qzdoom/src/r_main.cpp
Christoph Oelckers ca43ea7345 - Fixed: A_CustomMissile with aimmode 2 ignored spawnofs_xy.
- Changed savegame versioning so that the written version is never lower
  than the minmum one reported as compatible. 
- Added mirrored movement modes for linked sectors.
- Added Eternity-style initialization for linked sectors as a new subtype
  of Static_Init.
- Added linked sectors. The control sector determines how they move but if
  any one of the linked sectors is blocked, movement for all linked sectors
  will be affected. This will allow lifts consisting out of more than one
  sector without the risk of breaking them if only one of the sectors is
  blocked.
- Fixed: A_Mushroom created an actor on the stack.


SVN r825 (trunk)
2008-03-20 21:12:03 +00:00

2172 lines
53 KiB
C++

// Emacs style mode select -*- C++ -*-
//-----------------------------------------------------------------------------
//
// $Id:$
//
// Copyright (C) 1993-1996 by id Software, Inc.
//
// This source is available for distribution and/or modification
// only under the terms of the DOOM Source Code License as
// published by id Software. All rights reserved.
//
// The source is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// FITNESS FOR A PARTICULAR PURPOSE. See the DOOM Source Code License
// for more details.
//
// $Log:$
//
// DESCRIPTION:
// Rendering main loop and setup functions,
// utility functions (BSP, geometry, trigonometry).
// See tables.c, too.
//
//-----------------------------------------------------------------------------
// HEADER FILES ------------------------------------------------------------
#include <stdlib.h>
#include <math.h>
#include "templates.h"
#include "m_alloc.h"
#include "doomdef.h"
#include "d_net.h"
#include "doomstat.h"
#include "m_random.h"
#include "m_bbox.h"
#include "p_local.h"
#include "r_local.h"
#include "r_sky.h"
#include "st_stuff.h"
#include "c_cvars.h"
#include "v_video.h"
#include "stats.h"
#include "i_video.h"
#include "i_system.h"
#include "vectors.h"
#include "a_sharedglobal.h"
#include "r_translate.h"
#include "p_3dmidtex.h"
// MACROS ------------------------------------------------------------------
#if 0
#define TEST_X 32343794
#define TEST_Y 111387517
#define TEST_Z 2164524
#define TEST_ANGLE 2468347904
#endif
// TYPES -------------------------------------------------------------------
struct InterpolationViewer
{
AActor *ViewActor;
int otic;
fixed_t oviewx, oviewy, oviewz;
fixed_t nviewx, nviewy, nviewz;
int oviewpitch, nviewpitch;
angle_t oviewangle, nviewangle;
};
// EXTERNAL FUNCTION PROTOTYPES --------------------------------------------
void R_SpanInitData ();
void RP_RenderBSPNode (void *node);
bool RP_SetupFrame (bool backside);
// PUBLIC FUNCTION PROTOTYPES ----------------------------------------------
// PRIVATE FUNCTION PROTOTYPES ---------------------------------------------
static void R_Shutdown();
// EXTERNAL DATA DECLARATIONS ----------------------------------------------
extern bool DrawFSHUD; // [RH] Defined in d_main.cpp
extern short *openings;
extern bool r_fakingunderwater;
extern "C" int fuzzviewheight;
EXTERN_CVAR (Bool, r_particles)
EXTERN_CVAR (Bool, cl_capfps)
// PRIVATE DATA DECLARATIONS -----------------------------------------------
static float CurrentVisibility = 8.f;
static fixed_t MaxVisForWall;
static fixed_t MaxVisForFloor;
static FRandom pr_torchflicker ("TorchFlicker");
static TArray<InterpolationViewer> PastViewers;
static int centerxwide;
static bool polyclipped;
static bool r_showviewer;
bool r_dontmaplines;
// PUBLIC DATA DEFINITIONS -------------------------------------------------
CVAR (String, r_viewsize, "", CVAR_NOSET)
CVAR (Int, r_polymost, 0, 0)
CVAR (Bool, r_deathcamera, false, CVAR_ARCHIVE)
fixed_t r_BaseVisibility;
fixed_t r_WallVisibility;
fixed_t r_FloorVisibility;
float r_TiltVisibility;
fixed_t r_SpriteVisibility;
fixed_t r_ParticleVisibility;
fixed_t r_SkyVisibility;
fixed_t r_TicFrac; // [RH] Fractional tic to render
DWORD r_FrameTime; // [RH] Time this frame started drawing (in ms)
bool r_NoInterpolate;
angle_t LocalViewAngle;
int LocalViewPitch;
bool LocalKeyboardTurner;
float LastFOV;
int WidescreenRatio;
fixed_t GlobVis;
fixed_t FocalTangent;
fixed_t FocalLengthX;
fixed_t FocalLengthY;
float FocalLengthXfloat;
int viewangleoffset;
int validcount = 1; // increment every time a check is made
FDynamicColormap*basecolormap; // [RH] colormap currently drawing with
int fixedlightlev;
lighttable_t *fixedcolormap;
float WallTMapScale;
float WallTMapScale2;
extern "C" {
int centerx;
int centery;
}
DCanvas *RenderTarget; // [RH] canvas to render to
bool bRenderingToCanvas; // [RH] True if rendering to a special canvas
fixed_t globaluclip, globaldclip;
fixed_t centerxfrac;
fixed_t centeryfrac;
fixed_t yaspectmul;
float iyaspectmulfloat;
fixed_t InvZtoScale;
// just for profiling purposes
int framecount;
int linecount;
int loopcount;
fixed_t viewx;
fixed_t viewy;
fixed_t viewz;
int viewpitch;
int otic;
angle_t viewangle;
sector_t *viewsector;
fixed_t viewcos, viewtancos;
fixed_t viewsin, viewtansin;
AActor *camera; // [RH] camera to draw from. doesn't have to be a player
int r_Yaspect = 200; // Why did I make this a variable? It's never set anywhere.
//
// precalculated math tables
//
int FieldOfView = 2048; // Fineangles in the SCREENWIDTH wide window
// The xtoviewangleangle[] table maps a screen pixel
// to the lowest viewangle that maps back to x ranges
// from clipangle to -clipangle.
angle_t xtoviewangle[MAXWIDTH+1];
int extralight; // bumped light from gun blasts
bool foggy; // [RH] ignore extralight and fullbright?
int r_actualextralight;
bool setsizeneeded;
int setblocks, setdetail = -1;
fixed_t freelookviewheight;
unsigned int R_OldBlend = ~0;
void (*colfunc) (void);
void (*basecolfunc) (void);
void (*fuzzcolfunc) (void);
void (*transcolfunc) (void);
void (*spanfunc) (void);
void (*hcolfunc_pre) (void);
void (*hcolfunc_post1) (int hx, int sx, int yl, int yh);
void (*hcolfunc_post2) (int hx, int sx, int yl, int yh);
void (STACK_ARGS *hcolfunc_post4) (int sx, int yl, int yh);
cycle_t WallCycles, PlaneCycles, MaskedCycles, WallScanCycles;
FCanvasTextureInfo *FCanvasTextureInfo::List;
// PRIVATE DATA DEFINITIONS ------------------------------------------------
static int lastcenteryfrac;
static bool NoInterpolateView;
// CODE --------------------------------------------------------------------
//==========================================================================
//
// R_PointToAngle
//
// To get a global angle from cartesian coordinates, the coordinates are
// flipped until they are in the first octant of the coordinate system,
// then the y (<=x) is scaled and divided by x to get a tangent (slope)
// value which is looked up in the tantoangle[] table.
