qzdoom-gpl/src/thingdef_exp.cpp
Christoph Oelckers b599eda17d - Moved A_ThrowGrenade from Inventory to Actor because it can also be used by
monsters
- Added velocity multiplicators to A_SpawnDebris.
- Changed: A_JumpIfNoAmmo should have no effect for CustomInventory items.
- Fixed: DECORATE jump commands must set the call state's result to 0
  even when they have to return prematurely.
- Added obituaries for Strife's and Hexen's monsters.
- Converted Strife's Bishop to DECORATE.
- Added momx, momy and momz variables to the DECORATE expression evaluator.


SVN r404 (trunk)
2006-12-06 10:38:47 +00:00

1597 lines
34 KiB
C++

/*
** thingdef_exp.cpp
**
** Expression parsing / runtime evaluating support
**
**---------------------------------------------------------------------------
** Copyright 2005 Jan Cholasta
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
** 4. When not used as part of ZDoom or a ZDoom derivative, this code will be
** covered by the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or (at
** your option) any later version.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#include "actor.h"
#include "sc_man.h"
#include "tarray.h"
#include "templates.h"
#include "vectors.h"
#include "cmdlib.h"
#include "i_system.h"
#include "m_random.h"
#include "a_pickups.h"
#include "thingdef.h"
#include "p_lnspec.h"
void InitExpressions ();
void ClearExpressions ();
FRandom pr_exrandom ("EX_Random");
enum ExpOp
{
EX_NOP,
EX_Const,
EX_Var,
EX_Compl, // ~exp
EX_Not, // !exp
// EX_Plus, // +exp
EX_Minus, // -exp
EX_Mul, // exp * exp
EX_Div, // exp / exp
EX_Mod, // exp % exp
EX_Add, // exp + exp
EX_Sub, // exp - exp
EX_LShift, // exp << exp
EX_RShift, // exp >> exp
EX_LT, // exp < exp
EX_GT, // exp > exp
EX_LE, // exp <= exp
EX_GE, // exp >= exp
EX_Eq, // exp == exp
EX_NE, // exp != exp
EX_And, // exp & exp
EX_Xor, // exp ^ exp
EX_Or, // exp | exp
EX_LogAnd, // exp && exp
EX_LogOr, // exp || exp
EX_Cond, // exp ? exp : exp
EX_Random, // random (min, max)
EX_Random2, // random2 ([mask])
EX_Sin, // sin (angle)
EX_Cos, // cos (angle)
EX_ActionSpecial,
EX_Right,
};
enum ExpValType
{
VAL_Int,
VAL_Float,
};
struct ExpVal
{
ExpValType Type;
union
{
int Int;
float Float;
};
};
typedef ExpVal (*ExpVarGet) (AActor *, int);
ExpVal GetAlpha (AActor *actor, int id)
{
ExpVal val;
val.Type = VAL_Float;
val.Float = FIXED2FLOAT (actor->alpha);
return val;
}
ExpVal GetAngle (AActor *actor, int id)
{
ExpVal val;
val.Type = VAL_Float;
val.Float = (float)actor->angle / ANGLE_1;
return val;
}
ExpVal GetArgs (AActor *actor, int id)
{
ExpVal val;
val.Type = VAL_Int;
val.Int = actor->args[id];
return val;
}
ExpVal GetCeilingZ (AActor *actor, int id)
{
ExpVal val;
val.Type = VAL_Float;
val.Float = FIXED2FLOAT (actor->ceilingz);
return val;
}
ExpVal GetFloorZ (AActor *actor, int id)
{
ExpVal val;
val.Type = VAL_Float;
val.Float = FIXED2FLOAT (actor->floorz);
return val;
}
ExpVal GetHealth (AActor *actor, int id)
{
ExpVal val;
val.Type = VAL_Int;
val.Int = actor->health;
return val;
}
ExpVal GetPitch (AActor *actor, int id)
{
ExpVal val;
val.Type = VAL_Float;
val.Float = (float)actor->pitch / ANGLE_1;
return val;
}
ExpVal GetSpecial (AActor *actor, int id)
{
ExpVal val;
val.Type = VAL_Int;
val.Int = actor->special;
return val;
}
ExpVal GetTID (AActor *actor, int id)
{
ExpVal val;
val.Type = VAL_Int;
val.Int = actor->tid;
return val;
}
ExpVal GetTIDToHate (AActor *actor, int id)
{
ExpVal val;
val.Type = VAL_Int;
val.Int = actor->TIDtoHate;
return val;
}
ExpVal GetWaterLevel (AActor *actor, int id)
{
