qzdoom/libraries/opnmidi/opnmidi_opn2.cpp

474 lines
14 KiB
C++

/*
* libOPNMIDI is a free MIDI to WAV conversion library with OPN2 (YM2612) emulation
*
* MIDI parser and player (Original code from ADLMIDI): Copyright (c) 2010-2014 Joel Yliluoma <bisqwit@iki.fi>
* OPNMIDI Library and YM2612 support: Copyright (c) 2017-2018 Vitaly Novichkov <admin@wohlnet.ru>
*
* Library is based on the ADLMIDI, a MIDI player for Linux and Windows with OPL3 emulation:
* http://iki.fi/bisqwit/source/adlmidi.html
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "opnmidi_private.hpp"
#if defined(OPNMIDI_DISABLE_NUKED_EMULATOR) && defined(OPNMIDI_DISABLE_MAME_EMULATOR) && \
defined(OPNMIDI_DISABLE_GENS_EMULATOR) && defined(OPNMIDI_DISABLE_GX_EMULATOR)
#error "No emulators enabled. You must enable at least one emulator to use this library!"
#endif
// Nuked OPN2 emulator, Most accurate, but requires the powerful CPU
#ifndef OPNMIDI_DISABLE_NUKED_EMULATOR
#include "chips/nuked_opn2.h"
#endif
// MAME YM2612 emulator, Well-accurate and fast
#ifndef OPNMIDI_DISABLE_MAME_EMULATOR
#include "chips/mame_opn2.h"
#endif
// GENS 2.10 emulator, very outdated and inaccurate, but gives the best performance
#ifndef OPNMIDI_DISABLE_GENS_EMULATOR
#include "chips/gens_opn2.h"
#endif
// Genesis Plus GX emulator, Variant of MAME with enhancements
#ifndef OPNMIDI_DISABLE_GX_EMULATOR
#include "chips/gx_opn2.h"
#endif
static const unsigned opn2_emulatorSupport = 0
#ifndef OPNMIDI_DISABLE_NUKED_EMULATOR
| (1u << OPNMIDI_EMU_NUKED)
#endif
#ifndef OPNMIDI_DISABLE_MAME_EMULATOR
| (1u << OPNMIDI_EMU_MAME)
#endif
#ifndef OPNMIDI_DISABLE_GENS_EMULATOR
| (1u << OPNMIDI_EMU_GENS)
#endif
#ifndef OPNMIDI_DISABLE_GX_EMULATOR
| (1u << OPNMIDI_EMU_GX)
#endif
;
//! Check emulator availability
bool opn2_isEmulatorAvailable(int emulator)
{
return (opn2_emulatorSupport & (1u << (unsigned)emulator)) != 0;
}
//! Find highest emulator
int opn2_getHighestEmulator()
{
int emu = -1;
for(unsigned m = opn2_emulatorSupport; m > 0; m >>= 1)
++emu;
return emu;
}
//! Find lowest emulator
int opn2_getLowestEmulator()
{
int emu = -1;
unsigned m = opn2_emulatorSupport;
if(m > 0)
{
for(emu = 0; (m & 1) == 0; m >>= 1)
++emu;
}
return emu;
}
static const uint32_t g_noteChannelsMap[6] = { 0, 1, 2, 4, 5, 6 };
static inline void getOpnChannel(size_t in_channel,
size_t &out_chip,
uint8_t &out_port,
uint32_t &out_ch)
{
out_chip = in_channel / 6;
size_t ch4 = in_channel % 6;
out_port = ((ch4 < 3) ? 0 : 1);
out_ch = static_cast<uint32_t>(ch4 % 3);
}
static opnInstMeta2 makeEmptyInstrument()
{
opnInstMeta2 ins;
memset(&ins, 0, sizeof(opnInstMeta2));
ins.flags = opnInstMeta::Flag_NoSound;
return ins;
}