//
//==========================================================================
angle_t R_PointToAngle2 (fixed_t x1, fixed_t y1, fixed_t x, fixed_t y)
{
x -= x1;
y -= y1;
if ((x | y) == 0)
{
return 0;
}
fixed_t ax = abs (x);
fixed_t ay = abs (y);
int div;
angle_t angle;
if (ax > ay)
{
swap (ax, ay);
}
div = SlopeDiv (ax, ay);
angle = tantoangle[div];
if (x >= 0)
{
if (y >= 0)
{
if (x > y)
{ // octant 0
return angle;
}
else
{ // octant 1
return ANG90 - 1 - angle;
}
}
else // y < 0
{
if (x > -y)
{ // octant 8
return (angle_t)-(SDWORD)angle;
}
else
{ // octant 7
return ANG270 + angle;
}
}
}
else // x < 0
{
if (y >= 0)
{
if (-x > y)
{ // octant 3
return ANG180 - 1 - angle;
}
else
{ // octant 2
return ANG90 + angle;
}
}
else // y < 0
{
if (x < y)
{ // octant 4
return ANG180 + angle;
}
else
{ // octant 5
return ANG270 - 1 - angle;
}
}
}
}
//==========================================================================
//
// R_InitPointToAngle
//
//==========================================================================
void R_InitPointToAngle (void)
{
double f;
int i;
//
// slope (tangent) to angle lookup
//
for (i = 0; i <= SLOPERANGE; i++)
{
f = atan2 ((double)i, (double)SLOPERANGE) / (6.28318530718 /* 2*pi */);
tantoangle[i] = (angle_t)(0xffffffff*f);
}
}
//==========================================================================
//
// R_PointToDist2
//
// Returns the distance from (0,0) to some other point. In a
// floating point environment, we'd probably be better off using the
// Pythagorean Theorem to determine the result.
//
// killough 5/2/98: simplified
// [RH] Simplified further [sin (t + 90 deg) == cos (t)]
// Not used. Should it go away?
//
//==========================================================================
fixed_t R_PointToDist2 (fixed_t dx, fixed_t dy)
{
dx = abs (dx);
dy = abs (dy);
if ((dx | dy) == 0)
{
return 0;
}
if (dy > dx)
{
swap (dx, dy);
}
return FixedDiv (dx, finecosine[tantoangle[FixedDiv (dy, dx) >> DBITS] >> ANGLETOFINESHIFT]);
}
//==========================================================================
//
// R_InitTables
//
//==========================================================================
void R_InitTables (void)
{
int i;
const double pimul = PI*2/FINEANGLES;
// viewangle tangent table
finetangent[0] = (angle_t)(FRACUNIT*tan ((0.5-FINEANGLES/4)*pimul)+0.5);
for (i = 1; i < FINEANGLES/2; i++)
{
finetangent[i] = (angle_t)(FRACUNIT*tan ((i-FINEANGLES/4)*pimul)+0.5);
}
// finesine table
for (i = 0; i < FINEANGLES/4; i++)
{
finesine[i] = (angle_t)(FRACUNIT * sin (i*pimul));
}
for (i = 0; i < FINEANGLES/4; i++)
{
finesine[i+FINEANGLES/4] = finesine[FINEANGLES/4-1-i];
}
for (i = 0; i < FINEANGLES/2; i++)
{
finesine[i+FINEANGLES/2] = -finesine[i];
}
finesine[FINEANGLES/4] = FRACUNIT;
finesine[FINEANGLES*3/4] = -FRACUNIT;
memcpy (&finesine[FINEANGLES], &finesine[0], sizeof(angle_t)*FINEANGLES/4);
}
//==========================================================================
//
// R_InitTextureMapping
//
//==========================================================================
void R_InitTextureMapping ()
{
int i;
fixed_t slope;
int fov = FieldOfView;
// For widescreen displays, increase the FOV so that the middle part of the
// screen that would be visible on a 4:3 display has the requested FOV.
if (centerxwide != centerx)
{ // centerxwide is what centerx would be if the display was not widescreen
fov = int(atan(double(centerx)*tan(double(fov)*M_PI/(FINEANGLES))/double(centerxwide))*(FINEANGLES)/M_PI);
if (fov > 170*FINEANGLES/360)
fov = 170*FINEANGLES/360;
}
/*
default: break;
case 1: fov = MIN (fov * 512/433, 170 * FINEANGLES / 360); break; // 16:9
case 2: fov = MIN (fov * 512/459, 170 * FINEANGLES / 360); break; // 16:10
}
*/
const int hitan = finetangent[FINEANGLES/4+fov/2];
// Calc focallength so FieldOfView fineangles covers viewwidth.
FocalTangent = hitan;
FocalLengthX = FixedDiv (centerxfrac, hitan);
FocalLengthY = Scale (centerxfrac, yaspectmul, hitan);
FocalLengthXfloat = (float)FocalLengthX / 65536.f;
// Now generate xtoviewangle for sky texture mapping.
// [RH] Do not generate viewangletox, because texture mapping is no
// longer done with trig, so it's not needed.
const int t = MIN<int> ((FocalLengthX >> FRACBITS) + centerx, viewwidth);
const fixed_t slopestep = hitan / centerx;
const fixed_t dfocus = FocalLengthX >> DBITS;
for (i = centerx, slope = 0; i <= t; i++, slope += slopestep)
{
xtoviewangle[i] = (angle_t)-(signed)tantoangle[slope >> DBITS];
}
for (; i <= viewwidth; i++)
{
xtoviewangle[i] = ANG270+tantoangle[dfocus / (i - centerx)];
}
for (i = 0; i < centerx; i++)
{
xtoviewangle[i] = (angle_t)(-(signed)xtoviewangle[viewwidth-i-1]);
}
}
//==========================================================================
//
// R_SetFOV
//
// Changes the field of view in degrees
//
//==========================================================================
void R_SetFOV (float fov)
{
if (fov < 5.f)
fov = 5.f;
else if (fov > 170.f)
fov = 170.f;
if (fov != LastFOV)
{
LastFOV = fov;
FieldOfView = (int)(fov * (float)FINEANGLES / 360.f);
setsizeneeded = true;
}
}
//==========================================================================
//
// R_GetFOV
//
// Returns the current field of view in degrees
//
//==========================================================================
float R_GetFOV ()
{
return LastFOV;
}
//==========================================================================
//
// R_SetVisibility
//
// Changes how rapidly things get dark with distance
//
//==========================================================================
void R_SetVisibility (float vis)
{
// Allow negative visibilities, just for novelty's sake
//vis = clamp (vis, -204.7f, 204.7f);
CurrentVisibility = vis;
if (FocalTangent == 0)
{ // If r_visibility is called before the renderer is all set up, don't
// divide by zero. This will be called again later, and the proper
// values can be initialized then.
