mirror of
https://github.com/ZDoom/qzdoom.git
synced 2024-11-14 08:30:49 +00:00
- Add FVector4 and DVector4 to the family of vectors
This commit is contained in:
parent
9f742f8aaa
commit
b6b78176d2
1 changed files with 279 additions and 0 deletions
279
src/vectors.h
279
src/vectors.h
|
@ -654,6 +654,283 @@ struct TVector3
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
template<class vec_t>
|
||||||
|
struct TVector4
|
||||||
|
{
|
||||||
|
typedef TVector3<vec_t> Vector3;
|
||||||
|
|
||||||
|
vec_t X, Y, Z, W;
|
||||||
|
|
||||||
|
TVector4()
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
TVector4(vec_t a, vec_t b, vec_t c, vec_t d)
|
||||||
|
: X(a), Y(b), Z(c), W(d)
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
TVector4(vec_t *o)
|
||||||
|
: X(o[0]), Y(o[1]), Z(o[2]), W(o[3])
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
TVector4(const TVector4 &other)
|
||||||
|
: X(other.X), Y(other.Y), Z(other.Z), W(other.W)
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
TVector4(const Vector3 &xyz, vec_t w)
|
||||||
|
: X(xyz.X), Y(xyz.Y), Z(xyz.Z), W(w)
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
void Zero()
|
||||||
|
{
|
||||||
|
Z = Y = X = W = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool isZero() const
|
||||||
|
{
|
||||||
|
return X == 0 && Y == 0 && Z == 0 && W == 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
TVector4 &operator= (const TVector4 &other)
|
||||||
|
{
|
||||||
|
W = other.W, Z = other.Z, Y = other.Y, X = other.X;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Access X and Y and Z as an array
|
||||||
|
vec_t &operator[] (int index)
|
||||||
|
{
|
||||||
|
return (&X)[index];
|
||||||
|
}
|
||||||
|
|
||||||
|
const vec_t &operator[] (int index) const
|
||||||
|
{
|
||||||
|
return (&X)[index];
|
||||||
|
}
|
||||||
|
|
||||||
|
// Test for equality
|
||||||
|
bool operator== (const TVector4 &other) const
|
||||||
|
{
|
||||||
|
return X == other.X && Y == other.Y && Z == other.Z && W = other.W;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Test for inequality
|
||||||
|
bool operator!= (const TVector4 &other) const
|
||||||
|
{
|
||||||
|
return X != other.X || Y != other.Y || Z != other.Z || W != other.W;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Test for approximate equality
|
||||||
|
bool ApproximatelyEquals(const TVector4 &other) const
|
||||||
|
{
|
||||||
|
return fabs(X - other.X) < EQUAL_EPSILON && fabs(Y - other.Y) < EQUAL_EPSILON && fabs(Z - other.Z) < EQUAL_EPSILON && fabs(W - other.W) < EQUAL_EPSILON;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Test for approximate inequality
|
||||||
|
bool DoesNotApproximatelyEqual(const TVector4 &other) const
|
||||||
|
{
|
||||||
|
return fabs(X - other.X) >= EQUAL_EPSILON || fabs(Y - other.Y) >= EQUAL_EPSILON || fabs(Z - other.Z) >= EQUAL_EPSILON || fabs(W - other.W) >= EQUAL_EPSILON;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Unary negation
|
||||||
|
TVector4 operator- () const
|
||||||
|
{
|
||||||
|
return TVector4(-X, -Y, -Z, -W);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Scalar addition
|
||||||
|
TVector4 &operator+= (vec_t scalar)
|
||||||
|
{
|
||||||
|
X += scalar, Y += scalar, Z += scalar; W += scalar;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
friend TVector4 operator+ (const TVector4 &v, vec_t scalar)
|
||||||
|
{
|
||||||
|
return TVector4(v.X + scalar, v.Y + scalar, v.Z + scalar, v.W + scalar);
|
||||||
|
}
|
||||||
|
|
||||||
|
friend TVector4 operator+ (vec_t scalar, const TVector4 &v)
|
||||||
|
{
|
||||||
|
