Read whole chunks at a time from Interplay MVE files

This commit is contained in:
Chris Robinson 2022-10-06 02:04:40 -07:00 committed by Christoph Oelckers
parent 80bf62cb3c
commit fa2cea3e5b
2 changed files with 237 additions and 130 deletions

View File

@ -89,8 +89,10 @@ static const int16_t delta_table[] = {
}; };
// macro to fetch 16-bit little-endian words from a bytestream // macros to fetch little-endian words from a bytestream
#define LE_16(x) ((*x) | ((*(x+1)) << 8)) #define LE_16(x) ((uint16_t)((*(x)) | ((*((x)+1)) << 8)))
#define LE_32(x) (LE_16(x) | ((uint32_t)LE_16(x+2) << 16))
#define LE_64(x) (LE_32(x) | ((uint64_t)LE_32(x+4) << 32))
static bool StreamCallbackFunc(SoundStream* stream, void* buff, int len, void* userdata) static bool StreamCallbackFunc(SoundStream* stream, void* buff, int len, void* userdata)
{ {
@ -218,71 +220,70 @@ bool InterplayDecoder::RunFrame(uint64_t clock)
chunkSize = LE_16(&chunkPreamble[0]); chunkSize = LE_16(&chunkPreamble[0]);
chunkType = LE_16(&chunkPreamble[2]); chunkType = LE_16(&chunkPreamble[2]);
// iterate through individual opcodes ChunkData.resize(chunkSize);
while (chunkSize > 0) if (fr.Read(ChunkData.data(), chunkSize) != chunkSize) {
{
if (fr.Read(opcodePreamble, OPCODE_PREAMBLE_SIZE) != OPCODE_PREAMBLE_SIZE)
{
Printf(TEXTCOLOR_RED "InterplayDecoder: could not read from file (EOF?)\n"); Printf(TEXTCOLOR_RED "InterplayDecoder: could not read from file (EOF?)\n");
return false; return false;
} }
opcodeSize = LE_16(&opcodePreamble[0]); // iterate through individual opcodes
opcodeType = opcodePreamble[2]; ChunkPtr = ChunkData.data();
opcodeVersion = opcodePreamble[3]; while (chunkSize > 0 && chunkType != CHUNK_BAD)
{
if (chunkSize < OPCODE_PREAMBLE_SIZE)
{
Printf(TEXTCOLOR_RED "InterplayDecoder: opcode size too small\n");
return false;
}
opcodeSize = LE_16(ChunkPtr);
opcodeType = ChunkPtr[2];
opcodeVersion = ChunkPtr[3];
ChunkPtr += OPCODE_PREAMBLE_SIZE;
chunkSize -= OPCODE_PREAMBLE_SIZE; chunkSize -= OPCODE_PREAMBLE_SIZE;
if (chunkSize < opcodeSize)
{
Printf(TEXTCOLOR_RED "InterplayDecoder: opcode size too large for chunk\n");
return false;
}
chunkSize -= opcodeSize; chunkSize -= opcodeSize;
switch (opcodeType) switch (opcodeType)
{ {
case OPCODE_END_OF_STREAM: case OPCODE_END_OF_STREAM:
{ {
fr.Seek(opcodeSize, FileReader::SeekCur); ChunkPtr += opcodeSize;
break; break;
} }
case OPCODE_END_OF_CHUNK: case OPCODE_END_OF_CHUNK:
{ {
fr.Seek(opcodeSize, FileReader::SeekCur); ChunkPtr += opcodeSize;
break; break;
} }
case OPCODE_CREATE_TIMER: case OPCODE_CREATE_TIMER:
{ {
nTimerRate = fr.ReadUInt32(); nTimerRate = LE_32(ChunkPtr);
nTimerDiv = fr.ReadUInt16(); nTimerDiv = LE_16(ChunkPtr+4);
ChunkPtr += 6;
nFrameDuration = ((uint64_t)nTimerRate * nTimerDiv) * 1000; nFrameDuration = ((uint64_t)nTimerRate * nTimerDiv) * 1000;
break; break;
} }
case OPCODE_INIT_AUDIO_BUFFERS: case OPCODE_INIT_AUDIO_BUFFERS:
{ {
fr.Seek(2, FileReader::SeekCur); // Skip 2 bytes
uint16_t flags = fr.ReadUInt16(); uint16_t flags = LE_16(ChunkPtr+2);
audio.nSampleRate = fr.ReadUInt16(); audio.nSampleRate = LE_16(ChunkPtr+4);