const opnInstMeta2 OPN2::m_emptyInstrument = makeEmptyInstrument();
OPN2::OPN2() :
m_regLFOSetup(0),
m_numChips(1),
m_scaleModulators(false),
m_runAtPcmRate(false),
m_softPanning(false),
m_musicMode(MODE_MIDI),
m_volumeScale(VOLUME_Generic),
m_lfoEnable(false),
m_lfoFrequency(0)
{
m_insBankSetup.volumeModel = OPN2::VOLUME_Generic;
m_insBankSetup.lfoEnable = false;
m_insBankSetup.lfoFrequency = 0;
// Initialize blank instruments banks
m_insBanks.clear();
}
OPN2::~OPN2()
{
clearChips();
}
bool OPN2::setupLocked()
{
return (m_musicMode == MODE_CMF ||
m_musicMode == MODE_IMF ||
m_musicMode == MODE_RSXX);
}
void OPN2::writeReg(size_t chip, uint8_t port, uint8_t index, uint8_t value)
{
m_chips[chip]->writeReg(port, index, value);
}
void OPN2::writeRegI(size_t chip, uint8_t port, uint32_t index, uint32_t value)
{
m_chips[chip]->writeReg(port, static_cast<uint8_t>(index), static_cast<uint8_t>(value));
}
void OPN2::writePan(size_t chip, uint32_t index, uint32_t value)
{
m_chips[chip]->writePan(static_cast<uint16_t>(index), static_cast<uint8_t>(value));
}
void OPN2::noteOff(size_t c)
{
size_t chip;
uint8_t port;
uint32_t cc;
size_t ch4 = c % 6;
getOpnChannel(c, chip, port, cc);
writeRegI(chip, 0, 0x28, g_noteChannelsMap[ch4]);
}
void OPN2::noteOn(size_t c, double hertz) // Hertz range: 0..131071
{
size_t chip;
uint8_t port;
uint32_t cc;
size_t ch4 = c % 6;
getOpnChannel(c, chip, port, cc);
if(hertz < 0) // Avoid infinite loop
return;
uint32_t octave = 0, ftone = 0, mul_offset = 0;
const opnInstData &adli = m_insCache[c];
//Basic range until max of octaves reaching
while((hertz >= 1023.75) && (octave < 0x3800))
{
hertz /= 2.0; // Calculate octave
octave += 0x800;
}
//Extended range, rely on frequency multiplication increment
while(hertz >= 2036.75)
{
hertz /= 2.0; // Calculate octave
mul_offset++;
}
ftone = octave + static_cast<uint32_t>(hertz + 0.5);
for(size_t op = 0; op < 4; op++)
{
uint32_t reg = adli.OPS[op].data[0];
uint16_t address = static_cast<uint16_t>(0x30 + (op * 4) + cc);
if(mul_offset > 0) // Increase frequency multiplication value
{
uint32_t dt = reg & 0xF0;
uint32_t mul = reg & 0x0F;
if((mul + mul_offset) > 0x0F)
{
mul_offset = 0;
mul = 0x0F;
}
writeRegI(chip, port, address, uint8_t(dt | (mul + mul_offset)));
}
else
{
writeRegI(chip, port, address, uint8_t(reg));
}
}
writeRegI(chip, port, 0xA4 + cc, (ftone>>8) & 0xFF);//Set frequency and octave
writeRegI(chip, port, 0xA0 + cc, ftone & 0xFF);
writeRegI(chip, 0, 0x28, 0xF0 + g_noteChannelsMap[ch4]);
}
void OPN2::touchNote(size_t c, uint8_t volume, uint8_t brightness)
{
if(volume > 127) volume = 127;
size_t chip;
uint8_t port;
uint32_t cc;
getOpnChannel(c, chip, port, cc);
const opnInstData &adli = m_insCache[c];
