qzdoom-gpl/wadsrc/static/shaders/glsl/main.fp

414 lines
9.4 KiB
GLSL

in vec4 pixelpos;
in vec2 glowdist;
in vec4 vWorldNormal;
in vec4 vEyeNormal;
in vec4 vTexCoord;
in vec4 vColor;
out vec4 FragColor;
#ifdef GBUFFER_PASS
out vec4 FragData;
#endif
#ifdef SHADER_STORAGE_LIGHTS
layout(std430, binding = 1) buffer LightBufferSSO
{
vec4 lights[];
};
#elif defined NUM_UBO_LIGHTS
/*layout(std140)*/ uniform LightBufferUBO
{
vec4 lights[NUM_UBO_LIGHTS];
};
#endif
uniform sampler2D tex;
vec4 Process(vec4 color);
vec4 ProcessTexel();
vec4 ProcessLight(vec4 color);
//===========================================================================
//
// Desaturate a color
//
//===========================================================================
vec4 desaturate(vec4 texel)
{
if (uDesaturationFactor > 0.0)
{
float gray = (texel.r * 0.3 + texel.g * 0.56 + texel.b * 0.14);
return mix (texel, vec4(gray,gray,gray,texel.a), uDesaturationFactor);
}
else
{
return texel;
}
}
//===========================================================================
//
// This function is common for all (non-special-effect) fragment shaders
//
//===========================================================================
vec4 getTexel(vec2 st)
{
vec4 texel = texture(tex, st);
//
// Apply texture modes
//
switch (uTextureMode)
{
case 1: // TM_MASK
texel.rgb = vec3(1.0,1.0,1.0);
break;
case 2: // TM_OPAQUE
texel.a = 1.0;
break;
case 3: // TM_INVERSE
texel = vec4(1.0-texel.r, 1.0-texel.b, 1.0-texel.g, texel.a);
break;
case 4: // TM_REDTOALPHA
texel = vec4(1.0, 1.0, 1.0, texel.r*texel.a);
break;
case 5: // TM_CLAMPY
if (st.t < 0.0 || st.t > 1.0)
{
texel.a = 0.0;
}
break;
}
texel *= uObjectColor;
return desaturate(texel);
}
//===========================================================================
//
// Doom lighting equation exactly as calculated by zdoom.
//
//===========================================================================
float R_DoomLightingEquation(float light)
{
// Calculated from r_visibility. It differs between walls, floor and sprites.
//
// Wall: globVis = r_WallVisibility
// Floor: r_FloorVisibility / abs(plane.Zat0 - ViewPos.Z)
// Sprite: same as wall
// All are calculated in R_SetVisibility and seem to be decided by the
// aspect ratio amongst other things.
//
// 1706 is the value for walls on 1080p 16:9 displays.
float globVis = 1706.0;
/* L is the integer light level used in the game */
float L = light * 255.0;
/* z is the depth in view/eye space, positive going into the screen */
float z = pixelpos.w;
/* The zdoom light equation */
float vis = globVis / z;
float shade = 64.0 - (L + 12.0) * 32.0/128.0;
float lightscale = clamp((shade - min(24.0, vis)) / 32.0, 0.0, 31.0/32.0);
// Result is the normalized colormap index (0 bright .. 1 dark)
return lightscale;
}
//===========================================================================
//
// Standard lambertian diffuse light calculation
//
//===========================================================================
float diffuseContribution(vec3 lightDirection, vec3 normal)
{
return max(dot(normal, lightDirection), 0.0f);
}
//===========================================================================
//
// Calculates the brightness of a dynamic point light
// Todo: Find a better way to define which lighting model to use.
// (Specular mode has been removed for now.)
//
//===========================================================================
float pointLightAttenuation(vec4 lightpos)
{
float attenuation = max(lightpos.w - distance(pixelpos.xyz, lightpos.xyz),0.0) / lightpos.w;
#if 0
return attenuation;
#else
vec3 lightDirection = normalize(lightpos.xyz - pixelpos.xyz);
float diffuseAmount = diffuseContribution(lightDirection, normalize(vWorldNormal.xyz));
return attenuation * diffuseAmount;
#endif
}
//===========================================================================
//
// Calculate light
//
// It is important to note that the light color is not desaturated
// due to ZDoom's implementation weirdness. Everything that's added
// on top of it, e.g. dynamic lights and glows are, though, because
// the objects emitting these lights are also.
//
// This is making this a bit more complicated than it needs to
// because we can't just desaturate the final fragment color.
//
//===========================================================================
vec4 getLightColor(float fogdist, float fogfactor)
{
vec4 color = vColor;
if (uLightLevel >= 0.0)
{
float newlightlevel = 1.0 - R_DoomLightingEquation(uLightLevel);
color.rgb *= newlightlevel;
}
else if (uFogEnabled > 0)
{
// brightening around the player for light mode 2
if (fogdist < uLightDist)
{
color.rgb *= uLightFactor - (fogdist / uLightDist) * (uLightFactor - 1.0);
}
//
// apply light diminishing through fog equation
//
color.rgb = mix(vec3(0.0, 0.0, 0.0), color.rgb, fogfactor);
}
//
// handle glowing walls
//
if (uGlowTopColor.a > 0.0 && glowdist.x < uGlowTopColor.a)
{
color.rgb += desaturate(uGlowTopColor * (1.0 - glowdist.x / uGlowTopColor.a)).rgb;
}
if (uGlowBottomColor.a > 0.0 && glowdist.y < uGlowBottomColor.a)
{
color.rgb += desaturate(uGlowBottomColor * (1.0 - glowdist.y / uGlowBottomColor.a)).rgb;
}
color = min(color, 1.0);
//
// apply brightmaps (or other light manipulation by custom shaders.