ChunkPtr += 6;
uint32_t nBufferBytes; uint32_t nBufferBytes = (opcodeVersion == 0) ? LE_16(ChunkPtr) : LE_32(ChunkPtr);
ChunkPtr += (opcodeVersion == 0) ? 2 : 4;
if (opcodeVersion == 0) { audio.nChannels = (flags & 0x1) ? 2 : 1;
nBufferBytes = fr.ReadUInt16(); audio.nBitDepth = (flags & 0x2) ? 16 : 8;
} audio.bCompressed = (opcodeVersion > 0 && (flags & 0x4));
else {
nBufferBytes = fr.ReadUInt32();
}
if (flags & 0x1) {
audio.nChannels = 2;
}
else {
audio.nChannels = 1;
}
if (flags & 0x2) {
audio.nBitDepth = 16;
}
else {
audio.nBitDepth = 8;
}
break; break;
} }
@ -290,24 +291,37 @@ bool InterplayDecoder::RunFrame(uint64_t clock)
{ {
if (!bAudioStarted) if (!bAudioStarted)
{ {
S_StopMusic(true);
// start audio playback // start audio playback
stream = S_CreateCustomStream(6000, audio.nSampleRate, audio.nChannels, MusicSamples16bit, StreamCallbackFunc, this); stream = S_CreateCustomStream(6000, audio.nSampleRate, audio.nChannels, MusicSamples16bit, StreamCallbackFunc, this);
bAudioStarted = true; bAudioStarted = true;
} }
fr.Seek(opcodeSize, FileReader::SeekCur); ChunkPtr += opcodeSize;
break; break;
} }
case OPCODE_INIT_VIDEO_BUFFERS: case OPCODE_INIT_VIDEO_BUFFERS:
{ {
assert(opcodeSize == 8); assert(((opcodeVersion == 0 && opcodeSize >= 4) ||
nWidth = fr.ReadUInt16() * 8; (opcodeVersion == 1 && opcodeSize >= 6) ||
nHeight = fr.ReadUInt16() * 8; (opcodeVersion == 2 && opcodeSize >= 8)) &&
opcodeSize <= 8);
int count = fr.ReadUInt16(); nWidth = LE_16(ChunkPtr) * 8;
int truecolour = fr.ReadUInt16(); nHeight = LE_16(ChunkPtr+2) * 8;
int count, truecolour;
if (opcodeVersion > 0)
{
count = LE_16(ChunkPtr+4);
if (opcodeVersion > 1)
{
truecolour = LE_16(ChunkPtr+6);
assert(truecolour == 0); assert(truecolour == 0);
}
}
ChunkPtr += opcodeSize;
pVideoBuffers[0] = new uint8_t[nWidth * nHeight]; pVideoBuffers[0] = new uint8_t[nWidth * nHeight];
pVideoBuffers[1] = new uint8_t[nWidth * nHeight]; pVideoBuffers[1] = new uint8_t[nWidth * nHeight];
@ -326,83 +340,143 @@ bool InterplayDecoder::RunFrame(uint64_t clock)
case OPCODE_UNKNOWN_14: case OPCODE_UNKNOWN_14:
case OPCODE_UNKNOWN_15: case OPCODE_UNKNOWN_15:
{ {
fr.Seek(opcodeSize, FileReader::SeekCur); ChunkPtr += opcodeSize;
break; break;
} }
case OPCODE_SEND_BUFFER: case OPCODE_SEND_BUFFER:
{ {
int nPalStart = fr.ReadUInt16(); int nPalStart = LE_16(ChunkPtr);
int nPalCount = fr.ReadUInt16(); int nPalCount = LE_16(ChunkPtr+2);
ChunkPtr += opcodeSize;
animtex.SetFrame(&palette[0].r , GetCurrentFrame()); animtex.SetFrame(&palette[0].r , GetCurrentFrame());
nFrame++; nFrame++;
SwapFrames(); SwapFrames();
fr.Seek(opcodeSize-4, FileReader::SeekCur);
break; break;
} }
case OPCODE_AUDIO_FRAME: case OPCODE_AUDIO_FRAME:
{ {
int nStart = (int)fr.Tell(); auto pStart = ChunkPtr;
uint16_t seqIndex = fr.ReadUInt16(); uint16_t seqIndex = LE_16(ChunkPtr);
uint16_t streamMask = fr.ReadUInt16(); uint16_t streamMask = LE_16(ChunkPtr+2);
uint16_t nSamples = fr.ReadUInt16(); // number of samples this chunk uint16_t nSamples = LE_16(ChunkPtr+4); // number of samples this chunk(?)