ExpVal val;
val.Type = VAL_Int;
val.Int = actor->waterlevel;
return val;
}
ExpVal GetX (AActor *actor, int id)
{
ExpVal val;
val.Type = VAL_Float;
val.Float = FIXED2FLOAT (actor->x);
return val;
}
ExpVal GetY (AActor *actor, int id)
{
ExpVal val;
val.Type = VAL_Float;
val.Float = FIXED2FLOAT (actor->y);
return val;
}
ExpVal GetZ (AActor *actor, int id)
{
ExpVal val;
val.Type = VAL_Float;
val.Float = FIXED2FLOAT (actor->z);
return val;
}
ExpVal GetMomX (AActor *actor, int id)
{
ExpVal val;
val.Type = VAL_Float;
val.Float = FIXED2FLOAT (actor->momx);
return val;
}
ExpVal GetMomY (AActor *actor, int id)
{
ExpVal val;
val.Type = VAL_Float;
val.Float = FIXED2FLOAT (actor->momy);
return val;
}
ExpVal GetMomZ (AActor *actor, int id)
{
ExpVal val;
val.Type = VAL_Float;
val.Float = FIXED2FLOAT (actor->momz);
return val;
}
static struct FExpVar
{
ENamedName name; // identifier
int array; // array size (0 if not an array)
ExpVarGet get;
} ExpVars[] = {
{ NAME_Alpha, 0, GetAlpha },
{ NAME_Angle, 0, GetAngle },
{ NAME_Args, 5, GetArgs },
{ NAME_CeilingZ, 0, GetCeilingZ },
{ NAME_FloorZ, 0, GetFloorZ },
{ NAME_Health, 0, GetHealth },
{ NAME_Pitch, 0, GetPitch },
{ NAME_Special, 0, GetSpecial },
{ NAME_TID, 0, GetTID },
{ NAME_TIDtoHate, 0, GetTIDToHate },
{ NAME_WaterLevel, 0, GetWaterLevel },
{ NAME_X, 0, GetX },
{ NAME_Y, 0, GetY },
{ NAME_Z, 0, GetZ },
{ NAME_MomX, 0, GetMomX },
{ NAME_MomY, 0, GetMomY },
{ NAME_MomZ, 0, GetMomZ },
};
struct ExpData;
static ExpVal EvalExpression (ExpData *data, AActor *self, const PClass *cls);
struct ExpData
{
ExpData ()
{
Type = EX_NOP;
Value.Type = VAL_Int;
Value.Int = 0;
RNG = NULL;
for (int i = 0; i < 2; i++)
Children[i] = NULL;
}
~ExpData ()
{
for (int i = 0; i < 2; i++)
{
if (Children[i])
{
delete Children[i];
}
}
}
// Try to evaluate constant expression
void EvalConst (const PClass *cls)
{
if (Type == EX_NOP || Type == EX_Const || Type == EX_Var)
{
return;
}
else if (Type == EX_Compl || Type == EX_Not || /*Type == EX_Plus || */Type == EX_Minus)
{
if (Children[0]->Type == EX_Const)
{
Value = EvalExpression (this, NULL, cls);
Type = EX_Const;
}
}
else if (Type == EX_Cond)
{
if (Children[0]->Type == EX_Const)
{
bool cond = (Children[0]->Value.Type == VAL_Int) ? (Children[0]->Value.Int != 0) : (Children[0]->Value.Float != 0);
ExpData *data = Children[1]->Children[cond];
delete Children[1]->Children[!cond];
delete Children[1];
delete Children[0];
Type = data->Type;
Value = data->Value;
for (int i = 0; i < 2; i++)
{
Children[i] = data->Children[i];
data->Children[i] = NULL;
}
delete data;
}
}
else if (Type != EX_Random && Type != EX_Sin && Type != EX_Cos && Type != EX_ActionSpecial)
{
if (Children[0]->Type == EX_Const && Children[1]->Type == EX_Const)
{
Value = EvalExpression (this, NULL, NULL);
Type = EX_Const;
delete Children[0]; Children[0] = NULL;
delete Children[1]; Children[1] = NULL;
}
}
}
bool Compare (ExpData *other)
{
if (!other)
return false;
if (Type != other->Type ||
Value.Type != other->Value.Type ||
Value.Float != other->Value.Float ||
RNG != other->RNG)
{
return false;
}
for (int i = 0; i < 2; i++)
{
if (Children[i] && !Children[i]->Compare (other->Children[i]))
return false;
}
return true;
}
ExpOp Type;
ExpVal Value;
ExpData *Children[2];
FRandom *RNG; // only used by random and random2
};
TArray<ExpData *> StateExpressions;
//
// ParseExpression
// [GRB] Parses an expression and stores it into Expression array
//
static ExpData *ParseExpressionM (const PClass *cls);
static ExpData *ParseExpressionL (const PClass *cls);
