qzdoom-gpl/src/g_shared/a_movingcamera.cpp
Christoph Oelckers fa452ffd41 - My ActorMover fix from earlier today was causing problems with moving sectors
because it exposed a design flaw in the thinker system:
  Having every single actor default to the highest available statnum means that 
  nothing can be placed in a slot where it is guaranteed to be run after all actors 
  have ticked. But this is required for any thinker that moves an actor 
  (i.e. AActorMover and DSectorEffect.) With DSectorEffect it just went unnoticed 
  because they were added at the end of the list so almost nothing they moved was
  behind them in a thinker list. However, when an actor was spawned on a moving 
  floor it did not move smoothly. The default statnum is now 100 so that there's 
  sufficient slots above where such thinkers can be placed.


SVN r2060 (trunk)
2009-12-30 18:53:14 +00:00

679 lines
16 KiB
C++

/*
** a_movingcamera.cpp
** Cameras that move and related neat stuff
**
**---------------------------------------------------------------------------
** Copyright 1998-2006 Randy Heit
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#include "actor.h"
#include "info.h"
#include "p_local.h"
#include "p_lnspec.h"
#include "doomstat.h"
/*
== InterpolationPoint: node along a camera's path
==
== args[0] = pitch
== args[1] = time (in octics) to get here from previous node
== args[2] = time (in octics) to stay here before moving to next node
== args[3] = low byte of next node's tid
== args[4] = high byte of next node's tid
*/
class AInterpolationPoint : public AActor
{
DECLARE_CLASS (AInterpolationPoint, AActor)
HAS_OBJECT_POINTERS
public:
void BeginPlay ();
void HandleSpawnFlags ();
void Tick () {} // Nodes do no thinking
AInterpolationPoint *ScanForLoop ();
void FormChain ();
void Serialize (FArchive &arc);
TObjPtr<AInterpolationPoint> Next;
};
IMPLEMENT_POINTY_CLASS (AInterpolationPoint)
DECLARE_POINTER (Next)
END_POINTERS
void AInterpolationPoint::Serialize (FArchive &arc)
{
Super::Serialize (arc);
arc << Next;
}
void AInterpolationPoint::BeginPlay ()
{
Super::BeginPlay ();
Next = NULL;
}
void AInterpolationPoint::HandleSpawnFlags ()
{
// Spawn flags mean nothing to an interpolation point
}
void AInterpolationPoint::FormChain ()
{
if (flags & MF_AMBUSH)
return;
flags |= MF_AMBUSH;
TActorIterator<AInterpolationPoint> iterator (args[3] + 256 * args[4]);
Next = iterator.Next ();
if (Next == this) // Don't link to self
Next = iterator.Next ();
if (Next == NULL && (args[3] | args[4]))
Printf ("Can't find target for camera node %d\n", tid);
pitch = (signed int)((char)args[0]) * ANGLE_1;
if (pitch <= -ANGLE_90)
pitch = -ANGLE_90 + ANGLE_1;
else if (pitch >= ANGLE_90)
pitch = ANGLE_90 - ANGLE_1;
if (Next != NULL)
Next->FormChain ();
}
// Return the node (if any) where a path loops, relative to this one.
AInterpolationPoint *AInterpolationPoint::ScanForLoop ()
{
AInterpolationPoint *node = this;
while (node->Next && node->Next != this && node->special1 == 0)
{
node->special1 = 1;
node = node->Next;
}
return node->Next == this ? node : NULL;
}
/*
== InterpolationSpecial: Holds a special to execute when a
== PathFollower reaches an InterpolationPoint of the same TID.