ChunkPtr += 6;
// We only bother with stream 0
if (!(streamMask & 1))
{
ChunkPtr += opcodeSize - 6;
break;
}
nSamples = opcodeSize - 6;
if (audio.bCompressed)
{
int predictor[2]; int predictor[2];
int i = 0;
for (int ch = 0; ch < audio.nChannels; ch++) for (int ch = 0; ch < audio.nChannels; ch++)
{ {
predictor[ch] = fr.ReadUInt16(); predictor[ch] = (int16_t)LE_16(ChunkPtr);
i++; ChunkPtr += 2;
if (predictor[ch] & 0x8000) {
predictor[ch] |= 0xFFFF0000; // sign extend
}
audio.samples[audio.nWrite++] = predictor[ch]; audio.samples[audio.nWrite++] = predictor[ch];
if (audio.nWrite >= (int)countof(audio.samples)) audio.nWrite = 0; if (audio.nWrite >= (int)countof(audio.samples)) audio.nWrite = 0;
} }
bool stereo = audio.nChannels == 2;
nSamples -= 2*audio.nChannels;
nSamples &= ~(int)stereo;
int ch = 0; int ch = 0;
for (; i < (nSamples / 2); i++) for (int i = 0; i < nSamples;)
{ {
predictor[ch] += delta_table[fr.ReadUInt8()]; int todo = std::min(nSamples-i, (int)std::size(audio.samples)-audio.nWrite);
predictor[ch] = clamp(predictor[ch], -32768, 32768); auto end = ChunkPtr + todo;
while(ChunkPtr != end)
{
predictor[ch] += delta_table[*ChunkPtr++];
predictor[ch] = clamp(predictor[ch], -32768, 32767);
audio.samples[audio.nWrite++] = predictor[ch]; audio.samples[audio.nWrite++] = predictor[ch];
if (audio.nWrite >= (int)countof(audio.samples)) audio.nWrite = 0;
// toggle channel // toggle channel
ch ^= audio.nChannels - 1; ch ^= stereo;
}
if (audio.nWrite >= (int)countof(audio.samples)) audio.nWrite = 0;
i += todo;
}
}
else if (audio.nBitDepth == 8)
{
for (int i = 0; i < nSamples;)
{
int todo = std::min(nSamples-i, (int)std::size(audio.samples)-audio.nWrite);
auto end = ChunkPtr + todo;
while(ChunkPtr != end)
audio.samples[audio.nWrite++] = ((*ChunkPtr++)-128) << 8;
if (audio.nWrite >= (int)countof(audio.samples)) audio.nWrite = 0;
i += todo;
}
}
else
{
nSamples /= 2;
for (int i = 0; i < nSamples;)
{
int todo = std::min(nSamples-i, (int)std::size(audio.samples)-audio.nWrite);
auto end = ChunkPtr + todo*2;
while(ChunkPtr != end)
{
audio.samples[audio.nWrite++] = (int16_t)LE_16(ChunkPtr);
ChunkPtr += 2;
}
if (audio.nWrite >= (int)countof(audio.samples)) audio.nWrite = 0;
i += todo;
}
} }
int nEnd = (int)fr.Tell(); auto pEnd = ChunkPtr;
int nRead = nEnd - nStart; int nRead = (int)(pEnd - pStart);
assert(opcodeSize == nRead); assert(opcodeSize == nRead);
break; break;
} }
case OPCODE_SILENCE_FRAME: case OPCODE_SILENCE_FRAME:
{ {
uint16_t seqIndex = fr.ReadUInt16(); uint16_t seqIndex = LE_16(ChunkPtr);
