qzdoom/src/scripting/vm/jit_call.cpp

349 lines
9.9 KiB
C++
Raw Normal View History

#include "jitintern.h"
void JitCompiler::EmitPARAM()
{
using namespace asmjit;
int index = NumParam++;
ParamOpcodes.Push(pc);
X86Gp stackPtr, tmp;
X86Xmm tmp2;
switch (B)
{
case REGT_NIL:
cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), (int64_t)0);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_NIL);
break;
case REGT_INT:
cc.mov(x86::dword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, i)), regD[C]);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_INT);
break;
case REGT_INT | REGT_ADDROF:
stackPtr = cc.newIntPtr();
cc.mov(stackPtr, frameD);
cc.add(stackPtr, C * sizeof(int32_t));
cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), stackPtr);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_POINTER);
break;
case REGT_INT | REGT_KONST:
cc.mov(x86::dword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, i)), konstd[C]);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_INT);
break;
//case REGT_STRING:
//case REGT_STRING | REGT_ADDROF:
//case REGT_STRING | REGT_KONST:
case REGT_POINTER:
cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), regA[C]);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_POINTER);
break;
case REGT_POINTER | REGT_ADDROF:
stackPtr = cc.newIntPtr();
cc.mov(stackPtr, frameA);
cc.add(stackPtr, C * sizeof(void*));
cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), stackPtr);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_POINTER);
break;
case REGT_POINTER | REGT_KONST:
tmp = cc.newIntPtr();
cc.mov(tmp, ToMemAddress(konsta[C].v));
cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), tmp);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_POINTER);
break;
case REGT_FLOAT:
cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), regF[C]);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT);
break;
case REGT_FLOAT | REGT_MULTIREG2:
cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), regF[C]);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT);
index = NumParam++;
ParamOpcodes.Push(pc);
cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), regF[C + 1]);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT);
break;
case REGT_FLOAT | REGT_MULTIREG3:
cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), regF[C]);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT);
index = NumParam++;
ParamOpcodes.Push(pc);
cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), regF[C + 1]);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT);
index = NumParam++;
ParamOpcodes.Push(pc);
cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), regF[C + 2]);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT);
break;
case REGT_FLOAT | REGT_ADDROF:
stackPtr = cc.newIntPtr();
cc.mov(stackPtr, frameF);
cc.add(stackPtr, C * sizeof(double));
cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), stackPtr);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_POINTER);
break;
case REGT_FLOAT | REGT_KONST:
tmp = cc.newIntPtr();
tmp2 = cc.newXmmSd();
cc.mov(tmp, ToMemAddress(konstf + C));
cc.movsd(tmp2, asmjit::x86::qword_ptr(tmp));
cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), tmp2);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT);
break;
default:
I_FatalError("Unknown REGT value passed to EmitPARAM\n");
break;
}
}
void JitCompiler::EmitPARAMI()
{
int index = NumParam++;
ParamOpcodes.Push(pc);
cc.mov(asmjit::x86::dword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, i)), (int)ABCs);
cc.mov(asmjit::x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_INT);
}
void JitCompiler::EmitCALL()
{
EmitDoCall(regA[A]);
}
void JitCompiler::EmitCALL_K()
{
auto ptr = cc.newIntPtr();
cc.mov(ptr, ToMemAddress(konsta[A].o));
EmitDoCall(ptr);
}
void JitCompiler::EmitTAIL()
{
I_FatalError("EmitTAIL not implemented\n");
}
void JitCompiler::EmitTAIL_K()
{
I_FatalError("EmitTAIL_K not implemented\n");
}
void JitCompiler::EmitDoCall(asmjit::X86Gp ptr)
{
using namespace asmjit;
if (NumParam < B)
I_FatalError("OP_CALL parameter count does not match the number of preceding OP_PARAM instructions");
StoreInOuts(B);
FillReturns(pc + 1, C);
X86Gp paramsptr;
if (B != NumParam)
{
paramsptr = cc.newIntPtr();
cc.mov(paramsptr, params);
cc.add(paramsptr, (NumParam - B) * sizeof(VMValue));
}
else
{
paramsptr = params;
}
auto result = cc.newInt32();