*/
class AInterpolationSpecial : public AActor
{
DECLARE_CLASS (AInterpolationSpecial, AActor)
public:
void Tick () {} // Does absolutely nothing itself
};
IMPLEMENT_CLASS (AInterpolationSpecial)
/*
== PathFollower: something that follows a camera path
== Base class for some moving cameras
==
== args[0] = low byte of first node in path's tid
== args[1] = high byte of first node's tid
== args[2] = bit 0 = follow a linear path (rather than curved)
== bit 1 = adjust angle
== bit 2 = adjust pitch
== bit 3 = aim in direction of motion
==
== Also uses:
== target = first node in path
== lastenemy = node prior to first node (if looped)
*/
class APathFollower : public AActor
{
DECLARE_CLASS (APathFollower, AActor)
HAS_OBJECT_POINTERS
public:
void BeginPlay ();
void PostBeginPlay ();
void Tick ();
void Activate (AActor *activator);
void Deactivate (AActor *activator);
protected:
float Splerp (float p1, float p2, float p3, float p4);
float Lerp (float p1, float p2);
virtual bool Interpolate ();
virtual void NewNode ();
void Serialize (FArchive &arc);
bool bActive, bJustStepped;
TObjPtr<AInterpolationPoint> PrevNode, CurrNode;
float Time; // Runs from 0.0 to 1.0 between CurrNode and CurrNode->Next
int HoldTime;
};
IMPLEMENT_POINTY_CLASS (APathFollower)
DECLARE_POINTER (PrevNode)
DECLARE_POINTER (CurrNode)
END_POINTERS
void APathFollower::Serialize (FArchive &arc)
{
Super::Serialize (arc);
arc << bActive << bJustStepped << PrevNode << CurrNode << Time << HoldTime;
}
// Interpolate between p2 and p3 along a Catmull-Rom spline
// http://research.microsoft.com/~hollasch/cgindex/curves/catmull-rom.html
float APathFollower::Splerp (float p1, float p2, float p3, float p4)
{
float t = Time;
float res = 2*p2;
res += (p3 - p1) * Time;
t *= Time;
res += (2*p1 - 5*p2 + 4*p3 - p4) * t;
t *= Time;
res += (3*p2 - 3*p3 + p4 - p1) * t;
return 0.5f * res;
}
// Linearly interpolate between p1 and p2
float APathFollower::Lerp (float p1, float p2)
{
return p1 + Time * (p2 - p1);
}
void APathFollower::BeginPlay ()
{
Super::BeginPlay ();
PrevNode = CurrNode = NULL;
bActive = false;
ChangeStatNum(STAT_ACTORMOVER);
}
void APathFollower::PostBeginPlay ()
{
// Find first node of path
TActorIterator<AInterpolationPoint> iterator (args[0] + 256 * args[1]);
AInterpolationPoint *node = iterator.Next ();
AInterpolationPoint *prevnode;
target = node;
if (node == NULL)
{
Printf ("PathFollower %d: Can't find interpolation pt %d\n",
tid, args[0] + 256 * args[1]);
return;
}
// Verify the path has enough nodes
node->FormChain ();
if (args[2] & 1)
{ // linear path; need 2 nodes
if (node->Next == NULL)
{
Printf ("PathFollower %d: Path needs at least 2 nodes\n", tid);
return;
}
lastenemy = NULL;
}
else
{ // spline path; need 4 nodes
if (node->Next == NULL ||
node->Next->Next == NULL ||
node->Next->Next->Next == NULL)
{
Printf ("PathFollower %d: Path needs at least 4 nodes\n", tid);
return;
}
// If the first node is in a loop, we can start there.
// Otherwise, we need to start at the second node in the path.
prevnode = node->ScanForLoop ();
if (prevnode == NULL || prevnode->Next != node)
{
lastenemy = target;
target = node->Next;
}
else
{
lastenemy = prevnode;
}
}
}
void APathFollower::Deactivate (AActor *activator)
{
bActive = false;
}
void APathFollower::Activate (AActor *activator)
{
if (!bActive)
{
CurrNode = barrier_cast<AInterpolationPoint *>(target);
PrevNode = barrier_cast<AInterpolationPoint *>(lastenemy);
if (CurrNode != NULL)
{
NewNode ();
SetOrigin (CurrNode->x, CurrNode->y, CurrNode->z);
Time = 0.f;
HoldTime = 0;
bJustStepped = true;
bActive = true;
}
}
}
void APathFollower::Tick ()
{
if (!bActive)
return;
if (bJustStepped)
{
bJustStepped = false;
if (CurrNode->args[2])
{
HoldTime = gametic + CurrNode->args[2] * TICRATE / 8;
x = CurrNode->x;
y = CurrNode->y;
z = CurrNode->z;
}
}
if (HoldTime > gametic)
return;
// Splines must have a previous node.
if (PrevNode == NULL && !(args[2] & 1))
{
bActive = false;
return;
}
// All paths must have a current node.