return;
}
r_BaseVisibility = toint (vis * 65536.f);
// Prevent overflow on walls
if (r_BaseVisibility < 0 && r_BaseVisibility < -MaxVisForWall)
r_WallVisibility = -MaxVisForWall;
else if (r_BaseVisibility > 0 && r_BaseVisibility > MaxVisForWall)
r_WallVisibility = MaxVisForWall;
else
r_WallVisibility = r_BaseVisibility;
r_WallVisibility = FixedMul (Scale (InvZtoScale, SCREENWIDTH*(BaseRatioSizes[WidescreenRatio][1]<<detailyshift),
(viewwidth<<detailxshift)*SCREENHEIGHT*3), FixedMul (r_WallVisibility, FocalTangent));
// Prevent overflow on floors/ceilings. Note that the calculation of
// MaxVisForFloor means that planes less than two units from the player's
// view could still overflow, but there is no way to totally eliminate
// that while still using fixed point math.
if (r_BaseVisibility < 0 && r_BaseVisibility < -MaxVisForFloor)
r_FloorVisibility = -MaxVisForFloor;
else if (r_BaseVisibility > 0 && r_BaseVisibility > MaxVisForFloor)
r_FloorVisibility = MaxVisForFloor;
else
r_FloorVisibility = r_BaseVisibility;
r_FloorVisibility = Scale (160*FRACUNIT, r_FloorVisibility, FocalLengthY);
r_TiltVisibility = vis * (float)FocalTangent * (16.f * 320.f) / (float)viewwidth;
r_SpriteVisibility = r_WallVisibility;
}
//==========================================================================
//
// R_GetVisibility
//
//==========================================================================
float R_GetVisibility ()
{
return CurrentVisibility;
}
//==========================================================================
//
// R_SetViewSize
//
// Do not really change anything here, because it might be in the middle
// of a refresh. The change will take effect next refresh.
//
//==========================================================================
void R_SetViewSize (int blocks)
{
setsizeneeded = true;
setblocks = blocks;
}
//==========================================================================
//
// CVAR r_detail
//
// Selects a pixel doubling mode
//
//==========================================================================
CUSTOM_CVAR (Int, r_detail, 0, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
{
static bool badrecovery = false;
if (badrecovery)
{
badrecovery = false;
return;
}
if (self < 0 || self > 3)
{
Printf ("Bad detail mode. (Use 0-3)\n");
badrecovery = true;
self = (detailyshift << 1) | detailxshift;
return;
}
setdetail = self;
setsizeneeded = true;
}
//==========================================================================
//
// R_SetDetail
//
//==========================================================================
void R_SetDetail (int detail)
{
detailxshift = detail & 1;
detailyshift = (detail >> 1) & 1;
}
//==========================================================================
//
// R_SetWindow
//
//==========================================================================
void R_SetWindow (int windowSize, int fullWidth, int fullHeight, int stHeight)
{
int virtheight, virtwidth;
if (windowSize >= 11)
{
realviewwidth = fullWidth;
freelookviewheight = realviewheight = fullHeight;
}
else if (windowSize == 10)
{
realviewwidth = fullWidth;
realviewheight = stHeight;
freelookviewheight = fullHeight;
}
else
{
realviewwidth = ((setblocks*fullWidth)/10) & (~15);
realviewheight = ((setblocks*stHeight)/10)&~7;
freelookviewheight = ((setblocks*fullHeight)/10)&~7;
}
// If the screen is approximately 16:9 or 16:10, consider it widescreen.
WidescreenRatio = CheckRatio (fullWidth, fullHeight);
DrawFSHUD = (windowSize == 11);
viewwidth = realviewwidth >> detailxshift;
viewheight = realviewheight >> detailyshift;
fuzzviewheight = viewheight - 2; // Maximum row the fuzzer can draw to
freelookviewheight >>= detailyshift;
halfviewwidth = (viewwidth >> 1) - 1;
if (!bRenderingToCanvas)
{ // Set r_viewsize cvar to reflect the current view size
UCVarValue value;
char temp[16];
sprintf (temp, "%d x %d", viewwidth, viewheight);
value.String = temp;
r_viewsize.ForceSet (value, CVAR_String);
}
lastcenteryfrac = 1<<30;
centery = viewheight/2;
centerx = viewwidth/2;
centerxfrac = centerx<<FRACBITS;
centeryfrac = centery<<FRACBITS;
virtwidth = fullWidth >> detailxshift;
virtheight = fullHeight >> detailyshift;
if (WidescreenRatio & 4)
{
virtheight = virtheight * BaseRatioSizes[WidescreenRatio][3] / 48;
centerxwide = centerx;
}
else
{
virtwidth = virtwidth * BaseRatioSizes[WidescreenRatio][3] / 48;
centerxwide = centerx * BaseRatioSizes[WidescreenRatio][3] / 48;
}
yaspectmul = Scale ((320<<FRACBITS), virtheight, r_Yaspect * virtwidth);
iyaspectmulfloat = (float)virtwidth * r_Yaspect / 320.f / (float)virtheight;
InvZtoScale = yaspectmul * centerx;
WallTMapScale = (float)centerx * 32.f;
WallTMapScale2 = iyaspectmulfloat * 2.f / (float)centerx;
// psprite scales
pspritexscale = (centerxwide << FRACBITS) / 160;
pspriteyscale = FixedMul (pspritexscale, yaspectmul);
pspritexiscale = FixedDiv (FRACUNIT, pspritexscale);
// thing clipping
clearbufshort (screenheightarray, viewwidth, (short)viewheight);
// [RH] Sky height fix for screens not 200 (or 240) pixels tall
R_InitSkyMap ();
R_InitTextureMapping ();
MaxVisForWall = FixedMul (Scale (InvZtoScale, SCREENWIDTH*(r_Yaspect<<detailyshift),
(viewwidth<<detailxshift)*SCREENHEIGHT), FocalTangent);
MaxVisForWall = FixedDiv (0x7fff0000, MaxVisForWall);
MaxVisForFloor = Scale (FixedDiv (0x7fff0000, viewheight<<(FRACBITS-2)), FocalLengthY, 160*FRACUNIT);
// Reset r_*Visibility vars
R_SetVisibility (R_GetVisibility ());
}
//==========================================================================
//
// R_ExecuteSetViewSize
//
//==========================================================================
void R_ExecuteSetViewSize ()
{
setsizeneeded = false;
BorderNeedRefresh = screen->GetPageCount ();
if (setdetail >= 0)
{
R_SetDetail (setdetail);
setdetail = -1;
}
R_SetWindow (setblocks, SCREENWIDTH, SCREENHEIGHT, ST_Y);
// Handle resize, e.g. smaller view windows with border and/or status bar.
viewwindowx = (screen->GetWidth() - (viewwidth<<detailxshift))>>1;
// Same with base row offset.
viewwindowy = ((viewwidth<<detailxshift) == screen->GetWidth()) ?
0 : (ST_Y-(viewheight<<detailyshift)) >> 1;
}
//==========================================================================
//
// CVAR screenblocks
//
// Selects the size of the visible window
//
//==========================================================================
CUSTOM_CVAR (Int, screenblocks, 10, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
{
if (self > 12)
self = 12;
else if (self < 3)
self = 3;
else
R_SetViewSize (self);
}
//==========================================================================
//
// CVAR r_columnmethod
//
// Selects which version of the seg renderers to use.