static ExpData *ParseExpressionK (const PClass *cls);
static ExpData *ParseExpressionJ (const PClass *cls);
static ExpData *ParseExpressionI (const PClass *cls);
static ExpData *ParseExpressionH (const PClass *cls);
static ExpData *ParseExpressionG (const PClass *cls);
static ExpData *ParseExpressionF (const PClass *cls);
static ExpData *ParseExpressionE (const PClass *cls);
static ExpData *ParseExpressionD (const PClass *cls);
static ExpData *ParseExpressionC (const PClass *cls);
static ExpData *ParseExpressionB (const PClass *cls);
static ExpData *ParseExpressionA (const PClass *cls);
int ParseExpression (bool _not, PClass *cls)
{
static bool inited=false;
if (!inited)
{
InitExpressions ();
atterm (ClearExpressions);
inited=true;
}
ExpData *data = ParseExpressionM (cls);
if (_not)
{
ExpData *tmp = data;
data = new ExpData;
data->Type = EX_Not;
data->Children[0] = tmp;
data->EvalConst (cls);
}
for (unsigned int i = 0; i < StateExpressions.Size (); i++)
{
if (StateExpressions[i]->Compare (data))
{
delete data;
return i;
}
}
return StateExpressions.Push (data);
}
static ExpData *ParseExpressionM (const PClass *cls)
{
ExpData *tmp = ParseExpressionL (cls);
if (SC_CheckToken('?'))
{
ExpData *data = new ExpData;
data->Type = EX_Cond;
data->Children[0] = tmp;
ExpData *choices = new ExpData;
data->Children[1] = choices;
choices->Type = EX_Right;
choices->Children[0] = ParseExpressionM (cls);
SC_MustGetToken(':');
choices->Children[1] = ParseExpressionM (cls);
data->EvalConst (cls);
return data;
}
else
{
return tmp;
}
}
static ExpData *ParseExpressionL (const PClass *cls)
{
ExpData *tmp = ParseExpressionK (cls);
while (SC_CheckToken(TK_OrOr))
{
ExpData *right = ParseExpressionK (cls);
ExpData *data = new ExpData;
data->Type = EX_LogOr;
data->Children[0] = tmp;
data->Children[1] = right;
data->EvalConst (cls);
tmp = data;
}
return tmp;
}
static ExpData *ParseExpressionK (const PClass *cls)
{
ExpData *tmp = ParseExpressionJ (cls);
while (SC_CheckToken(TK_AndAnd))
{
ExpData *right = ParseExpressionJ (cls);
ExpData *data = new ExpData;
data->Type = EX_LogAnd;
data->Children[0] = tmp;
data->Children[1] = right;
data->EvalConst (cls);
tmp = data;
}
return tmp;
}
static ExpData *ParseExpressionJ (const PClass *cls)
{
ExpData *tmp = ParseExpressionI (cls);
while (SC_CheckToken('|'))
{
ExpData *right = ParseExpressionI (cls);
ExpData *data = new ExpData;
data->Type = EX_Or;
data->Children[0] = tmp;
data->Children[1] = right;
data->EvalConst (cls);
tmp = data;
}
return tmp;
}
static ExpData *ParseExpressionI (const PClass *cls)
{
ExpData *tmp = ParseExpressionH (cls);
while (SC_CheckToken('^'))
{
ExpData *right = ParseExpressionH (cls);
ExpData *data = new ExpData;
data->Type = EX_Xor;
data->Children[0] = tmp;
data->Children[1] = right;
data->EvalConst (cls);
tmp = data;
}
return tmp;
}
static ExpData *ParseExpressionH (const PClass *cls)
{
ExpData *tmp = ParseExpressionG (cls);
while (SC_CheckToken('&'))
{
ExpData *right = ParseExpressionG (cls);
ExpData *data = new ExpData;
data->Type = EX_And;
data->Children[0] = tmp;
data->Children[1] = right;
data->EvalConst (cls);
tmp = data;
}
return tmp;
}
static ExpData *ParseExpressionG (const PClass *cls)
{
ExpData *tmp = ParseExpressionF (cls);
while (SC_GetToken() && (sc_TokenType == TK_Eq || sc_TokenType == TK_Neq))
{
int token = sc_TokenType;
ExpData *right = ParseExpressionF (cls);
ExpData *data = new ExpData;
data->Type = token == TK_Eq? EX_Eq : EX_NE;
data->Children[0] = tmp;
data->Children[1] = right;
data->EvalConst (cls);
tmp = data;
}
if (!sc_End) SC_UnGet();
return tmp;