uint16_t streamMask = fr.ReadUInt16(); uint16_t streamMask = LE_16(ChunkPtr+2);
uint16_t nStreamLen = fr.ReadUInt16(); uint16_t nStreamLen = LE_16(ChunkPtr+4);
ChunkPtr += 6;
if (streamMask & 1)
{
nStreamLen = (opcodeSize-6) * 8 / audio.nBitDepth;
for (int i = 0; i < nStreamLen;)
{
int todo = std::min(nStreamLen-i, (int)std::size(audio.samples)-audio.nWrite);
memset(&audio.samples[audio.nWrite], 0, todo*2);
audio.nWrite += todo;
if (audio.nWrite >= (int)countof(audio.samples)) audio.nWrite = 0;
i += todo;
}
}
break; break;
} }
case OPCODE_INIT_VIDEO_MODE: case OPCODE_INIT_VIDEO_MODE:
{ {
fr.Seek(opcodeSize, FileReader::SeekCur); ChunkPtr += opcodeSize;
break; break;
} }
case OPCODE_CREATE_GRADIENT: case OPCODE_CREATE_GRADIENT:
{ {
fr.Seek(opcodeSize, FileReader::SeekCur); ChunkPtr += opcodeSize;
Printf("InterplayDecoder: Create gradient not supported.\n"); Printf("InterplayDecoder: Create gradient not supported.\n");
break; break;
} }
@ -415,20 +489,29 @@ bool InterplayDecoder::RunFrame(uint64_t clock)
break; break;
} }
int nPalStart = fr.ReadUInt16(); int nPalStart = LE_16(ChunkPtr);
int nPalCount = fr.ReadUInt16(); int nPalEnd = nPalStart + LE_16(ChunkPtr+2) - 1;
for (int i = nPalStart; i <= nPalCount; i++) ChunkPtr += 4;
if (nPalStart > 255 || nPalEnd > 255) {
Printf("set_palette indices out of range (%d -> %d)\n", nPalStart, nPalEnd);
chunkType = CHUNK_BAD;
break;
}
for (int i = nPalStart; i <= nPalEnd; i++)
{ {
palette[i].r = fr.ReadUInt8() << 2; palette[i].r = (*ChunkPtr++) << 2;
palette[i].g = fr.ReadUInt8() << 2; palette[i].g = (*ChunkPtr++) << 2;
palette[i].b = fr.ReadUInt8() << 2; palette[i].b = (*ChunkPtr++) << 2;
palette[i].r |= palette[i].r >> 6;
palette[i].g |= palette[i].g >> 6;
palette[i].b |= palette[i].b >> 6;
} }
break; break;
} }
case OPCODE_SET_PALETTE_COMPRESSED: case OPCODE_SET_PALETTE_COMPRESSED:
{ {
fr.Seek(opcodeSize, FileReader::SeekCur); ChunkPtr += opcodeSize;
Printf("InterplayDecoder: Set palette compressed not supported.\n"); Printf("InterplayDecoder: Set palette compressed not supported.\n");
break; break;
} }
@ -449,17 +532,17 @@ bool InterplayDecoder::RunFrame(uint64_t clock)
} }
} }
int nRead = (int)fr.Read(decodeMap.pData, opcodeSize); memcpy(decodeMap.pData, ChunkPtr, opcodeSize);
assert(nRead == opcodeSize); ChunkPtr += opcodeSize;
break; break;
} }
case OPCODE_VIDEO_DATA: case OPCODE_VIDEO_DATA:
{ {
int nStart = (int)fr.Tell(); auto pStart = ChunkPtr;
// need to skip 14 bytes // need to skip 14 bytes