//
//==========================================================================
CUSTOM_CVAR (Int, r_columnmethod, 1, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
{
if (self != 0 && self != 1)
{
self = 1;
}
else
{ // Trigger the change
r_detail.Callback ();
}
}
//==========================================================================
//
// R_Init
//
//==========================================================================
void R_Init ()
{
atterm (R_Shutdown);
R_InitData ();
R_InitPointToAngle ();
R_InitTables ();
// viewwidth / viewheight are set by the defaults
R_SetViewSize (screenblocks);
R_InitPlanes ();
R_InitTranslationTables ();
R_InitParticles (); // [RH] Setup particle engine
R_InitColumnDrawers ();
colfunc = basecolfunc = R_DrawColumn;
fuzzcolfunc = R_DrawFuzzColumn;
transcolfunc = R_DrawTranslatedColumn;
spanfunc = R_DrawSpan;
// [RH] Horizontal column drawers
hcolfunc_pre = R_DrawColumnHoriz;
hcolfunc_post1 = rt_map1col;
hcolfunc_post4 = rt_map4cols;
framecount = 0;
}
//==========================================================================
//
// R_Shutdown
//
//==========================================================================
static void R_Shutdown ()
{
R_DeinitParticles();
R_DeinitTranslationTables();
R_DeinitPlanes();
R_DeinitData();
}
//==========================================================================
//
// R_PointInSubsector
//
//==========================================================================
subsector_t *R_PointInSubsector (fixed_t x, fixed_t y)
{
node_t *node;
int side;
// single subsector is a special case
if (numnodes == 0)
return subsectors;
node = nodes + numnodes - 1;
do
{
side = R_PointOnSide (x, y, node);
node = (node_t *)node->children[side];
}
while (!((size_t)node & 1));
return (subsector_t *)((BYTE *)node - 1);
}
//==========================================================================
//
// R_InterpolateView
//
//==========================================================================
//CVAR (Int, tf, 0, 0)
EXTERN_CVAR (Bool, cl_noprediction)
void R_InterpolateView (player_t *player, fixed_t frac, InterpolationViewer *iview)
{
// frac = tf;
if (NoInterpolateView)
{
NoInterpolateView = false;
iview->oviewx = iview->nviewx;
iview->oviewy = iview->nviewy;
iview->oviewz = iview->nviewz;
iview->oviewpitch = iview->nviewpitch;
iview->oviewangle = iview->nviewangle;
}
viewx = iview->oviewx + FixedMul (frac, iview->nviewx - iview->oviewx);
viewy = iview->oviewy + FixedMul (frac, iview->nviewy - iview->oviewy);
viewz = iview->oviewz + FixedMul (frac, iview->nviewz - iview->oviewz);
if (player != NULL &&
player - players == consoleplayer &&
camera == player->mo &&
!demoplayback &&
iview->nviewx == camera->x &&
iview->nviewy == camera->y &&
!(player->cheats & (CF_TOTALLYFROZEN|CF_FROZEN)) &&
player->playerstate == PST_LIVE &&
player->mo->reactiontime == 0 &&
!NoInterpolateView &&
!paused &&
(!netgame || !cl_noprediction) &&
!LocalKeyboardTurner)
{
viewangle = iview->nviewangle + (LocalViewAngle & 0xFFFF0000);
fixed_t delta = -(signed)(LocalViewPitch & 0xFFFF0000);
viewpitch = iview->nviewpitch;
if (delta > 0)
{
// Avoid overflowing viewpitch (can happen when a netgame is stalled)
if (viewpitch + delta <= viewpitch)
{
viewpitch = +ANGLE_1*MAX_DN_ANGLE;
}
else
{
viewpitch = MIN(viewpitch + delta, +ANGLE_1*MAX_DN_ANGLE);
}
}
else if (delta < 0)
{
// Avoid overflowing viewpitch (can happen when a netgame is stalled)
if (viewpitch + delta >= viewpitch)
{
viewpitch = -ANGLE_1*MAX_UP_ANGLE;
}
else
{
viewpitch = MAX(viewpitch + delta, -ANGLE_1*MAX_UP_ANGLE);
}
}
}
else
{
viewpitch = iview->oviewpitch + FixedMul (frac, iview->nviewpitch - iview->oviewpitch);
viewangle = iview->oviewangle + FixedMul (frac, iview->nviewangle - iview->oviewangle);
}
// Due to interpolation this is not necessarily the same as the sector the camera is in.
viewsector = R_PointInSubsector(viewx, viewy)->sector;
}
//==========================================================================
//
// R_ResetViewInterpolation
//
//==========================================================================
void R_ResetViewInterpolation ()
{
NoInterpolateView = true;
}
//==========================================================================
//
// R_SetViewAngle
//
//==========================================================================
void R_SetViewAngle ()
{
angle_t ang = viewangle >> ANGLETOFINESHIFT;
viewsin = finesine[ang];
viewcos = finecosine[ang];
viewtansin = FixedMul (FocalTangent, viewsin);
viewtancos = FixedMul (FocalTangent, viewcos);
}
//==========================================================================
//
// FindPastViewer
//
//==========================================================================
static InterpolationViewer *FindPastViewer (AActor *actor)
{
for (unsigned int i = 0; i < PastViewers.Size(); ++i)
{
if (PastViewers[i].ViewActor == actor)
{
return &PastViewers[i];
}
}
// Not found, so make a new one
InterpolationViewer iview = { 0 };
iview.ViewActor = actor;
iview.otic = -1;
return &PastViewers[PastViewers.Push (iview)];
}
//==========================================================================
//
// R_FreePastViewers
//
//==========================================================================
void R_FreePastViewers ()
{
PastViewers.Clear ();
}
//==========================================================================
//
// R_ClearPastViewer
//
// If the actor changed in a non-interpolatable way, remove it.
//
//==========================================================================
void R_ClearPastViewer (AActor *actor)
{
for (unsigned int i = 0; i < PastViewers.Size(); ++i)
{
if (PastViewers[i].ViewActor == actor)
{
// Found it, so remove it.