}
static ExpData *ParseExpressionF (const PClass *cls)
{
ExpData *tmp = ParseExpressionE (cls);
while (SC_GetToken() && (sc_TokenType == '<' || sc_TokenType == '>' || sc_TokenType == TK_Leq || sc_TokenType == TK_Geq))
{
int token = sc_TokenType;
ExpData *right = ParseExpressionE (cls);
ExpData *data = new ExpData;
data->Type = token == '<' ? EX_LT : sc_TokenType == '>' ? EX_GT : sc_TokenType == TK_Leq? EX_LE : EX_GE;
data->Children[0] = tmp;
data->Children[1] = right;
data->EvalConst (cls);
tmp = data;
}
if (!sc_End) SC_UnGet();
return tmp;
}
static ExpData *ParseExpressionE (const PClass *cls)
{
ExpData *tmp = ParseExpressionD (cls);
while (SC_GetToken() && (sc_TokenType == TK_LShift || sc_TokenType == TK_RShift))
{
int token = sc_TokenType;
ExpData *right = ParseExpressionD (cls);
ExpData *data = new ExpData;
data->Type = token == TK_LShift? EX_LShift : EX_RShift;
data->Children[0] = tmp;
data->Children[1] = right;
data->EvalConst (cls);
tmp = data;
}
if (!sc_End) SC_UnGet();
return tmp;
}
static ExpData *ParseExpressionD (const PClass *cls)
{
ExpData *tmp = ParseExpressionC (cls);
while (SC_GetToken() && (sc_TokenType == '+' || sc_TokenType == '-'))
{
int token = sc_TokenType;
ExpData *right = ParseExpressionC (cls);
ExpData *data = new ExpData;
data->Type = token == '+'? EX_Add : EX_Sub;
data->Children[0] = tmp;
data->Children[1] = right;
data->EvalConst (cls);
tmp = data;
}
if (!sc_End) SC_UnGet();
return tmp;
}
static ExpData *ParseExpressionC (const PClass *cls)
{
ExpData *tmp = ParseExpressionB (cls);
while (SC_GetToken() && (sc_TokenType == '*' || sc_TokenType == '/' || sc_TokenType == '%'))
{
int token = sc_TokenType;
ExpData *right = ParseExpressionB (cls);
ExpData *data = new ExpData;
data->Type = token == '*'? EX_Mul : sc_TokenType == '/'? EX_Div : EX_Mod;
data->Children[0] = tmp;
data->Children[1] = right;
data->EvalConst (cls);
tmp = data;
}
if (!sc_End) SC_UnGet();
return tmp;
}
static ExpData *ParseExpressionB (const PClass *cls)
{
ExpData *data = new ExpData;
if (SC_CheckToken('~'))
{
data->Type = EX_Compl;
}
else if (SC_CheckToken('!'))
{
data->Type = EX_Not;
}
else if (SC_CheckToken('-'))
{
data->Type = EX_Minus;
}
else
{
SC_CheckToken('+');
delete data;
return ParseExpressionA (cls);
}
data->Children[0] = ParseExpressionA (cls);
data->EvalConst (cls);
return data;
}
static ExpData *ParseExpressionA (const PClass *cls)
{
if (SC_CheckToken('('))
{
ExpData *data = ParseExpressionM (cls);
SC_MustGetToken(')');
return data;
}
else if (SC_CheckToken(TK_IntConst))
{
ExpData *data = new ExpData;
data->Type = EX_Const;
data->Value.Type = VAL_Int;
data->Value.Int = sc_Number;
return data;
}
else if (SC_CheckToken(TK_FloatConst))
{
ExpData *data = new ExpData;
data->Type = EX_Const;
data->Value.Type = VAL_Float;
data->Value.Float = sc_Float;
return data;
}
else if (SC_CheckToken(TK_Class))
{
// Accept class'SomeClassName'.SomeConstant
SC_MustGetToken(TK_NameConst);
cls = PClass::FindClass (sc_Name);
if (cls == NULL)
{
SC_ScriptError ("Unknown class '%s'", sc_String);
}
SC_MustGetToken('.');
SC_MustGetToken(TK_Identifier);
PSymbol *sym = cls->Symbols.FindSymbol (sc_Name, true);
if (sym != NULL && sym->SymbolType == SYM_Const)
{
ExpData *data = new ExpData;
data->Type = EX_Const;
data->Value.Type = VAL_Int;
data->Value.Int = static_cast<PSymbolConst *>(sym)->Value;
return data;
}
else
{
SC_ScriptError ("'%s' is not a constant value in class '%s'", sc_String, cls->TypeName.GetChars());
return NULL;
}
}
else if (SC_CheckToken(TK_Identifier))
{
switch (sc_Name)
{
case NAME_Random:
{
FRandom *rng;
if (SC_CheckToken('['))
{
SC_MustGetToken(TK_Identifier);
rng = FRandom::StaticFindRNG(sc_String);
SC_MustGetToken(']');
}
else
{
rng = &pr_exrandom;
}
SC_MustGetToken('(');
ExpData *data = new ExpData;
data->Type = EX_Random;
data->RNG = rng;
data->Children[0] = ParseExpressionM (cls);
SC_MustGetToken(',');
data->Children[1] = ParseExpressionM (cls);
SC_MustGetToken(')');
return data;
}
break;
case NAME_Random2:
{
FRandom *rng;
if (SC_CheckToken('['))
{
SC_MustGetToken(TK_Identifier);
rng = FRandom::StaticFindRNG(sc_String);
SC_MustGetToken(']');
}
else
{
rng = &pr_exrandom;
}
SC_MustGetToken('(');
ExpData *data = new ExpData;
data->Type = EX_Random2;
data->RNG = rng;
if (!SC_CheckToken(')'))
{
data->Children[0] = ParseExpressionM(cls);
SC_MustGetToken(')');
}
return data;
}
break;
case NAME_Sin:
{
SC_MustGetToken('(');
ExpData *data = new ExpData;
data->Type = EX_Sin;
data->Children[0] = ParseExpressionM (cls);
SC_MustGetToken(')');
return data;
}
break;
case NAME_Cos:
{
SC_MustGetToken('(');
ExpData *data = new ExpData;
data->Type = EX_Cos;
data->Children[0] = ParseExpressionM (cls);
SC_MustGetToken(')');
return data;
}
break;
default:
{
int specnum, min_args, max_args;
// Check if this is an action special
strlwr (sc_String);
specnum = FindLineSpecialEx (sc_String, &min_args, &max_args);
if (specnum != 0)
{
int i;
SC_MustGetToken('(');
ExpData *data = new ExpData, **left;
data->Type = EX_ActionSpecial;
data->Value.Int = specnum;
data->Children[0] = ParseExpressionM (cls);
left = &data->Children[1];
for (i = 1; i < 5 && SC_CheckToken(','); ++i)
{
ExpData *right = new ExpData;
right->Type = EX_Right;
right->Children[0] = ParseExpressionM (cls);
*left = right;
left = &right->Children[1];
}
*left = NULL;
SC_MustGetToken(')');
if (i < min_args)
SC_ScriptError ("Not enough arguments to action special");
if (i > max_args)
SC_ScriptError ("Too many arguments to action special");
return data;
}
// Check if this is a constant
if (cls != NULL)
{
PSymbol *sym = cls->Symbols.FindSymbol (sc_Name, true);
if (sym != NULL && sym->SymbolType == SYM_Const)
{
ExpData *data = new ExpData;
data->Type = EX_Const;
data->Value.Type = VAL_Int;
data->Value.Int = static_cast<PSymbolConst *>(sym)->Value;
return data;
}
}
// Check if it's a variable we understand
int varid = -1;
for (size_t i = 0; i < countof(ExpVars); i++)
{
if (sc_Name == ExpVars[i].name)
{
varid = (int)i;
break;
}
}
if (varid == -1)
SC_ScriptError ("Unknown value '%s'", sc_String);
ExpData *data = new ExpData;
data->Type = EX_Var;
data->Value.Type = VAL_Int;
data->Value.Int = varid;
if (ExpVars[varid].array)
{
SC_MustGetToken('[');
data->Children[0] = ParseExpressionM (cls);
SC_MustGetToken(']');
}
return data;
}
break;
}
}
else
{
SC_ScriptError ("Unexpected token %s", SC_TokenName(sc_TokenType, sc_String));
return NULL;
}
}
//
// EvalExpression
// [GRB] Evaluates previously stored expression
//
int EvalExpressionI (int id, AActor *self, const PClass *cls)
{
if (StateExpressions.Size() <= (unsigned int)id) return 0;
if (cls == NULL && self != NULL)
{
cls = self->GetClass();
}
ExpVal val = EvalExpression (StateExpressions[id], self, cls);
switch (val.Type)
{
default:
case VAL_Int:
return val.Int;
case VAL_Float:
return (int)val.Float;
}
}
bool EvalExpressionN(int id, AActor *self, const PClass *cls)
{
return !EvalExpressionI(id, self, cls);
}
float EvalExpressionF (int id, AActor *self, const PClass *cls)
{
if (StateExpressions.Size() <= (unsigned int)id) return 0.f;
if (cls == NULL && self != NULL)
{
cls = self->GetClass();