fr.Seek(14, FileReader::SeekCur); ChunkPtr += 14;
if (decodeMap.nSize) if (decodeMap.nSize)
{ {
@ -536,11 +619,11 @@ bool InterplayDecoder::RunFrame(uint64_t clock)
} }
} }
int nEnd = (int)fr.Tell(); auto pEnd = ChunkPtr;
int nSkipBytes = opcodeSize - (nEnd - nStart); // we can end up with 1 byte left we need to skip int nSkipBytes = opcodeSize - (int)(pEnd - pStart); // we can end up with 1 byte left we need to skip
assert(nSkipBytes <= 1); assert(nSkipBytes <= 1);
fr.Seek(nSkipBytes, FileReader::SeekCur); ChunkPtr += nSkipBytes;
break; break;
} }
@ -581,7 +664,7 @@ void InterplayDecoder::DecodeBlock1(int32_t offset)
void InterplayDecoder::DecodeBlock2(int32_t offset) void InterplayDecoder::DecodeBlock2(int32_t offset)
{ {
// copy block from 2 frames ago using a motion vector; need 1 more byte // copy block from 2 frames ago using a motion vector; need 1 more byte
uint8_t B = fr.ReadUInt8(); uint8_t B = *ChunkPtr++;
int x, y; int x, y;
@ -603,7 +686,7 @@ void InterplayDecoder::DecodeBlock2(int32_t offset)
void InterplayDecoder::DecodeBlock3(int32_t offset) void InterplayDecoder::DecodeBlock3(int32_t offset)
{ {
// copy 8x8 block from current frame from an up/left block // copy 8x8 block from current frame from an up/left block
uint8_t B = fr.ReadUInt8(); uint8_t B = *ChunkPtr++;
int x, y; int x, y;
@ -629,7 +712,7 @@ void InterplayDecoder::DecodeBlock4(int32_t offset)
int x, y; int x, y;
uint8_t B, BL, BH; uint8_t B, BL, BH;
B = fr.ReadUInt8(); B = *ChunkPtr++;
BL = B & 0x0F; BL = B & 0x0F;
BH = (B >> 4) & 0x0F; BH = (B >> 4) & 0x0F;
@ -645,8 +728,8 @@ void InterplayDecoder::DecodeBlock4(int32_t offset)
void InterplayDecoder::DecodeBlock5(int32_t offset) void InterplayDecoder::DecodeBlock5(int32_t offset)
{ {
// copy a block from the previous frame using an expanded range; need 2 more bytes // copy a block from the previous frame using an expanded range; need 2 more bytes
int8_t x = fr.ReadUInt8(); int8_t x = *ChunkPtr++;
int8_t y = fr.ReadUInt8(); int8_t y = *ChunkPtr++;
uint8_t* pDest = GetCurrentFrame() + (intptr_t)offset; uint8_t* pDest = GetCurrentFrame() + (intptr_t)offset;
uint8_t* pSrc = GetPreviousFrame() + (intptr_t)(int64_t)offset + (int64_t)x + (int64_t(y) * (int64_t)videoStride); uint8_t* pSrc = GetPreviousFrame() + (intptr_t)(int64_t)offset + (int64_t)x + (int64_t(y) * (int64_t)videoStride);
@ -662,8 +745,8 @@ void InterplayDecoder::DecodeBlock7(int32_t offset)
uint32_t flags = 0; uint32_t flags = 0;
uint8_t P[2]; uint8_t P[2];