uint8_t op_vol[4] =
{
adli.OPS[OPERATOR1].data[1],
adli.OPS[OPERATOR2].data[1],
adli.OPS[OPERATOR3].data[1],
adli.OPS[OPERATOR4].data[1],
};
bool alg_do[8][4] =
{
/*
* Yeah, Operator 2 and 3 are seems swapped
* which we can see in the algorithm 4
*/
//OP1 OP3 OP2 OP4
//30 34 38 3C
{false,false,false,true},//Algorithm #0: W = 1 * 2 * 3 * 4
{false,false,false,true},//Algorithm #1: W = (1 + 2) * 3 * 4
{false,false,false,true},//Algorithm #2: W = (1 + (2 * 3)) * 4
{false,false,false,true},//Algorithm #3: W = ((1 * 2) + 3) * 4
{false,false,true, true},//Algorithm #4: W = (1 * 2) + (3 * 4)
{false,true ,true ,true},//Algorithm #5: W = (1 * (2 + 3 + 4)
{false,true ,true ,true},//Algorithm #6: W = (1 * 2) + 3 + 4
{true ,true ,true ,true},//Algorithm #7: W = 1 + 2 + 3 + 4
};
uint8_t alg = adli.fbalg & 0x07;
for(uint8_t op = 0; op < 4; op++)
{
bool do_op = alg_do[alg][op] || m_scaleModulators;
uint32_t x = op_vol[op];
uint32_t vol_res = do_op ? (127 - (static_cast<uint32_t>(volume) * (127 - (x & 127)))/127) : x;
if(brightness != 127)
{
brightness = static_cast<uint32_t>(::round(127.0 * ::sqrt((static_cast<double>(brightness)) * (1.0 / 127.0))));
if(!do_op)
vol_res = (127 - (brightness * (127 - (static_cast<uint32_t>(vol_res) & 127))) / 127);
}
writeRegI(chip, port, 0x40 + cc + (4 * op), vol_res);
}
// Correct formula (ST3, AdPlug):
// 63-((63-(instrvol))/63)*chanvol
// Reduces to (tested identical):
// 63 - chanvol + chanvol*instrvol/63
// Also (slower, floats):
// 63 + chanvol * (instrvol / 63.0 - 1)
}
void OPN2::setPatch(size_t c, const opnInstData &instrument)
{
size_t chip;
uint8_t port;
uint32_t cc;
getOpnChannel(c, chip, port, cc);
m_insCache[c] = instrument;
for(uint8_t d = 0; d < 7; d++)
{
for(uint8_t op = 0; op < 4; op++)
writeRegI(chip, port, 0x30 + (0x10 * d) + (op * 4) + cc, instrument.OPS[op].data[d]);
}
writeRegI(chip, port, 0xB0 + cc, instrument.fbalg);//Feedback/Algorithm
m_regLFOSens[c] = (m_regLFOSens[c] & 0xC0) | (instrument.lfosens & 0x3F);
writeRegI(chip, port, 0xB4 + cc, m_regLFOSens[c]);//Panorame and LFO bits
}
void OPN2::setPan(size_t c, uint8_t value)
{
size_t chip;
uint8_t port;
uint32_t cc;
getOpnChannel(c, chip, port, cc);
const opnInstData &adli = m_insCache[c];
uint8_t val = 0;
if(m_softPanning)
{
val = (OPN_PANNING_BOTH & 0xC0) | (adli.lfosens & 0x3F);
writePan(chip, c % 6, value);
writeRegI(chip, port, 0xB4 + cc, val);
}
else
{
int panning = 0;
if(value < 64 + 32) panning |= OPN_PANNING_LEFT;
if(value >= 64 - 32) panning |= OPN_PANNING_RIGHT;
val = (panning & 0xC0) | (adli.lfosens & 0x3F);
writePan(chip, c % 6, 64);
writeRegI(chip, port, 0xB4 + cc, val);
}
m_regLFOSens[c] = val;
}
void OPN2::silenceAll() // Silence all OPL channels.