return TVector4(v.X + scalar, v.Y + scalar, v.Z + scalar, v.W + scalar);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Scalar subtraction
|
||||||
|
TVector4 &operator-= (vec_t scalar)
|
||||||
|
{
|
||||||
|
X -= scalar, Y -= scalar, Z -= scalar, W -= scalar;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
TVector4 operator- (vec_t scalar) const
|
||||||
|
{
|
||||||
|
return TVector4(X - scalar, Y - scalar, Z - scalar, W - scalar);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Scalar multiplication
|
||||||
|
TVector4 &operator*= (vec_t scalar)
|
||||||
|
{
|
||||||
|
X = vec_t(X *scalar), Y = vec_t(Y * scalar), Z = vec_t(Z * scalar), W = vec_t(W * scalar);
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
friend TVector4 operator* (const TVector4 &v, vec_t scalar)
|
||||||
|
{
|
||||||
|
return TVector4(v.X * scalar, v.Y * scalar, v.Z * scalar, v.W * scalar);
|
||||||
|
}
|
||||||
|
|
||||||
|
friend TVector4 operator* (vec_t scalar, const TVector4 &v)
|
||||||
|
{
|
||||||
|
return TVector4(v.X * scalar, v.Y * scalar, v.Z * scalar, v.W * scalar);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Scalar division
|
||||||
|
TVector4 &operator/= (vec_t scalar)
|
||||||
|
{
|
||||||
|
scalar = 1 / scalar, X = vec_t(X * scalar), Y = vec_t(Y * scalar), Z = vec_t(Z * scalar), W = vec_t(W * scalar);
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
TVector4 operator/ (vec_t scalar) const
|
||||||
|
{
|
||||||
|
scalar = 1 / scalar;
|
||||||
|
return TVector4(X * scalar, Y * scalar, Z * scalar, W * scalar);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Vector addition
|
||||||
|
TVector4 &operator+= (const TVector4 &other)
|
||||||
|
{
|
||||||
|
X += other.X, Y += other.Y, Z += other.Z, W += other.W;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
TVector4 operator+ (const TVector4 &other) const
|
||||||
|
{
|
||||||
|
return TVector4(X + other.X, Y + other.Y, Z + other.Z, W + other.W);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Vector subtraction
|
||||||
|
TVector4 &operator-= (const TVector4 &other)
|
||||||
|
{
|
||||||
|
X -= other.X, Y -= other.Y, Z -= other.Z, W -= other.W;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
TVector4 operator- (const TVector4 &other) const
|
||||||
|
{
|
||||||
|
return TVector4(X - other.X, Y - other.Y, Z - other.Z, W - other.W);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Add a 3D vector to this 4D vector, leaving W unchanged.
|
||||||
|
TVector4 &operator+= (const Vector3 &other)
|
||||||
|
{
|
||||||
|
X += other.X, Y += other.Y, Z += other.Z;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Subtract a 3D vector from this 4D vector, leaving W unchanged.
|
||||||
|
TVector4 &operator-= (const Vector3 &other)
|
||||||
|
{
|
||||||
|
X -= other.X, Y -= other.Y, Z -= other.Z;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
// returns the XYZ fields as a 3D-vector.
|
||||||
|
Vector3 XYZ() const
|
||||||
|
{
|
||||||
|
return{ X, Y, Z };
|
||||||
|
}
|
||||||
|
|
||||||
|
// Add a 4D vector and a 3D vector.
|
||||||
|
friend TVector4 operator+ (const TVector4 &v4, const Vector3 &v3)
|
||||||
|
{
|
||||||
|
return TVector4(v4.X + v3.X, v4.Y + v3.Y, v4.Z + v3.Z, v4.W);
|
||||||
|
}
|
||||||
|
|
||||||
|
friend TVector4 operator- (const TVector4 &v4, const Vector3 &v3)
|
||||||
|
{
|
||||||
|
return TVector4(v4.X - v3.X, v4.Y - v3.Y, v4.Z - v3.Z, v4.W);
|
||||||
|
}
|
||||||
|
|
||||||
|
friend Vector3 operator+ (const Vector3 &v3, const TVector4 &v4)
|
||||||
|
{
|
||||||
|
return Vector3(v3.X + v4.X, v3.Y + v4.Y, v3.Z + v4.Z);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Subtract a 4D vector and a 3D vector.