P[0] = fr.ReadUInt8(); P[0] = *ChunkPtr++;
P[1] = fr.ReadUInt8(); P[1] = *ChunkPtr++;
// 2-color encoding // 2-color encoding
if (P[0] <= P[1]) if (P[0] <= P[1])
@ -671,7 +754,7 @@ void InterplayDecoder::DecodeBlock7(int32_t offset)
// need 8 more bytes from the stream // need 8 more bytes from the stream
for (int y = 0; y < 8; y++) for (int y = 0; y < 8; y++)
{ {
flags = fr.ReadUInt8() | 0x100; flags = (*ChunkPtr++) | 0x100;
for (; flags != 1; flags >>= 1) { for (; flags != 1; flags >>= 1) {
*pBuffer++ = P[flags & 1]; *pBuffer++ = P[flags & 1];
} }
@ -681,7 +764,8 @@ void InterplayDecoder::DecodeBlock7(int32_t offset)
else else
{ {
// need 2 more bytes from the stream // need 2 more bytes from the stream
flags = fr.ReadUInt16(); flags = LE_16(ChunkPtr);
ChunkPtr += 2;
for (int y = 0; y < 8; y += 2) for (int y = 0; y < 8; y += 2)
{ {
@ -704,8 +788,8 @@ void InterplayDecoder::DecodeBlock8(int32_t offset)
uint8_t P[4]; uint8_t P[4];
// 2-color encoding for each 4x4 quadrant, or 2-color encoding on either top and bottom or left and right halves // 2-color encoding for each 4x4 quadrant, or 2-color encoding on either top and bottom or left and right halves
P[0] = fr.ReadUInt8(); P[0] = *ChunkPtr++;
P[1] = fr.ReadUInt8(); P[1] = *ChunkPtr++;
if (P[0] <= P[1]) if (P[0] <= P[1])
{ {
@ -715,10 +799,11 @@ void InterplayDecoder::DecodeBlock8(int32_t offset)
if (!(y & 3)) if (!(y & 3))
{ {
if (y) { if (y) {
P[0] = fr.ReadUInt8(); P[0] = *ChunkPtr++;
P[1] = fr.ReadUInt8(); P[1] = *ChunkPtr++;
} }
flags = fr.ReadUInt16(); flags = LE_16(ChunkPtr);
ChunkPtr += 2;
} }
for (int x = 0; x < 4; x++, flags >>= 1) { for (int x = 0; x < 4; x++, flags >>= 1) {
@ -732,9 +817,10 @@ void InterplayDecoder::DecodeBlock8(int32_t offset)
} }
else else
{ {
flags = fr.ReadUInt32(); flags = LE_32(ChunkPtr);
P[2] = fr.ReadUInt8(); ChunkPtr += 4;
P[3] = fr.ReadUInt8(); P[2] = *ChunkPtr++;
P[3] = *ChunkPtr++;
if (P[2] <= P[3]) if (P[2] <= P[3])
{ {
@ -752,7 +838,8 @@ void InterplayDecoder::DecodeBlock8(int32_t offset)
pBuffer -= 8 * videoStride - 4; pBuffer -= 8 * videoStride - 4;
P[0] = P[2]; P[0] = P[2];
P[1] = P[3]; P[1] = P[3];
flags = fr.ReadUInt32(); flags = LE_32(ChunkPtr);
ChunkPtr += 4;
} }
} }
} }
@ -764,7 +851,8 @@ void InterplayDecoder::DecodeBlock8(int32_t offset)
if (y == 4) { if (y == 4) {
P[0] = P[2]; P[0] = P[2];
P[1] = P[3]; P[1] = P[3];
flags = fr.ReadUInt32(); flags = LE_32(ChunkPtr);
ChunkPtr += 4;
} }
for (int x = 0; x < 8; x++, flags >>= 1) for (int x = 0; x < 8; x++, flags >>= 1)