if (i == PastViewers.Size())
{
PastViewers.Delete (i);
}
else
{
PastViewers.Pop (PastViewers[i]);
}
}
}
}
//==========================================================================
//
// R_CopyStackedViewParameters
//
//==========================================================================
void R_CopyStackedViewParameters()
{
stacked_viewx = viewx;
stacked_viewy = viewy;
stacked_viewz = viewz;
stacked_angle = viewangle;
stacked_extralight = extralight;
stacked_visibility = R_GetVisibility();
}
//==========================================================================
//
// R_SetupFrame
//
//==========================================================================
void R_SetupFrame (AActor *actor)
{
if (actor == NULL)
{
I_Error ("Tried to render from a NULL actor.");
}
player_t *player = actor->player;
unsigned int newblend;
InterpolationViewer *iview;
if (player != NULL && player->mo == actor)
{ // [RH] Use camera instead of viewplayer
camera = player->camera;
if (camera == NULL)
{
camera = player->camera = player->mo;
}
if (camera == actor)
{
P_PredictPlayer (player);
}
}
else
{
camera = actor;
}
if (camera == NULL)
{
I_Error ("You lost your body. Bad dehacked work is likely to blame.");
}
iview = FindPastViewer (camera);
int nowtic = I_GetTime (false);
if (iview->otic != -1 && nowtic > iview->otic)
{
iview->otic = nowtic;
iview->oviewx = iview->nviewx;
iview->oviewy = iview->nviewy;
iview->oviewz = iview->nviewz;
iview->oviewpitch = iview->nviewpitch;
iview->oviewangle = iview->nviewangle;
}
if (player != NULL && gamestate != GS_TITLELEVEL &&
((player->cheats & CF_CHASECAM) || (r_deathcamera && camera->health <= 0)) &&
(camera->RenderStyle.BlendOp != STYLEOP_None) &&
!(camera->renderflags & RF_INVISIBLE) &&
camera->sprite != 0) // Sprite 0 is always TNT1
{
// [RH] Use chasecam view
P_AimCamera (camera);
iview->nviewx = CameraX;
iview->nviewy = CameraY;
iview->nviewz = CameraZ;
viewsector = CameraSector;
r_showviewer = true;
}
else
{
iview->nviewx = camera->x;
iview->nviewy = camera->y;
iview->nviewz = camera->player ? camera->player->viewz : camera->z + camera->GetClass()->Meta.GetMetaFixed(AMETA_CameraHeight);
viewsector = camera->Sector;
r_showviewer = false;
}
iview->nviewpitch = camera->pitch;
if (camera->player != 0)
{
player = camera->player;
}
iview->nviewangle = camera->angle + viewangleoffset;
if (iview->otic == -1 || r_NoInterpolate)
{
R_ResetViewInterpolation ();
iview->otic = nowtic;
}
R_UpdateAnimations (I_MSTime());
r_TicFrac = I_GetTimeFrac (&r_FrameTime);
if (cl_capfps || r_NoInterpolate)
{
r_TicFrac = FRACUNIT;
}
R_InterpolateView (player, r_TicFrac, iview);
#ifdef TEST_X
viewx = TEST_X;
viewy = TEST_Y;
viewz = TEST_Z;
viewangle = TEST_ANGLE;
#endif
R_CopyStackedViewParameters();
R_SetViewAngle ();
dointerpolations (r_TicFrac);
// Keep the view within the sector's floor and ceiling
fixed_t theZ = viewsector->ceilingplane.ZatPoint (viewx, viewy) - 4*FRACUNIT;
if (viewz > theZ)
{
viewz = theZ;
}
theZ = viewsector->floorplane.ZatPoint (viewx, viewy) + 4*FRACUNIT;
if (viewz < theZ)
{
viewz = theZ;
}
if (!paused)
{
int intensity = DEarthquake::StaticGetQuakeIntensity (camera);
if (intensity != 0)
{
viewx += ((pr_torchflicker() % (intensity<<2))
-(intensity<<1))<<FRACBITS;
viewy += ((pr_torchflicker() % (intensity<<2))
-(intensity<<1))<<FRACBITS;
}
}
extralight = camera->player ? camera->player->extralight : 0;
// killough 3/20/98, 4/4/98: select colormap based on player status
// [RH] Can also select a blend
if (viewsector->heightsec &&
!(viewsector->heightsec->MoreFlags & SECF_IGNOREHEIGHTSEC))
{
const sector_t *s = viewsector->heightsec;
newblend = viewz < s->floorplane.ZatPoint (viewx, viewy)
? s->bottommap
: viewz > s->ceilingplane.ZatPoint (viewx, viewy)
? s->topmap
: s->midmap;
if (APART(newblend) == 0 && newblend >= numfakecmaps)
newblend = 0;
}
else
{
newblend = 0;
}
// [RH] Don't override testblend unless entering a sector with a
// blend different from the previous sector's. Same goes with
// NormalLight's maps pointer.
if (R_OldBlend != newblend)
{
R_OldBlend = newblend;
if (APART(newblend))
{
BaseBlendR = RPART(newblend);
BaseBlendG = GPART(newblend);
BaseBlendB = BPART(newblend);
BaseBlendA = APART(newblend) / 255.f;
NormalLight.Maps = realcolormaps;
}
else
{
NormalLight.Maps = realcolormaps + NUMCOLORMAPS*256*newblend;
BaseBlendR = BaseBlendG = BaseBlendB = 0;
BaseBlendA = 0.f;
}
}
fixedcolormap = NULL;
fixedlightlev = 0;
if (player != NULL && camera == player->mo && player->fixedcolormap)
{
if (player->fixedcolormap < NUMCOLORMAPS)
{
fixedlightlev = player->fixedcolormap*256;
fixedcolormap = NormalLight.Maps;
}
else switch (player->fixedcolormap)
{
case INVERSECOLORMAP:
fixedcolormap = InverseColormap;
break;
case REDCOLORMAP:
fixedcolormap = RedColormap;
break;
case GREENCOLORMAP:
fixedcolormap = GreenColormap;
break;
case GOLDCOLORMAP:
fixedcolormap = GoldColormap;
break;
default:
break;
}
}
// [RH] Inverse light for shooting the Sigil
else if (extralight == INT_MIN)
{
fixedcolormap = InverseColormap;
extralight = 0;
}
// [RH] freelook stuff
{
fixed_t dy;
if (camera != NULL)
{
dy = FixedMul (FocalLengthY, finetangent[(ANGLE_90-viewpitch)>>ANGLETOFINESHIFT]);
}
else
{
dy = 0;
}
centeryfrac = (viewheight << (FRACBITS-1)) + dy;
centery = centeryfrac >> FRACBITS;
globaluclip = FixedDiv (-centeryfrac, InvZtoScale);
globaldclip = FixedDiv ((viewheight<<FRACBITS)-centeryfrac, InvZtoScale);
//centeryfrac &= 0xffff0000;
int e, i;
i = 0;
e = viewheight;
fixed_t focus = FocalLengthY;
fixed_t den;
if (i < centery)
{
den = centeryfrac - (i << FRACBITS) - FRACUNIT/2;
if (e <= centery)
{
do {
yslope[i] = FixedDiv (focus, den);
den -= FRACUNIT;
} while (++i < e);
}
else
{
do {
yslope[i] = FixedDiv (focus, den);
den -= FRACUNIT;
} while (++i < centery);
den = (i << FRACBITS) - centeryfrac + FRACUNIT/2;
do {
yslope[i] = FixedDiv (focus, den);
den += FRACUNIT;
} while (++i < e);
}
}
else
{
den = (i << FRACBITS) - centeryfrac + FRACUNIT/2;
do {
yslope[i] = FixedDiv (focus, den);
den += FRACUNIT;
} while (++i < e);
}
}
P_UnPredictPlayer ();
framecount++;
validcount++;
if (r_polymost)
{
polyclipped = RP_SetupFrame (false);
}
}
//==========================================================================
//
// R_RefreshViewBorder
//
// Draws the border around the player view, if needed.
