- hook up enough of renderstate to enable all of main.vp and main.fp

This commit is contained in:
Magnus Norddahl 2019-02-28 00:26:49 +01:00
parent c2e0eba270
commit 2e0b34ca72
5 changed files with 120 additions and 17 deletions

View file

@ -157,18 +157,121 @@ void VkRenderState::Apply(int dt)
mCommandBuffer->bindPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS, passSetup->Pipeline.get()); mCommandBuffer->bindPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS, passSetup->Pipeline.get());
} }
const float normScale = 1.0f / 255.0f;
//glVertexAttrib4fv(VATTR_COLOR, mColor.vec);
//glVertexAttrib4fv(VATTR_NORMAL, mNormal.vec);
int fogset = 0;
if (mFogEnabled)
{
if (mFogEnabled == 2)
{
fogset = -3; // 2D rendering with 'foggy' overlay.
}
else if ((mFogColor & 0xffffff) == 0)
{
fogset = gl_fogmode;
}
else
{
fogset = -gl_fogmode;
}
}
mColors.uDesaturationFactor = mDesaturation * normScale;
mColors.uFogColor = { mFogColor.r * normScale, mFogColor.g * normScale, mFogColor.b * normScale, mFogColor.a * normScale };
mColors.uAddColor = { mAddColor.r * normScale, mAddColor.g * normScale, mAddColor.b * normScale, mAddColor.a * normScale };
mColors.uObjectColor = { mObjectColor.r * normScale, mObjectColor.g * normScale, mObjectColor.b * normScale, mObjectColor.a * normScale };
mColors.uDynLightColor = mDynColor.vec;
mColors.uInterpolationFactor = mInterpolationFactor;
//activeShader->muTimer.Set((double)(screen->FrameTime - firstFrame) * (double)mShaderTimer / 1000.);
int tempTM = TM_NORMAL;
if (mMaterial.mMaterial && mMaterial.mMaterial->tex->isHardwareCanvas())
tempTM = TM_OPAQUE;
mPushConstants.uFogEnabled = fogset;
mPushConstants.uTextureMode = mTextureMode == TM_NORMAL && tempTM == TM_OPAQUE ? TM_OPAQUE : mTextureMode;
mPushConstants.uLightDist = mLightParms[0];
mPushConstants.uLightFactor = mLightParms[1];
mPushConstants.uFogDensity = mLightParms[2];
mPushConstants.uLightLevel = mLightParms[3];
mPushConstants.uAlphaThreshold = mAlphaThreshold;
mPushConstants.uClipSplit = { mClipSplit[0], mClipSplit[1] };
/*if (mMaterial.mMaterial)
{
mPushConstants.uSpecularMaterial = { mMaterial.mMaterial->tex->Glossiness, mMaterial.mMaterial->tex->SpecularLevel };
}*/
if (mGlowEnabled)
{
mGlowingWalls.uGlowTopPlane = mGlowTopPlane.vec;
mGlowingWalls.uGlowTopColor = mGlowTop.vec;
mGlowingWalls.uGlowBottomPlane = mGlowBottomPlane.vec;
mGlowingWalls.uGlowBottomColor = mGlowBottom.vec;
}
else
{
mGlowingWalls.uGlowTopColor = { 0.0f, 0.0f, 0.0f, 0.0f };
mGlowingWalls.uGlowBottomColor = { 0.0f, 0.0f, 0.0f, 0.0f };
}
if (mGradientEnabled)
{
mColors.uObjectColor2 = { mObjectColor2.r * normScale, mObjectColor2.g * normScale, mObjectColor2.b * normScale, mObjectColor2.a * normScale };
mGlowingWalls.uGradientTopPlane = mGradientTopPlane.vec;
mGlowingWalls.uGradientBottomPlane = mGradientBottomPlane.vec;
}
else
{
mColors.uObjectColor2 = { 0.0f, 0.0f, 0.0f, 0.0f };
}
if (mSplitEnabled)
{
mGlowingWalls.uSplitTopPlane = mSplitTopPlane.vec;
mGlowingWalls.uSplitBottomPlane = mSplitBottomPlane.vec;
}
else
{
mGlowingWalls.uSplitTopPlane = { 0.0f, 0.0f, 0.0f, 0.0f };
mGlowingWalls.uSplitBottomPlane = { 0.0f, 0.0f, 0.0f, 0.0f };
}
if (mTextureMatrixEnabled)
{
mMatrices.TextureMatrix = mTextureMatrix;
}
else
{
mMatrices.TextureMatrix.loadIdentity();
}
if (mModelMatrixEnabled)
{
mMatrices.ModelMatrix = mModelMatrix; mMatrices.ModelMatrix = mModelMatrix;
mMatrices.NormalModelMatrix.computeNormalMatrix(mModelMatrix); mMatrices.NormalModelMatrix.computeNormalMatrix(mModelMatrix);
mMatrices.TextureMatrix = mTextureMatrix; }
else
{
mMatrices.ModelMatrix.loadIdentity();
mMatrices.NormalModelMatrix.loadIdentity();
}
mPushConstants.uLightIndex = screen->mLights->BindUBO(mLightIndex);
mMatricesOffset += UniformBufferAlignment<MatricesUBO>();
mColorsOffset += UniformBufferAlignment<ColorsUBO>();
mGlowingWallsOffset += UniformBufferAlignment<GlowingWallsUBO>();
memcpy(static_cast<uint8_t*>(fb->MatricesUBO->Memory()) + mMatricesOffset, &mMatrices, sizeof(MatricesUBO)); memcpy(static_cast<uint8_t*>(fb->MatricesUBO->Memory()) + mMatricesOffset, &mMatrices, sizeof(MatricesUBO));
memcpy(static_cast<uint8_t*>(fb->ColorsUBO->Memory()) + mColorsOffset, &mColors, sizeof(ColorsUBO)); memcpy(static_cast<uint8_t*>(fb->ColorsUBO->Memory()) + mColorsOffset, &mColors, sizeof(ColorsUBO));
memcpy(static_cast<uint8_t*>(fb->GlowingWallsUBO->Memory()) + mGlowingWallsOffset, &mGlowingWalls, sizeof(GlowingWallsUBO)); memcpy(static_cast<uint8_t*>(fb->GlowingWallsUBO->Memory()) + mGlowingWallsOffset, &mGlowingWalls, sizeof(GlowingWallsUBO));
mPushConstants.uTextureMode = 0;
mPushConstants.uLightLevel = 1.0f;
mPushConstants.uLightIndex = -1;
mCommandBuffer->pushConstants(passManager->PipelineLayout.get(), VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, (uint32_t)sizeof(PushConstants), &mPushConstants); mCommandBuffer->pushConstants(passManager->PipelineLayout.get(), VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, (uint32_t)sizeof(PushConstants), &mPushConstants);
VkBuffer vertexBuffers[] = { static_cast<VKVertexBuffer*>(mVertexBuffer)->mBuffer->buffer }; VkBuffer vertexBuffers[] = { static_cast<VKVertexBuffer*>(mVertexBuffer)->mBuffer->buffer };
@ -220,5 +323,10 @@ void VkRenderState::EndRenderPass()
{ {
mCommandBuffer->endRenderPass(); mCommandBuffer->endRenderPass();
mCommandBuffer = nullptr; mCommandBuffer = nullptr;
// To do: move this elsewhere or rename this function to make it clear this can only happen at the end of a frame
mMatricesOffset = 0;
mColorsOffset = 0;
mGlowingWallsOffset = 0;
} }
} }

