->Size, 0, Size - ParentClass->Size);
}
}
else
{
memset(Defaults + sizeof(DObject), 0, Size - sizeof(DObject));
}
assert(MetaSize >= ParentClass->MetaSize);
if (MetaSize != 0)
{
Meta = (uint8_t*)M_Malloc(MetaSize);
// Copy the defaults from the parent but leave the DObject part alone because it contains important data.
if (ParentClass->Meta != nullptr)
{
memcpy(Meta, ParentClass->Meta, ParentClass->MetaSize);
if (MetaSize > ParentClass->MetaSize)
{
memset(Meta + ParentClass->MetaSize, 0, MetaSize - ParentClass->MetaSize);
}
}
else
{
memset(Meta, 0, MetaSize);
}
if (MetaSize > 0) memcpy(Meta, ParentClass->Meta, ParentClass->MetaSize);
else memset(Meta, 0, MetaSize);
}
}
if (VMType != nullptr) // purely internal classes have no symbol table
{
if (bRuntimeClass)
{
// Copy parent values from the parent defaults.
assert(ParentClass != nullptr);
if (Defaults != nullptr) ParentClass->InitializeSpecials(Defaults, ParentClass->Defaults, &PClass::SpecialInits);
for (const PField *field : Fields)
{
if (!(field->Flags & VARF_Native) && !(field->Flags & VARF_Meta))
{
field->Type->SetDefaultValue(Defaults, unsigned(field->Offset), &SpecialInits);
}
}
}
if (Meta != nullptr) ParentClass->InitializeSpecials(Meta, ParentClass->Meta, &PClass::MetaInits);
for (const PField *field : Fields)
{
if (!(field->Flags & VARF_Native) && (field->Flags & VARF_Meta))
{
field->Type->SetDefaultValue(Meta, unsigned(field->Offset), &MetaInits);
}
}
}
}
//==========================================================================
//
// PClass :: CreateDerivedClass
//
// Create a new class based on an existing class
//
//==========================================================================
PClass *PClass::CreateDerivedClass(FName name, unsigned int size)
{
assert(size >= Size);
PClass *type;
bool notnew;
const PClass *existclass = FindClass(name);
if (existclass != nullptr)
{
// This is a placeholder so fill it in
if (existclass->Size == TentativeClass)
{
type = const_cast<PClass*>(existclass);
if (!IsDescendantOf(type->ParentClass))
{
I_Error("%s must inherit from %s but doesn't.", name.GetChars(), type->ParentClass->TypeName.GetChars());
}
DPrintf(DMSG_SPAMMY, "Defining placeholder class %s\n", name.GetChars());
notnew = true;
}
else
{
// a different class with the same name already exists. Let the calling code deal with this.
return nullptr;
}
}
else
{
type = new PClass;
notnew = false;
}
type->TypeName = name;
type->bRuntimeClass = true;
Derive(type, name);
type->Size = size;
if (size != TentativeClass)
{
NewClassType(type);
type->InitializeDefaults();
type->Virtuals = Virtuals;
}
else
type->bOptional = false;
if (!notnew)
{
type->InsertIntoHash(false);
}
return type;
}
//==========================================================================
//
// PClass :: AddField
//
//==========================================================================
PField *PClass::AddField(FName name, PType *type, uint32_t flags)
{
PField *field;
if (!(flags & VARF_Meta))
{
unsigned oldsize = Size;
field = VMType->Symbols.AddField(name, type, flags, Size);
// Only initialize the defaults if they have already been created.
// For ZScript this is not the case, it will first define all fields before
// setting up any defaults for any class.
if (field != nullptr && !(flags & VARF_Native) && Defaults != nullptr)
{
Defaults = (uint8_t *)M_Realloc(Defaults, Size);
memset(Defaults + oldsize, 0, Size - oldsize);
}
}
else
{
// Same as above, but a different data storage.
unsigned oldsize = MetaSize;
field = VMType->Symbols.AddField(name, type, flags, MetaSize);
if (field != nullptr && !(flags & VARF_Native) && Meta != nullptr)
{
Meta = (uint8_t *)M_Realloc(Meta, MetaSize);
memset(Meta + oldsize, 0, MetaSize - oldsize);
}
}
if (field != nullptr) Fields.Push(field);
return field;
}
//==========================================================================
//
// PClass :: FindClassTentative
//
// Like FindClass but creates a placeholder if no class is found.