|
||||||
|
// Discards the W component of the 4D vector and returns a 3D vector.
|
||||||
|
friend Vector3 operator- (const TVector3<vec_t> &v3, const TVector4 &v4)
|
||||||
|
{
|
||||||
|
return Vector3(v3.X - v4.X, v3.Y - v4.Y, v3.Z - v4.Z);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Vector length
|
||||||
|
double Length() const
|
||||||
|
{
|
||||||
|
return g_sqrt(X*X + Y*Y + Z*Z + W*W);
|
||||||
|
}
|
||||||
|
|
||||||
|
double LengthSquared() const
|
||||||
|
{
|
||||||
|
return X*X + Y*Y + Z*Z + W*W;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Return a unit vector facing the same direction as this one
|
||||||
|
TVector4 Unit() const
|
||||||
|
{
|
||||||
|
double len = Length();
|
||||||
|
if (len != 0) len = 1 / len;
|
||||||
|
return *this * (vec_t)len;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Scales this vector into a unit vector
|
||||||
|
void MakeUnit()
|
||||||
|
{
|
||||||
|
double len = Length();
|
||||||
|
if (len != 0) len = 1 / len;
|
||||||
|
*this *= (vec_t)len;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Resizes this vector to be the specified length (if it is not 0)
|
||||||
|
TVector4 &MakeResize(double len)
|
||||||
|
{
|
||||||
|
double vlen = Length();
|
||||||
|
if (vlen != 0.)
|
||||||
|
{
|
||||||
|
double scale = len / vlen;
|
||||||
|
X = vec_t(X * scale);
|
||||||
|
Y = vec_t(Y * scale);
|
||||||
|
Z = vec_t(Z * scale);
|
||||||
|
w = vec_t(W * scale);
|
||||||
|
}
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
TVector4 Resized(double len)
|
||||||
|
{
|
||||||
|
double vlen = Length();
|
||||||
|
if (vlen != 0.)
|
||||||
|
{
|
||||||
|
double scale = len / vlen;
|
||||||
|
return{ vec_t(X * scale), vec_t(Y * scale), vec_t(Z * scale), vec_t(W * scale) };
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Dot product
|
||||||
|
vec_t operator | (const TVector4 &other) const
|
||||||
|
{
|
||||||
|
return X*other.X + Y*other.Y + Z*other.Z + W*other.W;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
template<class vec_t>
|
template<class vec_t>
|
||||||
struct TMatrix3x3
|
struct TMatrix3x3
|
||||||
{
|
{
|
||||||
|
@ -1383,12 +1660,14 @@ inline TMatrix3x3<T>::TMatrix3x3(const TVector3<T> &axis, TAngle<T> degrees)
|
||||||
|
|
||||||
typedef TVector2<float> FVector2;
|
typedef TVector2<float> FVector2;
|
||||||
typedef TVector3<float> FVector3;
|
typedef TVector3<float> FVector3;
|
||||||
|
typedef TVector4<float> FVector4;
|
||||||
typedef TRotator<float> FRotator;
|
typedef TRotator<float> FRotator;
|
||||||
typedef TMatrix3x3<float> FMatrix3x3;
|
typedef TMatrix3x3<float> FMatrix3x3;
|
||||||
typedef TAngle<float> FAngle;
|
typedef TAngle<float> FAngle;
|
||||||
|
|
||||||
typedef TVector2<double> DVector2;
|
typedef TVector2<double> DVector2;
|
||||||
typedef TVector3<double> DVector3;
|
typedef TVector3<double> DVector3;
|
||||||
|
typedef TVector4<double> DVector4;
|
||||||
typedef TRotator<double> DRotator;
|
typedef TRotator<double> DRotator;
|
||||||
typedef TMatrix3x3<double> DMatrix3x3;
|
typedef TMatrix3x3<double> DMatrix3x3;
|
||||||
typedef TAngle<double> DAngle;
|
typedef TAngle<double> DAngle;
|
||||||
|
|
Loading…
Reference in a new issue