View file

@ -8,6 +8,8 @@
class VulkanDevice; class VulkanDevice;
class VulkanShader; class VulkanShader;
template<typename T> int UniformBufferAlignment() { return (sizeof(T) + 127) / 128 * 128; }
struct MatricesUBO struct MatricesUBO
{ {
VSMatrix ModelMatrix; VSMatrix ModelMatrix;

View file

@ -94,9 +94,9 @@ void VulkanFrameBuffer::InitializeState()
MatricesUBO = (VKDataBuffer*)CreateDataBuffer(1234, false); MatricesUBO = (VKDataBuffer*)CreateDataBuffer(1234, false);
ColorsUBO = (VKDataBuffer*)CreateDataBuffer(1234, false); ColorsUBO = (VKDataBuffer*)CreateDataBuffer(1234, false);
GlowingWallsUBO = (VKDataBuffer*)CreateDataBuffer(1234, false); GlowingWallsUBO = (VKDataBuffer*)CreateDataBuffer(1234, false);
MatricesUBO->SetData(sizeof(MatricesUBO) * 128, nullptr, false); MatricesUBO->SetData(UniformBufferAlignment<::MatricesUBO>() * 50000, nullptr, false);
ColorsUBO->SetData(sizeof(ColorsUBO) * 128, nullptr, false); ColorsUBO->SetData(UniformBufferAlignment<::ColorsUBO>() * 50000, nullptr, false);
GlowingWallsUBO->SetData(sizeof(GlowingWallsUBO) * 128, nullptr, false); GlowingWallsUBO->SetData(UniformBufferAlignment<::GlowingWallsUBO>() * 50000, nullptr, false);
mShaderManager.reset(new VkShaderManager(device)); mShaderManager.reset(new VkShaderManager(device));
mSamplerManager.reset(new VkSamplerManager(device)); mSamplerManager.reset(new VkSamplerManager(device));

View file

@ -542,9 +542,6 @@ vec3 AmbientOcclusionColor()
void main() void main()
{ {
FragColor = texture(tex, vTexCoord.st);
return;
Material material = ProcessMaterial(); Material material = ProcessMaterial();
vec4 frag = material.Base; vec4 frag = material.Base;

View file

@ -102,8 +102,4 @@ void main()
// clip planes used for translucency splitting // clip planes used for translucency splitting
gl_ClipDistance[1] = worldcoord.y - uClipSplit.x; gl_ClipDistance[1] = worldcoord.y - uClipSplit.x;
gl_ClipDistance[2] = uClipSplit.y - worldcoord.y; gl_ClipDistance[2] = uClipSplit.y - worldcoord.y;
gl_ClipDistance[0] = 1;
gl_ClipDistance[1] = 1;
gl_ClipDistance[2] = 1;
} }