// This will be filled in when the actual class is constructed.
//
//==========================================================================
PClass *PClass::FindClassTentative(FName name)
{
if (name == NAME_None)
{
return nullptr;
}
PClass *found = FindClass(name);
if (found != nullptr) return found;
PClass *type = new PClass;
DPrintf(DMSG_SPAMMY, "Creating placeholder class %s : %s\n", name.GetChars(), TypeName.GetChars());
Derive(type, name);
type->Size = TentativeClass;
type->InsertIntoHash(false);
return type;
}
//==========================================================================
//
// PClass :: FindVirtualIndex
//
// Compares a prototype with the existing list of virtual functions
// and returns an index if something matching is found.
//
//==========================================================================
int PClass::FindVirtualIndex(FName name, PFunction::Variant *variant, PFunction *parentfunc)
{
auto proto = variant->Proto;
for (unsigned i = 0; i < Virtuals.Size(); i++)
{
if (Virtuals[i]->Name == name)
{
auto vproto = Virtuals[i]->Proto;
if (vproto->ReturnTypes.Size() != proto->ReturnTypes.Size() ||
vproto->ArgumentTypes.Size() < proto->ArgumentTypes.Size())
{
continue; // number of parameters does not match, so it's incompatible
}
bool fail = false;
// The first argument is self and will mismatch so just skip it.
for (unsigned a = 1; a < proto->ArgumentTypes.Size(); a++)
{
if (proto->ArgumentTypes[a] != vproto->ArgumentTypes[a])
{
fail = true;
break;
}
}
if (fail) continue;
for (unsigned a = 0; a < proto->ReturnTypes.Size(); a++)
{
if (proto->ReturnTypes[a] != vproto->ReturnTypes[a])
{
fail = true;
break;
}
}
if (!fail)
{
if (vproto->ArgumentTypes.Size() > proto->ArgumentTypes.Size() && parentfunc)
{
// Check if the difference between both functions is only some optional arguments.
for (unsigned a = proto->ArgumentTypes.Size(); a < vproto->ArgumentTypes.Size(); a++)
{
if (!(parentfunc->Variants[0].ArgFlags[a] & VARF_Optional)) return -1;
}
// Todo: extend the prototype
for (unsigned a = proto->ArgumentTypes.Size(); a < vproto->ArgumentTypes.Size(); a++)
{
proto->ArgumentTypes.Push(vproto->ArgumentTypes[a]);
variant->ArgFlags.Push(parentfunc->Variants[0].ArgFlags[a]);
variant->ArgNames.Push(NAME_None);
}
}
return i;
}
}
}
return -1;
}
PSymbol *PClass::FindSymbol(FName symname, bool searchparents) const
{
if (VMType == nullptr) return nullptr;
return VMType->Symbols.FindSymbol(symname, searchparents);
}
//==========================================================================
//
// PClass :: BuildFlatPointers
//
// Create the FlatPointers array, if it doesn't exist already.
// It comprises all the Pointers from superclasses plus this class's own
// Pointers. If this class does not define any new Pointers, then
// FlatPointers will be set to the same array as the super class.
//
//==========================================================================
void PClass::BuildFlatPointers ()
{
if (FlatPointers != nullptr)
{ // Already built: Do nothing.
return;
}
else if (ParentClass == nullptr)
{ // No parent (i.e. DObject: FlatPointers is the same as Pointers.
if (Pointers == nullptr)
{ // No pointers: Make FlatPointers a harmless non-nullptr.
FlatPointers = &TheEnd;
}
else
{
FlatPointers = Pointers;
}
}
else
{
ParentClass->BuildFlatPointers ();
TArray<size_t> ScriptPointers;
// Collect all pointers in scripted fields. These are not part of the Pointers list.
for (auto field : Fields)
{
if (!(field->Flags & VARF_Native))
{
field->Type->SetPointer(Defaults, unsigned(field->Offset), &ScriptPointers);
}
}
if (Pointers == nullptr && ScriptPointers.Size() == 0)
{ // No new pointers: Just use the same FlatPointers as the parent.