//
//==========================================================================
void R_RefreshViewBorder ()
{
if (setblocks < 10)
{
if (BorderNeedRefresh)
{
BorderNeedRefresh--;
if (BorderTopRefresh)
{
BorderTopRefresh--;
}
R_DrawViewBorder();
}
else if (BorderTopRefresh)
{
BorderTopRefresh--;
R_DrawTopBorder();
}
}
}
//==========================================================================
//
// R_EnterMirror
//
// [RH] Draw the reflection inside a mirror
//
//==========================================================================
void R_EnterMirror (drawseg_t *ds, int depth)
{
angle_t startang = viewangle;
fixed_t startx = viewx;
fixed_t starty = viewy;
unsigned int mirrorsAtStart = WallMirrors.Size ();
vertex_t *v1 = ds->curline->v1;
// Reflect the current view behind the mirror.
if (ds->curline->linedef->dx == 0)
{ // vertical mirror
viewx = v1->x - startx + v1->x;
}
else if (ds->curline->linedef->dy == 0)
{ // horizontal mirror
viewy = v1->y - starty + v1->y;
}
else
{ // any mirror--use floats to avoid integer overflow
vertex_t *v2 = ds->curline->v2;
float dx = FIXED2FLOAT(v2->x - v1->x);
float dy = FIXED2FLOAT(v2->y - v1->y);
float x1 = FIXED2FLOAT(v1->x);
float y1 = FIXED2FLOAT(v1->y);
float x = FIXED2FLOAT(startx);
float y = FIXED2FLOAT(starty);
// the above two cases catch len == 0
float r = ((x - x1)*dx + (y - y1)*dy) / (dx*dx + dy*dy);
viewx = FLOAT2FIXED((x1 + r * dx)*2 - x);
viewy = FLOAT2FIXED((y1 + r * dy)*2 - y);
}
viewangle = 2*R_PointToAngle2 (ds->curline->v1->x, ds->curline->v1->y,
ds->curline->v2->x, ds->curline->v2->y) - startang;
viewsin = finesine[viewangle>>ANGLETOFINESHIFT];
viewcos = finecosine[viewangle>>ANGLETOFINESHIFT];
viewtansin = FixedMul (FocalTangent, viewsin);
viewtancos = FixedMul (FocalTangent, viewcos);
R_CopyStackedViewParameters();
validcount++;
ActiveWallMirror = ds->curline;
R_ClearPlanes (false);
R_ClearClipSegs (ds->x1, ds->x2 + 1);
memcpy (ceilingclip + ds->x1, openings + ds->sprtopclip, (ds->x2 - ds->x1 + 1)*sizeof(*ceilingclip));
memcpy (floorclip + ds->x1, openings + ds->sprbottomclip, (ds->x2 - ds->x1 + 1)*sizeof(*floorclip));
WindowLeft = ds->x1;
WindowRight = ds->x2;
MirrorFlags = (depth + 1) & 1;
R_RenderBSPNode (nodes + numnodes - 1);
R_DrawPlanes ();
R_DrawSkyBoxes ();
// Allow up to 4 recursions through a mirror
if (depth < 4)
{
unsigned int mirrorsAtEnd = WallMirrors.Size ();
for (; mirrorsAtStart < mirrorsAtEnd; mirrorsAtStart++)
{
R_EnterMirror (drawsegs + WallMirrors[mirrorsAtStart], depth + 1);
}
}
else
{
depth = depth;
}
viewangle = startang;
viewx = startx;
viewy = starty;
}
//==========================================================================
//
// R_SetupBuffer
//
// Precalculate all row offsets and fuzz table.
//
//==========================================================================
void R_SetupBuffer (bool inview)
{
static BYTE *lastbuff = NULL;
int pitch = RenderTarget->GetPitch();
BYTE *lineptr = RenderTarget->GetBuffer() + viewwindowy*pitch + viewwindowx;
if (inview)
{
pitch <<= detailyshift;
}
if (detailxshift)
{
lineptr += viewwidth;
}
if (dc_pitch != pitch || lineptr != lastbuff)
{
if (dc_pitch != pitch)
{
dc_pitch = pitch;
R_InitFuzzTable (pitch);
#ifdef USEASM
ASM_PatchPitch ();
#endif
}
dc_destorg = lineptr;
for (int i = 0; i < RenderTarget->GetHeight(); i++)
{
ylookup[i] = i * pitch;
}
}
}
//==========================================================================
//
// R_RenderActorView
//
//==========================================================================
void R_RenderActorView (AActor *actor, bool dontmaplines)
{
WallCycles = PlaneCycles = MaskedCycles = WallScanCycles = 0;
R_SetupBuffer (true);
R_SetupFrame (actor);
// Clear buffers.
R_ClearClipSegs (0, viewwidth);
R_ClearDrawSegs ();
R_ClearPlanes (true);
R_ClearSprites ();
NetUpdate ();
// [RH] Show off segs if r_drawflat is 1
if (r_drawflat)
{
hcolfunc_pre = R_FillColumnHorizP;
hcolfunc_post1 = rt_copy1col;
hcolfunc_post4 = rt_copy4cols;
colfunc = R_FillColumnP;
spanfunc = R_FillSpan;
}
else
{
hcolfunc_pre = R_DrawColumnHoriz;
hcolfunc_post1 = rt_map1col;
hcolfunc_post4 = rt_map4cols;
colfunc = basecolfunc;
spanfunc = R_DrawSpan;
}
WindowLeft = 0;
WindowRight = viewwidth - 1;
MirrorFlags = 0;
ActiveWallMirror = NULL;
r_dontmaplines = dontmaplines;
// [RH] Hack to make windows into underwater areas possible
r_fakingunderwater = false;
// [RH] Setup particles for this frame
R_FindParticleSubsectors ();
clock (WallCycles);
DWORD savedflags = camera->renderflags;
// Never draw the player unless in chasecam mode
if (!r_showviewer)
{
camera->renderflags |= RF_INVISIBLE;
}
if (r_polymost < 2)
{
R_RenderBSPNode (nodes + numnodes - 1); // The head node is the last node output.
}
camera->renderflags = savedflags;
unclock (WallCycles);
NetUpdate ();
if (viewactive)
{
clock (PlaneCycles);
R_DrawPlanes ();
R_DrawSkyBoxes ();
unclock (PlaneCycles);
// [RH] Walk through mirrors
size_t lastmirror = WallMirrors.Size ();
for (unsigned int i = 0; i < lastmirror; i++)
{
R_EnterMirror (drawsegs + WallMirrors[i], 0);
}
NetUpdate ();
clock (MaskedCycles);
R_DrawMasked ();
unclock (MaskedCycles);
NetUpdate ();
if (r_polymost)
{
RP_RenderBSPNode (nodes + numnodes - 1);
if (polyclipped)
{
RP_SetupFrame (true);
RP_RenderBSPNode (nodes + numnodes - 1);
}
}
}
WallMirrors.Clear ();
restoreinterpolations ();
// If there is vertical doubling, and the view window is not an even height,
// draw a black line at the bottom of the view window.
if (detailyshift && viewwindowy == 0 && (realviewheight & 1))
{
screen->Clear (0, realviewheight-1, realviewwidth, realviewheight, 0, 0);
}
R_SetupBuffer (false);
}
//==========================================================================
//
// R_RenderViewToCanvas
//
// Pre: Canvas is already locked.
//
//==========================================================================
void R_RenderViewToCanvas (AActor *actor, DCanvas *canvas,
int x, int y, int width, int height, bool dontmaplines)
{
const int saveddetail = detailxshift | (detailyshift << 1);
const bool savedviewactive = viewactive;
detailxshift = detailyshift = 0;
realviewwidth = viewwidth = width;
RenderTarget = canvas;
bRenderingToCanvas = true;
R_SetDetail (0);
R_SetWindow (12, width, height, height);
viewwindowx = x;
viewwindowy = y;
viewactive = true;
R_RenderActorView (actor, dontmaplines);
RenderTarget = screen;
bRenderingToCanvas = false;
R_SetDetail (saveddetail);
R_ExecuteSetViewSize ();
screen->Lock (true);
R_SetupBuffer (false);
screen->Unlock ();
viewactive = savedviewactive;
}
//==========================================================================
//
// FCanvasTextureInfo :: Add
//
// Assigns a camera to a canvas texture.