auto call = cc.call(ToMemAddress(&JitCompiler::DoCall), FuncSignature7<int, void*, void*, int, int, void*, void*, void*>());
call->setRet(0, result);
call->setArg(0, stack);
call->setArg(1, ptr);
call->setArg(2, asmjit::Imm(B));
call->setArg(3, asmjit::Imm(C));
call->setArg(4, paramsptr);
call->setArg(5, callReturns);
call->setArg(6, exceptInfo);
auto noexception = cc.newLabel();
auto exceptResult = cc.newInt32();
cc.mov(exceptResult, x86::dword_ptr(exceptInfo, 0 * 4));
cc.cmp(exceptResult, (int)-1);
cc.je(noexception);
X86Gp vReg = cc.newInt32();
cc.mov(vReg, 0);
cc.ret(vReg);
cc.bind(noexception);
LoadReturns(pc - B, B, true);
LoadReturns(pc + 1, C, false);
NumParam -= B;
ParamOpcodes.Resize(ParamOpcodes.Size() - B);
}
void JitCompiler::StoreInOuts(int b)
{
using namespace asmjit;
for (unsigned int i = ParamOpcodes.Size() - b; i < ParamOpcodes.Size(); i++)
{
asmjit::X86Gp stackPtr;
switch (ParamOpcodes[i]->b)
{
case REGT_INT | REGT_ADDROF:
stackPtr = cc.newIntPtr();
cc.mov(stackPtr, frameD);
cc.add(stackPtr, C * sizeof(int32_t));
cc.mov(x86::dword_ptr(stackPtr), regD[C]);
break;
//case REGT_STRING | REGT_ADDROF:
// break;
case REGT_POINTER | REGT_ADDROF:
stackPtr = cc.newIntPtr();
cc.mov(stackPtr, frameA);
cc.add(stackPtr, C * sizeof(void*));
cc.mov(x86::ptr(stackPtr), regA[C]);
break;
case REGT_FLOAT | REGT_ADDROF:
stackPtr = cc.newIntPtr();
cc.mov(stackPtr, frameF);
cc.add(stackPtr, C * sizeof(double));
cc.movsd(x86::qword_ptr(stackPtr), regF[C]);
break;
default:
break;
}
}
}
void JitCompiler::LoadReturns(const VMOP *retval, int numret, bool inout)
{
for (int i = 0; i < numret; ++i)
{
if (!inout && retval[i].op != OP_RESULT)
I_FatalError("Expected OP_RESULT to follow OP_CALL\n");
else if (inout && retval[i].op != OP_PARAMI)
continue;
else if (inout && retval[i].op != OP_PARAM)
I_FatalError("Expected OP_PARAM to precede OP_CALL\n");
int type = retval[i].b;
int regnum = retval[i].c;
if (inout && !(type & REGT_ADDROF))
continue;
switch (type & REGT_TYPE)
{
case REGT_INT:
cc.mov(regD[regnum], asmjit::x86::dword_ptr(frameD, regnum * sizeof(int32_t)));
break;
case REGT_FLOAT:
cc.movsd(regF[regnum], asmjit::x86::qword_ptr(frameF, regnum * sizeof(double)));
break;
/*case REGT_STRING:
break;*/
case REGT_POINTER:
cc.mov(regA[regnum], asmjit::x86::ptr(frameA, regnum * sizeof(void*)));
break;
default:
I_FatalError("Unknown OP_RESULT type encountered in LoadReturns\n");
break;
}
}
}
void JitCompiler::FillReturns(const VMOP *retval, int numret)
{
using namespace asmjit;
for (int i = 0; i < numret; ++i)
{
if (retval[i].op != OP_RESULT)
{
I_FatalError("Expected OP_RESULT to follow OP_CALL\n");
}
int type = retval[i].b;
int regnum = retval[i].c;
if (type & REGT_KONST)
{
I_FatalError("OP_RESULT with REGT_KONST is not allowed\n");
}
auto regPtr = cc.newIntPtr();
switch (type & REGT_TYPE)
{
case REGT_INT:
cc.mov(regPtr, frameD);
cc.add(regPtr, regnum * sizeof(int32_t));
break;
case REGT_FLOAT:
cc.mov(regPtr, frameF);
cc.add(regPtr, regnum * sizeof(double));
break;
/*case REGT_STRING:
cc.mov(regPtr, frameS);
cc.add(regPtr, regnum * sizeof(FString));
break;*/
case REGT_POINTER:
cc.mov(regPtr, frameA);
cc.add(regPtr, regnum * sizeof(void*));
break;
default:
I_FatalError("Unknown OP_RESULT type encountered in FillReturns\n");
break;
}
cc.mov(x86::ptr(callReturns, i * sizeof(VMReturn) + offsetof(VMReturn, Location)), regPtr);
cc.mov(x86::byte_ptr(callReturns, i * sizeof(VMReturn) + offsetof(VMReturn, RegType)), type);
}
}
int JitCompiler::DoCall(VMFrameStack *stack, VMFunction *call, int b, int c, VMValue *param, VMReturn *returns, JitExceptionInfo *exceptinfo)
{
try
{
int numret;
if (call->VarFlags & VARF_Native)
{
try
{
VMCycles[0].Unclock();
numret = static_cast<VMNativeFunction *>(call)->NativeCall(param, call->DefaultArgs, b, returns, c);
VMCycles[0].Clock();
}
catch (CVMAbortException &err)
{
err.MaybePrintMessage();
err.stacktrace.AppendFormat("Called from %s\n", call->PrintableName.GetChars());
throw;
}
}
else
{
VMCalls[0]++;
VMScriptFunction *script = static_cast<VMScriptFunction *>(call);
VMFrame *newf = stack->AllocFrame(script);
VMFillParams(param, newf, b);
try
{
numret = VMExec(stack, script->Code, returns, c);
}
catch (...)
{
stack->PopFrame();
throw;
}
stack->PopFrame();
}
return numret;
}
catch (...)
{
// To do: store full exception in exceptinfo
exceptinfo->reason = X_OTHER;
return 0;
}
}