}
ExpVal val = EvalExpression (StateExpressions[id], self, cls);
switch (val.Type)
{
default:
case VAL_Int:
return (float)val.Int;
case VAL_Float:
return val.Float;
}
}
static ExpVal EvalExpression (ExpData *data, AActor *self, const PClass *cls)
{
ExpVal val;
switch (data->Type)
{
case EX_NOP:
assert (data->Type != EX_NOP);
val = data->Value;
break;
case EX_Const:
val = data->Value;
break;
case EX_Var:
if (!self)
{
I_FatalError ("Missing actor data");
}
else
{
int id = 0;
if (ExpVars[data->Value.Int].array)
{
ExpVal idval = EvalExpression (data->Children[0], self, cls);
id = ((idval.Type == VAL_Int) ? idval.Int : (int)idval.Float) % ExpVars[data->Value.Int].array;
}
val = ExpVars[data->Value.Int].get (self, id);
}
break;
case EX_Compl:
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
val.Type = VAL_Int;
val.Int = ~((a.Type == VAL_Int) ? a.Int : (int)a.Float);
}
break;
case EX_Not:
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
val.Type = VAL_Int;
val.Int = !((a.Type == VAL_Int) ? a.Int : (int)a.Float);
}
break;
case EX_Minus:
{
val = EvalExpression (data->Children[0], self, cls);
if (val.Type == VAL_Int)
val.Int = -val.Int;
else
val.Float = -val.Float;
}
break;
case EX_Mul:
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
ExpVal b = EvalExpression (data->Children[1], self, cls);
if (a.Type == VAL_Int)
{
if (b.Type == VAL_Int)
{
val.Type = VAL_Int;
val.Int = a.Int * b.Int;
}
else
{
val.Type = VAL_Float;
val.Float = a.Int * b.Float;
}
}
else
{
val.Type = VAL_Float;
if (b.Type == VAL_Int)
val.Float = a.Float * b.Int;
else
val.Float = a.Float * b.Float;
}
}
break;
case EX_Div:
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
ExpVal b = EvalExpression (data->Children[1], self, cls);
if (b.Int == 0)
{
I_FatalError ("Division by zero");
}
if (a.Type == VAL_Int)
{
if (b.Type == VAL_Int)
{
val.Type = VAL_Int;
val.Int = a.Int / b.Int;
}
else
{
val.Type = VAL_Float;
val.Float = a.Int / b.Float;
}
}
else
{
val.Type = VAL_Float;
if (b.Type == VAL_Int)
val.Float = a.Float / b.Int;
else
val.Float = a.Float / b.Float;
}
}
break;
case EX_Mod:
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
ExpVal b = EvalExpression (data->Children[1], self, cls);
if (b.Int == 0)
{
I_FatalError ("Division by zero");
}
if (a.Type == VAL_Int)
{
if (b.Type == VAL_Int)
{
val.Type = VAL_Int;
val.Int = a.Int % b.Int;
}
else
{
val.Type = VAL_Float;
val.Float = fmodf (a.Int, b.Float);
}
}
else
{
val.Type = VAL_Float;
if (b.Type == VAL_Int)
val.Float = fmodf (a.Float, b.Int);
else
val.Float = fmodf (a.Float, b.Float);
}
}
break;
case EX_Add:
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
ExpVal b = EvalExpression (data->Children[1], self, cls);
if (a.Type == VAL_Int)
{
if (b.Type == VAL_Int)
{
val.Type = VAL_Int;
val.Int = a.Int + b.Int;
}
else
{
val.Type = VAL_Float;
val.Float = a.Int + b.Float;
}
}
else
{
val.Type = VAL_Float;
if (b.Type == VAL_Int)
val.Float = a.Float + b.Int;
else
val.Float = a.Float + b.Float;
}
}
break;
case EX_Sub:
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
ExpVal b = EvalExpression (data->Children[1], self, cls);
if (a.Type == VAL_Int)
{
if (b.Type == VAL_Int)
{
val.Type = VAL_Int;
val.Int = a.Int - b.Int;
}
else
{
val.Type = VAL_Float;
val.Float = a.Int - b.Float;
}
}
else
{
val.Type = VAL_Float;
if (b.Type == VAL_Int)
val.Float = a.Float - b.Int;
else
val.Float = a.Float - b.Float;
}
}
break;
case EX_LShift:
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
ExpVal b = EvalExpression (data->Children[1], self, cls);
val.Type = VAL_Int;