@ -781,7 +869,8 @@ void InterplayDecoder::DecodeBlock9(int32_t offset)
uint8_t* pBuffer = GetCurrentFrame() + (intptr_t)offset; uint8_t* pBuffer = GetCurrentFrame() + (intptr_t)offset;
uint8_t P[4]; uint8_t P[4];
fr.Read(P, 4); memcpy(P, ChunkPtr, 4);
ChunkPtr += 4;
// 4-color encoding // 4-color encoding
if (P[0] <= P[1]) if (P[0] <= P[1])
@ -792,7 +881,8 @@ void InterplayDecoder::DecodeBlock9(int32_t offset)
for (int y = 0; y < 8; y++) for (int y = 0; y < 8; y++)
{ {
// get the next set of 8 2-bit flags // get the next set of 8 2-bit flags
int flags = fr.ReadUInt16(); int flags = LE_16(ChunkPtr);
ChunkPtr += 2;
for (int x = 0; x < 8; x++, flags >>= 2) { for (int x = 0; x < 8; x++, flags >>= 2) {
*pBuffer++ = P[flags & 0x03]; *pBuffer++ = P[flags & 0x03];
@ -804,7 +894,8 @@ void InterplayDecoder::DecodeBlock9(int32_t offset)
else else
{ {
// 1 of 4 colors for each 2x2 block, need 4 more bytes // 1 of 4 colors for each 2x2 block, need 4 more bytes
uint32_t flags = fr.ReadUInt32(); uint32_t flags = LE_32(ChunkPtr);
ChunkPtr += 4;
for (int y = 0; y < 8; y += 2) for (int y = 0; y < 8; y += 2)
{ {
@ -823,7 +914,8 @@ void InterplayDecoder::DecodeBlock9(int32_t offset)
else else
{ {
// 1 of 4 colors for each 2x1 or 1x2 block, need 8 more bytes // 1 of 4 colors for each 2x1 or 1x2 block, need 8 more bytes
uint64_t flags = fr.ReadUInt64(); uint64_t flags = LE_64(ChunkPtr);
ChunkPtr += 8;
if (P[2] <= P[3]) if (P[2] <= P[3])
{ {
@ -857,7 +949,8 @@ void InterplayDecoder::DecodeBlock10(int32_t offset)
uint8_t* pBuffer = GetCurrentFrame() + (intptr_t)offset; uint8_t* pBuffer = GetCurrentFrame() + (intptr_t)offset;
uint8_t P[8]; uint8_t P[8];
fr.Read(P, 4); memcpy(P, ChunkPtr, 4);
ChunkPtr += 4;
// 4-color encoding for each 4x4 quadrant, or 4-color encoding on either top and bottom or left and right halves // 4-color encoding for each 4x4 quadrant, or 4-color encoding on either top and bottom or left and right halves
if (P[0] <= P[1]) if (P[0] <= P[1])
@ -869,8 +962,12 @@ void InterplayDecoder::DecodeBlock10(int32_t offset)
{ {
// new values for each 4x4 block // new values for each 4x4 block
if (!(y & 3)) { if (!(y & 3)) {
if (y) fr.Read(P, 4); if (y) {
flags = fr.ReadUInt32(); memcpy(P, ChunkPtr, 4);
ChunkPtr += 4;
}
flags = LE_32(ChunkPtr);
ChunkPtr += 4;
} }
for (int x = 0; x < 4; x++, flags >>= 2) { for (int x = 0; x < 4; x++, flags >>= 2) {
@ -886,9 +983,11 @@ void InterplayDecoder::DecodeBlock10(int32_t offset)
{ {
// vertical split? // vertical split?