//
//==========================================================================
void FCanvasTextureInfo::Add (AActor *viewpoint, int picnum, int fov)
{
FCanvasTextureInfo *probe;
FCanvasTexture *texture;
if (picnum < 0)
{
return;
}
texture = static_cast<FCanvasTexture *>(TexMan[picnum]);
if (!texture->bHasCanvas)
{
Printf ("%s is not a valid target for a camera\n", texture->Name);
return;
}
// Is this texture already assigned to a camera?
for (probe = List; probe != NULL; probe = probe->Next)
{
if (probe->Texture == texture)
{
// Yes, change its assignment to this new camera
if (probe->Viewpoint != viewpoint || probe->FOV != fov)
{
texture->bFirstUpdate = true;
}
probe->Viewpoint = viewpoint;
probe->FOV = fov;
return;
}
}
// No, create a new assignment
probe = new FCanvasTextureInfo;
probe->Viewpoint = viewpoint;
probe->Texture = texture;
probe->PicNum = picnum;
probe->FOV = fov;
probe->Next = List;
texture->bFirstUpdate = true;
List = probe;
}
//==========================================================================
//
// FCanvasTextureInfo :: UpdateAll
//
// Updates all canvas textures that were visible in the last frame.
//
//==========================================================================
void FCanvasTextureInfo::UpdateAll ()
{
FCanvasTextureInfo *probe;
for (probe = List; probe != NULL; probe = probe->Next)
{
if (probe->Viewpoint != NULL && probe->Texture->bNeedsUpdate)
{
probe->Texture->RenderView (probe->Viewpoint, probe->FOV);
}
}
}
//==========================================================================
//
// FCanvasTextureInfo :: EmptyList
//
// Removes all camera->texture assignments.
//
//==========================================================================
void FCanvasTextureInfo::EmptyList ()
{
FCanvasTextureInfo *probe, *next;
for (probe = List; probe != NULL; probe = next)
{
next = probe->Next;
delete probe;
}
List = NULL;
}
//==========================================================================
//
// FCanvasTextureInfo :: Serialize
//
// Reads or writes the current set of mappings in an archive.
//
//==========================================================================
void FCanvasTextureInfo::Serialize (FArchive &arc)
{
if (arc.IsStoring ())
{
FCanvasTextureInfo *probe;
for (probe = List; probe != NULL; probe = probe->Next)
{
if (probe->Texture != NULL && probe->Viewpoint != NULL)
{
arc << probe->Viewpoint << probe->FOV;
TexMan.WriteTexture (arc, probe->PicNum);
}
}
AActor *nullactor = NULL;
arc << nullactor;
}
else
{
AActor *viewpoint;
int picnum, fov;
EmptyList ();
arc << viewpoint;
while (viewpoint != NULL)
{
arc << fov;
picnum = TexMan.ReadTexture (arc);
Add (viewpoint, picnum, fov);
arc << viewpoint;
}
}
}
//==========================================================================
//
// FCanvasTextureInfo :: Mark
//
// Marks all viewpoints in the list for the collector.
//
//==========================================================================
void FCanvasTextureInfo::Mark()
{
for (FCanvasTextureInfo *probe = List; probe != NULL; probe = probe->Next)
{
GC::Mark(probe->Viewpoint);
}
}
//==========================================================================
//
// R_MultiresInit
//
// Called from V_SetResolution()
//
//==========================================================================
void R_MultiresInit ()
{
R_PlaneInitData ();
R_OldBlend = ~0;
}
// Stuff from BUILD to interpolate floors and ceilings
//
// "Build Engine & Tools" Copyright (c) 1993-1997 Ken Silverman
// Ken Silverman's official web site: "http://www.advsys.net/ken"
// See the included license file "BUILDLIC.TXT" for license info.
// This code has been modified from its original form.
static bool didInterp;
FActiveInterpolation *FActiveInterpolation::curiposhash[INTERPOLATION_BUCKETS];
void FActiveInterpolation::CopyInterpToOld ()
{
switch (Type)
{
case INTERP_SectorFloor:
oldipos[0] = ((sector_t*)Address)->floorplane.d;
oldipos[1] = ((sector_t*)Address)->floortexz;
break;
case INTERP_SectorCeiling:
oldipos[0] = ((sector_t*)Address)->ceilingplane.d;
oldipos[1] = ((sector_t*)Address)->ceilingtexz;
break;
case INTERP_Vertex:
oldipos[0] = ((vertex_t*)Address)->x;
oldipos[1] = ((vertex_t*)Address)->y;
break;
case INTERP_FloorPanning:
oldipos[0] = ((sector_t*)Address)->floor_xoffs;
oldipos[1] = ((sector_t*)Address)->floor_yoffs;
break;
case INTERP_CeilingPanning:
oldipos[0] = ((sector_t*)Address)->ceiling_xoffs;
oldipos[1] = ((sector_t*)Address)->ceiling_yoffs;
break;
case INTERP_WallPanning:
oldipos[0] = ((side_t*)Address)->rowoffset;
oldipos[1] = ((side_t*)Address)->textureoffset;
break;
}
}
void FActiveInterpolation::CopyBakToInterp ()
{
switch (Type)
{
case INTERP_SectorFloor:
((sector_t*)Address)->floorplane.d = bakipos[0];
((sector_t*)Address)->floortexz = bakipos[1];
break;
case INTERP_SectorCeiling:
((sector_t*)Address)->ceilingplane.d = bakipos[0];
((sector_t*)Address)->ceilingtexz = bakipos[1];
break;
case INTERP_Vertex:
((vertex_t*)Address)->x = bakipos[0];
((vertex_t*)Address)->y = bakipos[1];
break;
case INTERP_FloorPanning:
((sector_t*)Address)->floor_xoffs = bakipos[0];
((sector_t*)Address)->floor_yoffs = bakipos[1];
break;
case INTERP_CeilingPanning:
((sector_t*)Address)->ceiling_xoffs = bakipos[0];
((sector_t*)Address)->ceiling_yoffs = bakipos[1];
break;
case INTERP_WallPanning:
((side_t*)Address)->rowoffset = bakipos[0];
((side_t*)Address)->textureoffset = bakipos[1];
break;
}
}
void FActiveInterpolation::DoAnInterpolation (fixed_t smoothratio)
{
fixed_t *adr1, *adr2, pos;
switch (Type)
{
case INTERP_SectorFloor:
adr1 = &((sector_t*)Address)->floorplane.d;
adr2 = &((sector_t*)Address)->floortexz;
break;
case INTERP_SectorCeiling:
adr1 = &((sector_t*)Address)->ceilingplane.d;
adr2 = &((sector_t*)Address)->ceilingtexz;
break;
case INTERP_Vertex:
adr1 = &((vertex_t*)Address)->x;
adr2 = &((vertex_t*)Address)->y;
break;
case INTERP_FloorPanning:
adr1 = &((sector_t*)Address)->floor_xoffs;
adr2 = &((sector_t*)Address)->floor_yoffs;
break;
case INTERP_CeilingPanning:
adr1 = &((sector_t*)Address)->ceiling_xoffs;
adr2 = &((sector_t*)Address)->ceiling_yoffs;
break;
case INTERP_WallPanning:
adr1 = &((side_t*)Address)->rowoffset;
adr2 = &((side_t*)Address)->textureoffset;
break;
default:
return;
}
pos = bakipos[0] = *adr1;
*adr1 = oldipos[0] + FixedMul (pos - oldipos[0], smoothratio);
pos = bakipos[1] = *adr2;
*adr2 = oldipos[1] + FixedMul (pos - oldipos[1], smoothratio);
}
size_t FActiveInterpolation::HashKey (EInterpType type, void *interptr)
{
return (size_t)type * ((size_t)interptr>>5);
}
int FActiveInterpolation::CountInterpolations ()
{
int d1, d2, d3;
return CountInterpolations (&d1, &d2, &d3);
}
int FActiveInterpolation::CountInterpolations (int *usedbuckets, int *minbucketfill, int *maxbucketfill)
{
int count = 0;
int inuse = 0;
int minuse = INT_MAX;
int maxuse = INT_MIN;
for (int i = INTERPOLATION_BUCKETS-1; i >= 0; --i)
{
int use = 0;
FActiveInterpolation *probe = FActiveInterpolation::curiposhash[i];
if (probe != NULL)
{
inuse++;
}
while (probe != NULL)
{
count++;
use++;
probe = probe->Next;
}
if (use > 0 && use < minuse)
{
minuse = use;
}
if (use > maxuse)
{
maxuse = use;
}
}
*usedbuckets = inuse;
*minbucketfill = minuse == INT_MAX ? 0 : minuse;
*maxbucketfill = maxuse;
return count;
}
FActiveInterpolation *FActiveInterpolation::FindInterpolation (EInterpType type, void *interptr, FActiveInterpolation **&interp_p)
{
size_t hash = HashKey (type, interptr) % INTERPOLATION_BUCKETS;
FActiveInterpolation *probe, **probe_p;
for (probe_p = &curiposhash[hash], probe = *probe_p;
probe != NULL;
probe_p = &probe->Next, probe = *probe_p)
{
if (probe->Address > interptr)
{ // We passed the place it would have been, so it must not be here.