if (a.Type == VAL_Int)
{
if (b.Type == VAL_Int)
val.Int = a.Int << b.Int;
else
val.Int = a.Int << (int)b.Float;
}
else
{
if (b.Type == VAL_Int)
val.Int = (int)a.Float << b.Int;
else
val.Int = (int)a.Float << (int)b.Float;
}
}
break;
case EX_RShift:
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
ExpVal b = EvalExpression (data->Children[1], self, cls);
val.Type = VAL_Int;
if (a.Type == VAL_Int)
{
if (b.Type == VAL_Int)
val.Int = a.Int >> b.Int;
else
val.Int = a.Int >> (int)b.Float;
}
else
{
if (b.Type == VAL_Int)
val.Int = (int)a.Float >> b.Int;
else
val.Int = (int)a.Float >> (int)b.Float;
}
}
break;
case EX_LT:
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
ExpVal b = EvalExpression (data->Children[1], self, cls);
val.Type = VAL_Int;
if (a.Type == VAL_Int)
{
if (b.Type == VAL_Int)
val.Int = a.Int < b.Int;
else
val.Int = a.Int < b.Float;
}
else
{
if (b.Type == VAL_Int)
val.Int = a.Float < b.Int;
else
val.Int = a.Float < b.Float;
}
}
break;
case EX_GT:
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
ExpVal b = EvalExpression (data->Children[1], self, cls);
val.Type = VAL_Int;
if (a.Type == VAL_Int)
{
if (b.Type == VAL_Int)
val.Int = a.Int > b.Int;
else
val.Int = a.Int > b.Float;
}
else
{
if (b.Type == VAL_Int)
val.Int = a.Float > b.Int;
else
val.Int = a.Float > b.Float;
}
}
break;
case EX_LE:
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
ExpVal b = EvalExpression (data->Children[1], self, cls);
val.Type = VAL_Int;
if (a.Type == VAL_Int)
{
if (b.Type == VAL_Int)
val.Int = a.Int <= b.Int;
else
val.Int = a.Int <= b.Float;
}
else
{
if (b.Type == VAL_Int)
val.Int = a.Float <= b.Int;
else
val.Int = a.Float <= b.Float;
}
}
break;
case EX_GE:
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
ExpVal b = EvalExpression (data->Children[1], self, cls);
val.Type = VAL_Int;
if (a.Type == VAL_Int)
{
if (b.Type == VAL_Int)
val.Int = a.Int >= b.Int;
else
val.Int = a.Int >= b.Float;
}
else
{
if (b.Type == VAL_Int)
val.Int = a.Float >= b.Int;
else
val.Int = a.Float >= b.Float;
}
}
break;
case EX_Eq:
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
ExpVal b = EvalExpression (data->Children[1], self, cls);
val.Type = VAL_Int;
if (a.Type == VAL_Int)
{
if (b.Type == VAL_Int)
val.Int = a.Int == b.Int;
else
val.Int = a.Int == b.Float;
}
else
{
if (b.Type == VAL_Int)
val.Int = a.Float == b.Int;
else
val.Int = a.Float == b.Float;
}
}
break;
case EX_NE:
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
ExpVal b = EvalExpression (data->Children[1], self, cls);
val.Type = VAL_Int;
if (a.Type == VAL_Int)
{
if (b.Type == VAL_Int)
val.Int = a.Int != b.Int;
else
val.Int = a.Int != b.Float;
}
else
{
if (b.Type == VAL_Int)
val.Int = a.Float != b.Int;
else
val.Int = a.Float != b.Float;
}
}
break;
case EX_And:
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
ExpVal b = EvalExpression (data->Children[1], self, cls);
val.Type = VAL_Int;
if (a.Type == VAL_Int)
{
if (b.Type == VAL_Int)
val.Int = a.Int & b.Int;
else
val.Int = a.Int & (int)b.Float;
}
else
{
if (b.Type == VAL_Int)
val.Int = (int)a.Float & b.Int;
else
val.Int = (int)a.Float & (int)b.Float;
}
}
break;
case EX_Xor:
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
ExpVal b = EvalExpression (data->Children[1], self, cls);
val.Type = VAL_Int;
if (a.Type == VAL_Int)
{
if (b.Type == VAL_Int)
val.Int = a.Int ^ b.Int;
else
val.Int = a.Int ^ (int)b.Float;
}
else
{
if (b.Type == VAL_Int)
val.Int = (int)a.Float ^ b.Int;
else
val.Int = (int)a.Float ^ (int)b.Float;
}
}
break;
case EX_Or:
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