int vert; int vert;
uint64_t flags = fr.ReadUInt64(); uint64_t flags = LE_64(ChunkPtr);
ChunkPtr += 8;
fr.Read(P + 4, 4); memcpy(P + 4, ChunkPtr, 4);
ChunkPtr += 4;
vert = P[4] <= P[5]; vert = P[4] <= P[5];
// 4-color encoding for either left and right or top and bottom halves // 4-color encoding for either left and right or top and bottom halves
@ -908,7 +1007,8 @@ void InterplayDecoder::DecodeBlock10(int32_t offset)
// load values for second half // load values for second half
if (y == 7) { if (y == 7) {
memcpy(P, P + 4, 4); memcpy(P, P + 4, 4);
flags = fr.ReadUInt64(); flags = LE_64(ChunkPtr);
ChunkPtr += 8;
} }
} }
} }
@ -921,7 +1021,8 @@ void InterplayDecoder::DecodeBlock11(int32_t offset)
for (int y = 0; y < 8; y++) for (int y = 0; y < 8; y++)
{ {
fr.Read(pBuffer, 8); memcpy(pBuffer, ChunkPtr, 8);
ChunkPtr += 8;
pBuffer += videoStride; pBuffer += videoStride;
} }
} }
@ -938,7 +1039,7 @@ void InterplayDecoder::DecodeBlock12(int32_t offset)
pBuffer[x] = pBuffer[x] =
pBuffer[x + 1] = pBuffer[x + 1] =
pBuffer[x + videoStride] = pBuffer[x + videoStride] =
pBuffer[x + 1 + videoStride] = fr.ReadUInt8(); pBuffer[x + 1 + videoStride] = *ChunkPtr++;
} }
pBuffer += videoStride * 2; pBuffer += videoStride * 2;
} }
@ -954,8 +1055,8 @@ void InterplayDecoder::DecodeBlock13(int32_t offset)
{ {
if (!(y & 3)) if (!(y & 3))
{ {
P[0] = fr.ReadUInt8(); P[0] = *ChunkPtr++;
P[1] = fr.ReadUInt8(); P[1] = *ChunkPtr++;
} }
memset(pBuffer, P[0], 4); memset(pBuffer, P[0], 4);
@ -968,7 +1069,7 @@ void InterplayDecoder::DecodeBlock14(int32_t offset)
{ {
// 1-color encoding : the whole block is 1 solid color // 1-color encoding : the whole block is 1 solid color
uint8_t* pBuffer = GetCurrentFrame() + (intptr_t)offset; uint8_t* pBuffer = GetCurrentFrame() + (intptr_t)offset;
uint8_t pix = fr.ReadUInt8(); uint8_t pix = *ChunkPtr++;
for (int y = 0; y < 8; y++) for (int y = 0; y < 8; y++)
{ {
@ -983,8 +1084,8 @@ void InterplayDecoder::DecodeBlock15(int32_t offset)
uint8_t* pBuffer = GetCurrentFrame() + (intptr_t)offset; uint8_t* pBuffer = GetCurrentFrame() + (intptr_t)offset;
uint8_t P[2]; uint8_t P[2];
P[0] = fr.ReadUInt8(); P[0] = *ChunkPtr++;
P[1] = fr.ReadUInt8(); P[1] = *ChunkPtr++;
for (int y = 0; y < 8; y++) for (int y = 0; y < 8; y++)
{ {

View File

@ -44,6 +44,8 @@
#pragma once #pragma once
#include <vector>
#include "files.h" #include "files.h"
#include "animtexture.h" #include "animtexture.h"
#include "s_music.h" #include "s_music.h"
@ -111,6 +113,7 @@ public:
int nChannels; int nChannels;
uint16_t nSampleRate; uint16_t nSampleRate;
uint8_t nBitDepth; uint8_t nBitDepth;
bool bCompressed;
int16_t samples[6000 * kAudioBlocks]; // must be a multiple of the stream buffer size int16_t samples[6000 * kAudioBlocks]; // must be a multiple of the stream buffer size
int nWrite; int nWrite;
@ -165,6 +168,9 @@ private:
double nFps; double nFps;
uint64_t nFrameDuration; uint64_t nFrameDuration;
std::vector<uint8_t> ChunkData;
const uint8_t *ChunkPtr = nullptr;
uint8_t* pVideoBuffers[2]; uint8_t* pVideoBuffers[2];
uint32_t nCurrentVideoBuffer, nPreviousVideoBuffer; uint32_t nCurrentVideoBuffer, nPreviousVideoBuffer;
int32_t videoStride; int32_t videoStride;