{
for(size_t c = 0; c < m_numChannels; ++c)
{
noteOff(c);
touchNote(c, 0);
}
}
void OPN2::commitLFOSetup()
{
uint8_t regLFOSetup = (m_lfoEnable ? 8 : 0) | (m_lfoFrequency & 7);
m_regLFOSetup = regLFOSetup;
for(size_t chip = 0; chip < m_numChips; ++chip)
writeReg(chip, 0, 0x22, regLFOSetup);
}
void OPN2::setVolumeScaleModel(OPNMIDI_VolumeModels volumeModel)
{
switch(volumeModel)
{
case OPNMIDI_VolumeModel_AUTO://Do nothing until restart playing
break;
case OPNMIDI_VolumeModel_Generic:
m_volumeScale = OPN2::VOLUME_Generic;
break;
case OPNMIDI_VolumeModel_NativeOPN2:
m_volumeScale = OPN2::VOLUME_NATIVE;
break;
case OPNMIDI_VolumeModel_DMX:
m_volumeScale = OPN2::VOLUME_DMX;
break;
case OPNMIDI_VolumeModel_APOGEE:
m_volumeScale = OPN2::VOLUME_APOGEE;
break;
case OPNMIDI_VolumeModel_9X:
m_volumeScale = OPN2::VOLUME_9X;
break;
}
}
OPNMIDI_VolumeModels OPN2::getVolumeScaleModel()
{
switch(m_volumeScale)
{
default:
case OPN2::VOLUME_Generic:
return OPNMIDI_VolumeModel_Generic;
case OPN2::VOLUME_NATIVE:
return OPNMIDI_VolumeModel_NativeOPN2;
case OPN2::VOLUME_DMX:
return OPNMIDI_VolumeModel_DMX;
case OPN2::VOLUME_APOGEE:
return OPNMIDI_VolumeModel_APOGEE;
case OPN2::VOLUME_9X:
return OPNMIDI_VolumeModel_9X;
}
}
void OPN2::clearChips()
{
for(size_t i = 0; i < m_chips.size(); i++)
m_chips[i].reset(NULL);
m_chips.clear();
}
void OPN2::reset(int emulator, unsigned long PCM_RATE, void *audioTickHandler)
{
#if !defined(ADLMIDI_AUDIO_TICK_HANDLER)
ADL_UNUSED(audioTickHandler);
#endif
clearChips();
m_insCache.clear();
m_regLFOSens.clear();
m_chips.resize(m_numChips, AdlMIDI_SPtr<OPNChipBase>());
for(size_t i = 0; i < m_chips.size(); i++)
{
OPNChipBase *chip;
switch(emulator)
{
default:
assert(false);
abort();
#ifndef OPNMIDI_DISABLE_MAME_EMULATOR
case OPNMIDI_EMU_MAME:
chip = new MameOPN2;
break;
#endif
#ifndef OPNMIDI_DISABLE_NUKED_EMULATOR
case OPNMIDI_EMU_NUKED:
chip = new NukedOPN2;
break;
#endif
#ifndef OPNMIDI_DISABLE_GENS_EMULATOR
case OPNMIDI_EMU_GENS:
chip = new GensOPN2;
break;
#endif
#ifndef OPNMIDI_DISABLE_GX_EMULATOR
case OPNMIDI_EMU_GX:
chip = new GXOPN2;
break;
#endif
}
m_chips[i].reset(chip);
chip->setChipId((uint32_t)i);
chip->setRate((uint32_t)PCM_RATE, 7670454);
if(m_runAtPcmRate)
chip->setRunningAtPcmRate(true);
#if defined(ADLMIDI_AUDIO_TICK_HANDLER)
chip->setAudioTickHandlerInstance(audioTickHandler);
#endif
}
m_numChannels = m_numChips * 6;
m_insCache.resize(m_numChannels, m_emptyInstrument.opn[0]);
m_regLFOSens.resize(m_numChannels, 0);
uint8_t regLFOSetup = (m_lfoEnable ? 8 : 0) | (m_lfoFrequency & 7);
m_regLFOSetup = regLFOSetup;
for(size_t card = 0; card < m_numChips; ++card)
{
writeReg(card, 0, 0x22, regLFOSetup);//push current LFO state
writeReg(card, 0, 0x27, 0x00); //set Channel 3 normal mode
writeReg(card, 0, 0x2B, 0x00); //Disable DAC
//Shut up all channels
writeReg(card, 0, 0x28, 0x00 ); //Note Off 0 channel
writeReg(card, 0, 0x28, 0x01 ); //Note Off 1 channel
writeReg(card, 0, 0x28, 0x02 ); //Note Off 2 channel
writeReg(card, 0, 0x28, 0x04 ); //Note Off 3 channel
writeReg(card, 0, 0x28, 0x05 ); //Note Off 4 channel
writeReg(card, 0, 0x28, 0x06 ); //Note Off 5 channel
}
silenceAll();
}