if (CurrNode->Next == NULL)
{
bActive = false;
return;
}
if (Interpolate ())
{
Time += 8.f / ((float)CurrNode->args[1] * (float)TICRATE);
if (Time > 1.f)
{
Time -= 1.f;
bJustStepped = true;
PrevNode = CurrNode;
CurrNode = CurrNode->Next;
if (CurrNode != NULL)
NewNode ();
if (CurrNode == NULL || CurrNode->Next == NULL)
Deactivate (this);
if ((args[2] & 1) == 0 && CurrNode->Next->Next == NULL)
Deactivate (this);
}
}
}
void APathFollower::NewNode ()
{
TActorIterator<AInterpolationSpecial> iterator (CurrNode->tid);
AInterpolationSpecial *spec;
while ( (spec = iterator.Next ()) )
{
LineSpecials[spec->special] (NULL, NULL, false, spec->args[0],
spec->args[1], spec->args[2], spec->args[3], spec->args[4]);
}
}
bool APathFollower::Interpolate ()
{
fixed_t dx = 0, dy = 0, dz = 0;
if ((args[2] & 8) && Time > 0.f)
{
dx = x;
dy = y;
dz = z;
}
if (CurrNode->Next==NULL) return false;
UnlinkFromWorld ();
if (args[2] & 1)
{ // linear
x = FLOAT2FIXED(Lerp (FIXED2FLOAT(CurrNode->x), FIXED2FLOAT(CurrNode->Next->x)));
y = FLOAT2FIXED(Lerp (FIXED2FLOAT(CurrNode->y), FIXED2FLOAT(CurrNode->Next->y)));
z = FLOAT2FIXED(Lerp (FIXED2FLOAT(CurrNode->z), FIXED2FLOAT(CurrNode->Next->z)));
}
else
{ // spline
if (CurrNode->Next->Next==NULL) return false;
x = FLOAT2FIXED(Splerp (FIXED2FLOAT(PrevNode->x), FIXED2FLOAT(CurrNode->x),
FIXED2FLOAT(CurrNode->Next->x), FIXED2FLOAT(CurrNode->Next->Next->x)));
y = FLOAT2FIXED(Splerp (FIXED2FLOAT(PrevNode->y), FIXED2FLOAT(CurrNode->y),
FIXED2FLOAT(CurrNode->Next->y), FIXED2FLOAT(CurrNode->Next->Next->y)));
z = FLOAT2FIXED(Splerp (FIXED2FLOAT(PrevNode->z), FIXED2FLOAT(CurrNode->z),
FIXED2FLOAT(CurrNode->Next->z), FIXED2FLOAT(CurrNode->Next->Next->z)));
}
LinkToWorld ();
if (args[2] & 6)
{
if (args[2] & 8)
{
if (args[2] & 1)
{ // linear
dx = CurrNode->Next->x - CurrNode->x;
dy = CurrNode->Next->y - CurrNode->y;
dz = CurrNode->Next->z - CurrNode->z;
}
else if (Time > 0.f)
{ // spline
dx = x - dx;
dy = y - dy;
dz = z - dz;
}
else
{
int realarg = args[2];
args[2] &= ~(2|4|8);
Time += 0.1f;
dx = x;
dy = y;
dz = z;
Interpolate ();
Time -= 0.1f;
args[2] = realarg;
dx = x - dx;
dy = y - dy;
dz = z - dz;
x -= dx;
y -= dy;
z -= dz;
}
if (args[2] & 2)
{ // adjust yaw
angle = R_PointToAngle2 (0, 0, dx, dy);
}
if (args[2] & 4)
{ // adjust pitch; use floats for precision
float fdx = FIXED2FLOAT(dx);
float fdy = FIXED2FLOAT(dy);
float fdz = FIXED2FLOAT(-dz);
float dist = (float)sqrt (fdx*fdx + fdy*fdy);
float ang = dist != 0.f ? (float)atan2 (fdz, dist) : 0;
pitch = (angle_t)(ang * 2147483648.f / PI);
}
}
else
{
if (args[2] & 2)
{ // interpolate angle
float angle1 = (float)CurrNode->angle;
float angle2 = (float)CurrNode->Next->angle;
if (angle2 - angle1 <= -2147483648.f)
{
float lerped = Lerp (angle1, angle2 + 4294967296.f);
if (lerped >= 4294967296.f)
{
angle = (angle_t)(lerped - 4294967296.f);
}
else
{
angle = (angle_t)lerped;
}
}
else if (angle2 - angle1 >= 2147483648.f)
{
float lerped = Lerp (angle1, angle2 - 4294967296.f);
if (lerped < 0.f)
{
angle = (angle_t)(lerped + 4294967296.f);
}
else
{
angle = (angle_t)lerped;
}
}
else
{
angle = (angle_t)Lerp (angle1, angle2);
}
}
if (args[2] & 1)
{ // linear
if (args[2] & 4)
{ // interpolate pitch
pitch = FLOAT2FIXED(Lerp (FIXED2FLOAT(CurrNode->pitch), FIXED2FLOAT(CurrNode->Next->pitch)));
}
}
else
{ // spline
if (args[2] & 4)
{ // interpolate pitch
pitch = FLOAT2FIXED(Splerp (FIXED2FLOAT(PrevNode->pitch), FIXED2FLOAT(CurrNode->pitch),