FlatPointers = ParentClass->FlatPointers;
}
else
{ // New pointers: Create a new FlatPointers array and add them.
int numPointers, numSuperPointers;
if (Pointers != nullptr)
{
// Count pointers defined by this class.
for (numPointers = 0; Pointers[numPointers] != ~(size_t)0; numPointers++)
{
}
}
else numPointers = 0;
// Count pointers defined by superclasses.
for (numSuperPointers = 0; ParentClass->FlatPointers[numSuperPointers] != ~(size_t)0; numSuperPointers++)
{ }
// Concatenate them into a new array
size_t *flat = (size_t*)ClassDataAllocator.Alloc(sizeof(size_t) * (numPointers + numSuperPointers + ScriptPointers.Size() + 1));
if (numSuperPointers > 0)
{
memcpy (flat, ParentClass->FlatPointers, sizeof(size_t)*numSuperPointers);
}
if (numPointers > 0)
{
memcpy(flat + numSuperPointers, Pointers, sizeof(size_t)*numPointers);
}
if (ScriptPointers.Size() > 0)
{
memcpy(flat + numSuperPointers + numPointers, &ScriptPointers[0], sizeof(size_t) * ScriptPointers.Size());
}
flat[numSuperPointers + numPointers + ScriptPointers.Size()] = ~(size_t)0;
FlatPointers = flat;
}
}
}
//==========================================================================
//
// PClass :: BuildArrayPointers
//
// same as above, but creates a list to dynamic object arrays
//
//==========================================================================
void PClass::BuildArrayPointers()
{
if (ArrayPointers != nullptr)
{ // Already built: Do nothing.
return;
}
else if (ParentClass == nullptr)
{ // No parent (i.e. DObject: FlatPointers is the same as Pointers.
ArrayPointers = &TheEnd;
}
else
{
ParentClass->BuildArrayPointers();
TArray<size_t> ScriptPointers;
// Collect all arrays to pointers in scripted fields.
for (auto field : Fields)
{
if (!(field->Flags & VARF_Native))
{
field->Type->SetPointerArray(Defaults, unsigned(field->Offset), &ScriptPointers);
}
}
if (ScriptPointers.Size() == 0)
{ // No new pointers: Just use the same ArrayPointers as the parent.
ArrayPointers = ParentClass->ArrayPointers;
}
else
{ // New pointers: Create a new FlatPointers array and add them.
int numSuperPointers;
// Count pointers defined by superclasses.
for (numSuperPointers = 0; ParentClass->ArrayPointers[numSuperPointers] != ~(size_t)0; numSuperPointers++)
{
}
// Concatenate them into a new array
size_t *flat = (size_t*)ClassDataAllocator.Alloc(sizeof(size_t) * (numSuperPointers + ScriptPointers.Size() + 1));
if (numSuperPointers > 0)
{
memcpy(flat, ParentClass->ArrayPointers, sizeof(size_t)*numSuperPointers);
}
if (ScriptPointers.Size() > 0)
{
memcpy(flat + numSuperPointers, &ScriptPointers[0], sizeof(size_t) * ScriptPointers.Size());
}
flat[numSuperPointers + ScriptPointers.Size()] = ~(size_t)0;
ArrayPointers = flat;
}
}
}
//==========================================================================
//
// PClass :: NativeClass
//
// Finds the native type underlying this class.
//
//==========================================================================
const PClass *PClass::NativeClass() const
{
const PClass *cls = this;
while (cls && cls->bRuntimeClass)
cls = cls->ParentClass;
return cls;
}
VMFunction *PClass::FindFunction(FName clsname, FName funcname)
{
auto cls = PClass::FindClass(clsname);
if (!cls) return nullptr;
auto func = dyn_cast<PFunction>(cls->FindSymbol(funcname, true));
if (!func) return nullptr;
return func->Variants[0].Implementation;
}
void PClass::FindFunction(VMFunction **pptr, FName clsname, FName funcname)
{
auto cls = PClass::FindClass(clsname);
if (!cls) return;
auto func = dyn_cast<PFunction>(cls->FindSymbol(funcname, true));
if (!func) return;
*pptr = func->Variants[0].Implementation;
FunctionPtrList.Push(pptr);
}
unsigned GetVirtualIndex(PClass *cls, const char *funcname)
{
// Look up the virtual function index in the defining class because this may have gotten overloaded in subclasses with something different than a virtual override.
auto sym = dyn_cast<PFunction>(cls->FindSymbol(funcname, false));
assert(sym != nullptr);
auto VIndex = sym->Variants[0].Implementation->VirtualIndex;
return VIndex;
}