ExpVal b = EvalExpression (data->Children[1], self, cls);
val.Type = VAL_Int;
if (a.Type == VAL_Int)
{
if (b.Type == VAL_Int)
val.Int = a.Int | b.Int;
else
val.Int = a.Int | (int)b.Float;
}
else
{
if (b.Type == VAL_Int)
val.Int = (int)a.Float | b.Int;
else
val.Int = (int)a.Float | (int)b.Float;
}
}
break;
case EX_LogAnd:
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
ExpVal b = EvalExpression (data->Children[1], self, cls);
val.Type = VAL_Int;
if (a.Type == VAL_Int)
{
if (b.Type == VAL_Int)
val.Int = a.Int && b.Int;
else
val.Int = a.Int && b.Float;
}
else
{
if (b.Type == VAL_Int)
val.Int = a.Float && b.Int;
else
val.Int = a.Float && b.Float;
}
}
break;
case EX_LogOr:
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
ExpVal b = EvalExpression (data->Children[1], self, cls);
val.Type = VAL_Int;
if (a.Type == VAL_Int)
{
if (b.Type == VAL_Int)
val.Int = a.Int || b.Int;
else
val.Int = a.Int || b.Float;
}
else
{
if (b.Type == VAL_Int)
val.Int = a.Float || b.Int;
else
val.Int = a.Float || b.Float;
}
}
break;
case EX_Cond:
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
if (a.Type == VAL_Float)
a.Int = (int)a.Float;
val = EvalExpression (data->Children[1]->Children[!!a.Int], self, cls);
}
break;
case EX_Random:
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
ExpVal b = EvalExpression (data->Children[1], self, cls);
int min = (a.Type == VAL_Int) ? a.Int : (int)a.Float;
int max = (b.Type == VAL_Int) ? b.Int : (int)b.Float;
val.Type = VAL_Int;
if (max < min)
{
swap (max, min);
}
if (max - min > 255)
{
int num1,num2,num3,num4;
num1 = (*data->RNG)();
num2 = (*data->RNG)();
num3 = (*data->RNG)();
num4 = (*data->RNG)();
val.Int = ((num1 << 24) | (num2 << 16) | (num3 << 8) | num4);
}
else
{
val.Int = (*data->RNG)();
}
val.Int %= (max - min + 1);
val.Int += min;
}
break;
case EX_Random2:
{
if (data->Children[0] == NULL)
{
val.Type = VAL_Int;
val.Int = data->RNG->Random2();
}
else
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
val.Type = VAL_Int;
val.Int = data->RNG->Random2((a.Type == VAL_Int) ? a.Int : (int)a.Float);
}
}
break;
case EX_Sin:
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
angle_t angle = (a.Type == VAL_Int) ? (a.Int * ANGLE_1) : angle_t(a.Float * ANGLE_1);
val.Type = VAL_Float;
val.Float = FIXED2FLOAT (finesine[angle>>ANGLETOFINESHIFT]);
}
break;
case EX_Cos:
{
ExpVal a = EvalExpression (data->Children[0], self, cls);
angle_t angle = (a.Type == VAL_Int) ? (a.Int * ANGLE_1) : angle_t(a.Float * ANGLE_1);
val.Type = VAL_Float;
val.Float = FIXED2FLOAT (finecosine[angle>>ANGLETOFINESHIFT]);
}
break;
case EX_ActionSpecial:
{
int parms[5] = { 0, 0, 0, 0 };
int i = 0;
ExpData *parm = data;
while (parm != NULL && i < 5)
{
ExpVal val = EvalExpression (parm->Children[0], self, cls);
if (val.Type == VAL_Int)
{
parms[i] = val.Int;
}
else
{
parms[i] = (int)val.Float;
}
i++;
parm = parm->Children[1];
}
val.Type = VAL_Int;
val.Int = LineSpecials[data->Value.Int] (NULL, self, false,
parms[0], parms[1], parms[2], parms[3], parms[4]);
}
break;
case EX_Right:
// This should never be a top-level expression.
assert (data->Type != EX_Right);
break;
}
return val;
}
//
// InitExpressions
// [GRB] Set up expression data
//
void InitExpressions ()
{
// StateExpressions[0] always is const 0;
ExpData *data = new ExpData;
data->Type = EX_Const;
data->Value.Type = VAL_Int;
data->Value.Int = 0;
StateExpressions.Push (data);
}
//
// ClearExpressions
// [GRB] Free all expression data
//
void ClearExpressions ()
{
ExpData *data;
while (StateExpressions.Pop (data))
delete data;
}