FIXED2FLOAT(CurrNode->Next->pitch), FIXED2FLOAT(CurrNode->Next->Next->pitch)));
}
}
}
}
return true;
}
/*
== ActorMover: Moves any actor along a camera path
==
== Same as PathFollower, except
== args[2], bit 7: make nonsolid
== args[3] = tid of thing to move
==
== also uses:
== tracer = thing to move
*/
class AActorMover : public APathFollower
{
DECLARE_CLASS (AActorMover, APathFollower)
public:
void PostBeginPlay ();
void Activate (AActor *activator);
void Deactivate (AActor *activator);
protected:
bool Interpolate ();
};
IMPLEMENT_CLASS (AActorMover)
void AActorMover::PostBeginPlay ()
{
Super::PostBeginPlay ();
TActorIterator<AActor> iterator (args[3]);
tracer = iterator.Next ();
if (tracer == NULL)
{
Printf ("ActorMover %d: Can't find target %d\n", tid, args[3]);
}
else
{
special1 = tracer->flags;
special2 = tracer->flags2;
}
}
bool AActorMover::Interpolate ()
{
if (tracer == NULL)
return true;
if (Super::Interpolate ())
{
fixed_t savedz = tracer->z;
tracer->z = z;
if (!P_TryMove (tracer, x, y, true))
{
tracer->z = savedz;
return false;
}
if (args[2] & 2)
tracer->angle = angle;
if (args[2] & 4)
tracer->pitch = pitch;
return true;
}
return false;
}
void AActorMover::Activate (AActor *activator)
{
if (tracer == NULL || bActive)
return;
Super::Activate (activator);
special1 = tracer->flags;
special2 = tracer->flags2;
tracer->flags |= MF_NOGRAVITY;
if (args[2] & 128)
{
tracer->UnlinkFromWorld ();
tracer->flags |= MF_NOBLOCKMAP;
tracer->flags &= ~MF_SOLID;
tracer->LinkToWorld ();
}
if (tracer->flags3 & MF3_ISMONSTER)
{
tracer->flags2 |= MF2_INVULNERABLE | MF2_DORMANT;
}
// Don't let the renderer interpolate between the actor's
// old position and its new position.
Interpolate ();
tracer->PrevX = tracer->x;
tracer->PrevY = tracer->y;
tracer->PrevZ = tracer->z;
tracer->PrevAngle = tracer->angle;
}
void AActorMover::Deactivate (AActor *activator)
{
if (bActive)
{
Super::Deactivate (activator);
if (tracer != NULL)
{
tracer->UnlinkFromWorld ();
tracer->flags = special1;
tracer->LinkToWorld ();
tracer->flags2 = special2;
}
}
}
/*
== MovingCamera: Moves any actor along a camera path
==
== Same as PathFollower, except
== args[3] = tid of thing to look at (0 if none)
==
== Also uses:
== tracer = thing to look at
*/
class AMovingCamera : public APathFollower
{
DECLARE_CLASS (AMovingCamera, APathFollower)
HAS_OBJECT_POINTERS
public:
void PostBeginPlay ();
void Serialize (FArchive &arc);
protected:
bool Interpolate ();
TObjPtr<AActor> Activator;
};
IMPLEMENT_POINTY_CLASS (AMovingCamera)
DECLARE_POINTER (Activator)
END_POINTERS
void AMovingCamera::Serialize (FArchive &arc)
{
Super::Serialize (arc);
arc << Activator;
}
void AMovingCamera::PostBeginPlay ()
{
Super::PostBeginPlay ();
Activator = NULL;
if (args[3] != 0)
{
TActorIterator<AActor> iterator (args[3]);
tracer = iterator.Next ();
if (tracer == NULL)
{
Printf ("MovingCamera %d: Can't find thing %d\n", tid, args[3]);
}
}
}
bool AMovingCamera::Interpolate ()
{
if (tracer == NULL)
return Super::Interpolate ();
if (Super::Interpolate ())
{
angle = R_PointToAngle2 (x, y, tracer->x, tracer->y);
if (args[2] & 4)
{ // Also aim camera's pitch; use floats for precision
float dx = FIXED2FLOAT(x - tracer->x);
float dy = FIXED2FLOAT(y - tracer->y);
float dz = FIXED2FLOAT(z - tracer->z - tracer->height/2);
float dist = (float)sqrt (dx*dx + dy*dy);
float ang = dist != 0.f ? (float)atan2 (dz, dist) : 0;
pitch = (angle_t)(ang * 2147483648.f / PI);
}
return true;
}
return false;
}