//
color = ProcessLight(color);
//
// apply dynamic lights (except additive)
//
vec4 dynlight = uDynLightColor;
#if defined NUM_UBO_LIGHTS || defined SHADER_STORAGE_LIGHTS
if (uLightIndex >= 0)
{
ivec4 lightRange = ivec4(lights[uLightIndex]) + ivec4(uLightIndex + 1);
if (lightRange.z > lightRange.x)
{
//
// modulated lights
//
for(int i=lightRange.x; i<lightRange.y; i+=2)
{
vec4 lightpos = lights[i];
vec4 lightcolor = lights[i+1];
lightcolor.rgb *= pointLightAttenuation(lightpos);
dynlight.rgb += lightcolor.rgb;
}
//
// subtractive lights
//
for(int i=lightRange.y; i<lightRange.z; i+=2)
{
vec4 lightpos = lights[i];
vec4 lightcolor = lights[i+1];
lightcolor.rgb *= pointLightAttenuation(lightpos);
dynlight.rgb -= lightcolor.rgb;
}
}
}
#endif
color.rgb = clamp(color.rgb + desaturate(dynlight).rgb, 0.0, 1.4);
// prevent any unintentional messing around with the alpha.
return vec4(color.rgb, vColor.a);
}
//===========================================================================
//
// Applies colored fog
//
//===========================================================================
vec4 applyFog(vec4 frag, float fogfactor)
{
return vec4(mix(uFogColor.rgb, frag.rgb, fogfactor), frag.a);
}
//===========================================================================
//
// The color of the fragment if it is fully occluded by ambient lighting
//
//===========================================================================
vec3 AmbientOcclusionColor()
{
float fogdist;
float fogfactor;
//
// calculate fog factor
//
if (uFogEnabled == -1)
{
fogdist = pixelpos.w;
}
else
{
fogdist = max(16.0, length(pixelpos.xyz));
}
fogfactor = exp2 (uFogDensity * fogdist);
return mix(uFogColor.rgb, vec3(0.0), fogfactor);
}
//===========================================================================
//
// Main shader routine
//
//===========================================================================
void main()
{
vec4 frag = ProcessTexel();
#ifndef NO_ALPHATEST
if (frag.a <= uAlphaThreshold) discard;
#endif
switch (uFixedColormap)
{
case 0:
{
float fogdist = 0.0;
float fogfactor = 0.0;
//
// calculate fog factor
//
if (uFogEnabled != 0)
{
if (uFogEnabled == 1 || uFogEnabled == -1)
{
fogdist = pixelpos.w;
}
else
{
fogdist = max(16.0, distance(pixelpos.xyz, uCameraPos.xyz));
}
fogfactor = exp2 (uFogDensity * fogdist);
}
frag *= getLightColor(fogdist, fogfactor);
#if defined NUM_UBO_LIGHTS || defined SHADER_STORAGE_LIGHTS
if (uLightIndex >= 0)
{
ivec4 lightRange = ivec4(lights[uLightIndex]) + ivec4(uLightIndex + 1);
if (lightRange.w > lightRange.z)
{
vec4 addlight = vec4(0.0,0.0,0.0,0.0);
//
// additive lights - these can be done after the alpha test.
//
for(int i=lightRange.z; i<lightRange.w; i+=2)
{
vec4 lightpos = lights[i];
vec4 lightcolor = lights[i+1];
lightcolor.rgb *= pointLightAttenuation(lightpos);
addlight.rgb += lightcolor.rgb;
}
frag.rgb = clamp(frag.rgb + desaturate(addlight).rgb, 0.0, 1.0);
}
}
#endif
//
// colored fog
//
if (uFogEnabled < 0)
{
frag = applyFog(frag, fogfactor);
}
break;
}
case 1:
{
float gray = (frag.r * 0.3 + frag.g * 0.56 + frag.b * 0.14);
vec4 cm = uFixedColormapStart + gray * uFixedColormapRange;
frag = vec4(clamp(cm.rgb, 0.0, 1.0), frag.a*vColor.a);
break;
}
case 2:
{
frag = vColor * frag * uFixedColormapStart;
break;
}
case 3:
{
float fogdist;
float fogfactor;
//
// calculate fog factor
//
if (uFogEnabled == -1)
{
fogdist = pixelpos.w;
}
else
{
fogdist = max(16.0, distance(pixelpos.xyz, uCameraPos.xyz));
}
fogfactor = exp2 (uFogDensity * fogdist);
frag = vec4(uFogColor.rgb, (1.0 - fogfactor) * frag.a * 0.75 * vColor.a);
break;
}
}
FragColor = frag;
#ifdef GBUFFER_PASS
FragData = vec4(AmbientOcclusionColor(), 1.0);
#endif
}