probe = NULL;
break;
}
if (probe->Address == interptr && probe->Type == type)
{ // Found it.
break;
}
}
interp_p = probe_p;
return probe;
}
void clearinterpolations()
{
for (int i = INTERPOLATION_BUCKETS-1; i >= 0; --i)
{
for (FActiveInterpolation *probe = FActiveInterpolation::curiposhash[i];
probe != NULL; )
{
FActiveInterpolation *next = probe->Next;
delete probe;
probe = next;
}
FActiveInterpolation::curiposhash[i] = NULL;
}
}
void updateinterpolations() //Stick at beginning of domovethings
{
for (int i = INTERPOLATION_BUCKETS-1; i >= 0; --i)
{
for (FActiveInterpolation *probe = FActiveInterpolation::curiposhash[i];
probe != NULL; probe = probe->Next)
{
probe->CopyInterpToOld ();
}
}
}
void setinterpolation(EInterpType type, void *posptr, bool dolinks)
{
FActiveInterpolation **interp_p;
FActiveInterpolation *interp = FActiveInterpolation::FindInterpolation (type, posptr, interp_p);
if (interp != NULL) return; // It's already active
interp = new FActiveInterpolation;
interp->Type = type;
interp->Address = posptr;
interp->Next = *interp_p;
*interp_p = interp;
interp->CopyInterpToOld ();
if (dolinks)
{
if (type == INTERP_SectorFloor)
{
P_Start3dMidtexInterpolations((sector_t*)posptr, false);
P_StartLinkedSectorInterpolations((sector_t*)posptr, false);
}
else if (type == INTERP_SectorCeiling)
{
P_Start3dMidtexInterpolations((sector_t*)posptr, true);
P_StartLinkedSectorInterpolations((sector_t*)posptr, true);
}
}
}
void stopinterpolation(EInterpType type, void *posptr, bool dolinks)
{
FActiveInterpolation **interp_p;
FActiveInterpolation *interp = FActiveInterpolation::FindInterpolation (type, posptr, interp_p);
if (interp != NULL)
{
*interp_p = interp->Next;
delete interp;
if (dolinks)
{
if (type == INTERP_SectorFloor)
{
P_Stop3dMidtexInterpolations((sector_t*)posptr, false);
P_StopLinkedSectorInterpolations((sector_t*)posptr, false);
}
else if (type == INTERP_SectorCeiling)
{
P_Stop3dMidtexInterpolations((sector_t*)posptr, true);
P_StopLinkedSectorInterpolations((sector_t*)posptr, true);
}
}
}
}
void dointerpolations(fixed_t smoothratio) //Stick at beginning of drawscreen
{
if (smoothratio == FRACUNIT)
{
didInterp = false;
return;
}
didInterp = true;
for (int i = INTERPOLATION_BUCKETS-1; i >= 0; --i)
{
for (FActiveInterpolation *probe = FActiveInterpolation::curiposhash[i];
probe != NULL; probe = probe->Next)
{
probe->DoAnInterpolation (smoothratio);
}
}
}
void restoreinterpolations() //Stick at end of drawscreen
{
if (didInterp)
{
didInterp = false;
for (int i = INTERPOLATION_BUCKETS-1; i >= 0; --i)
{
for (FActiveInterpolation *probe = FActiveInterpolation::curiposhash[i];
probe != NULL; probe = probe->Next)
{
probe->CopyBakToInterp ();
}
}
}
}
void SerializeInterpolations (FArchive &arc)
{
FActiveInterpolation *interp;
int numinterpolations;
int i;
if (arc.IsStoring ())
{
numinterpolations = FActiveInterpolation::CountInterpolations();
arc.WriteCount (numinterpolations);
for (i = INTERPOLATION_BUCKETS-1; i >= 0; --i)
{
for (interp = FActiveInterpolation::curiposhash[i];
interp != NULL; interp = interp->Next)
{
arc << interp;
}
}
}
else
{
clearinterpolations ();
numinterpolations = arc.ReadCount ();
for (i = numinterpolations; i > 0; --i)
{
FActiveInterpolation **interp_p;
arc << interp;
if (FActiveInterpolation::FindInterpolation (interp->Type, interp->Address, interp_p) == NULL)
{ // Should always return NULL, because there should never be any duplicates stored.
interp->Next = *interp_p;
*interp_p = interp;
}
}
}
}
FArchive &operator << (FArchive &arc, FActiveInterpolation *&interp)
{
BYTE type;
union
{
vertex_t *vert;
sector_t *sect;
side_t *side;
void *ptr;
} ptr;
if (arc.IsStoring ())
{
type = interp->Type;
ptr.ptr = interp->Address;
arc << type;
switch (type)
{
case INTERP_Vertex: arc << ptr.vert; break;
case INTERP_WallPanning: arc << ptr.side; break;
default: arc << ptr.sect; break;
}
}
else
{
interp = new FActiveInterpolation;
arc << type;
interp->Type = (EInterpType)type;
switch (type)
{
case INTERP_Vertex: arc << ptr.vert; break;
case INTERP_WallPanning: arc << ptr.side; break;
default: arc << ptr.sect; break;
}
interp->Address = ptr.ptr;
}
return arc;
}
ADD_STAT (interpolations)
{
int inuse, minuse, maxuse, total;
FString out;
total = FActiveInterpolation::CountInterpolations (&inuse, &minuse, &maxuse);
out.Format ("%d interpolations buckets:%3d min:%3d max:%3d avg:%3d %d%% full %d%% buckfull",
total, inuse, minuse, maxuse, inuse?total/inuse:0, total*100/INTERPOLATION_BUCKETS, inuse*100/INTERPOLATION_BUCKETS);
return out;
}