qzdoom-gpl/src/r_draw.cpp

1298 lines
33 KiB
C++

/*
** r_draw.cpp
**
**---------------------------------------------------------------------------
** Copyright 1998-2016 Randy Heit
** Copyright 2016 Magnus Norddahl
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#include <stddef.h>
#include "templates.h"
#include "doomdef.h"
#include "i_system.h"
#include "w_wad.h"
#include "r_local.h"
#include "v_video.h"
#include "doomstat.h"
#include "st_stuff.h"
#include "g_game.h"
#include "g_level.h"
#include "r_data/r_translate.h"
#include "v_palette.h"
#include "r_data/colormaps.h"
#include "r_plane.h"
#include "r_draw.h"
#include "r_draw_pal.h"
#include "r_thread.h"
namespace swrenderer
{
// Needed by R_DrawFogBoundary (which probably shouldn't be part of this file)
extern "C" short spanend[MAXHEIGHT];
extern float rw_light;
extern float rw_lightstep;
extern int wallshade;
double dc_texturemid;
int ylookup[MAXHEIGHT];
uint8_t shadetables[NUMCOLORMAPS * 16 * 256];
FDynamicColormap ShadeFakeColormap[16];
uint8_t identitymap[256];
FDynamicColormap identitycolormap;
int fuzzoffset[FUZZTABLE + 1];
int fuzzpos;
int fuzzviewheight;
namespace drawerargs
{
int dc_pitch;
lighttable_t *dc_colormap;
int dc_x;
int dc_yl;
int dc_yh;
fixed_t dc_iscale;
fixed_t dc_texturefrac;
uint32_t dc_textureheight;
int dc_color;
uint32_t dc_srccolor;
uint32_t dc_srccolor_bgra;
uint32_t *dc_srcblend;
uint32_t *dc_destblend;
fixed_t dc_srcalpha;
fixed_t dc_destalpha;
const uint8_t *dc_source;
const uint8_t *dc_source2;
uint32_t dc_texturefracx;
uint8_t *dc_translation;
uint8_t *dc_dest;
uint8_t *dc_destorg;
int dc_destheight;
int dc_count;
uint32_t dc_wall_texturefrac[4];
uint32_t dc_wall_iscale[4];
uint8_t *dc_wall_colormap[4];
fixed_t dc_wall_light[4];
const uint8_t *dc_wall_source[4];
const uint8_t *dc_wall_source2[4];
uint32_t dc_wall_texturefracx[4];
uint32_t dc_wall_sourceheight[4];
int dc_wall_fracbits;
int ds_y;
int ds_x1;
int ds_x2;
lighttable_t * ds_colormap;
dsfixed_t ds_light;
dsfixed_t ds_xfrac;
dsfixed_t ds_yfrac;
dsfixed_t ds_xstep;
dsfixed_t ds_ystep;
int ds_xbits;
int ds_ybits;
fixed_t ds_alpha;
double ds_lod;
const uint8_t *ds_source;
int ds_color;
unsigned int dc_tspans[4][MAXHEIGHT];
unsigned int *dc_ctspan[4];
unsigned int *horizspan[4];
}
void R_InitColumnDrawers()
{
colfunc = basecolfunc = R_DrawColumn;
fuzzcolfunc = R_DrawFuzzColumn;
transcolfunc = R_DrawTranslatedColumn;
spanfunc = R_DrawSpan;
hcolfunc_pre = R_DrawColumnHoriz;
hcolfunc_post1 = rt_map1col;
hcolfunc_post4 = rt_map4cols;
}
void R_InitShadeMaps()
{
int i, j;
// set up shading tables for shaded columns
// 16 colormap sets, progressing from full alpha to minimum visible alpha
uint8_t *table = shadetables;
// Full alpha
for (i = 0; i < 16; ++i)
{
ShadeFakeColormap[i].Color = ~0u;
ShadeFakeColormap[i].Desaturate = ~0u;
ShadeFakeColormap[i].Next = NULL;
ShadeFakeColormap[i].Maps = table;
for (j = 0; j < NUMCOLORMAPS; ++j)
{
int a = (NUMCOLORMAPS - j) * 256 / NUMCOLORMAPS * (16 - i);
for (int k = 0; k < 256; ++k)
{
uint8_t v = (((k + 2) * a) + 256) >> 14;
table[k] = MIN<uint8_t>(v, 64);
}
table += 256;
}
}
for (i = 0; i < NUMCOLORMAPS * 16 * 256; ++i)
{
assert(shadetables[i] <= 64);
}
// Set up a guaranteed identity map
for (i = 0; i < 256; ++i)
{
identitymap[i] = i;
}
identitycolormap.Maps = identitymap;
}
void R_InitFuzzTable(int fuzzoff)
{
/*
FUZZOFF,-FUZZOFF,FUZZOFF,-FUZZOFF,FUZZOFF,FUZZOFF,-FUZZOFF,
FUZZOFF,FUZZOFF,-FUZZOFF,FUZZOFF,FUZZOFF,FUZZOFF,-FUZZOFF,
FUZZOFF,FUZZOFF,FUZZOFF,-FUZZOFF,-FUZZOFF,-FUZZOFF,-FUZZOFF,
FUZZOFF,-FUZZOFF,-FUZZOFF,FUZZOFF,FUZZOFF,FUZZOFF,FUZZOFF,-FUZZOFF,
FUZZOFF,-FUZZOFF,FUZZOFF,FUZZOFF,-FUZZOFF,-FUZZOFF,FUZZOFF,
FUZZOFF,-FUZZOFF,-FUZZOFF,-FUZZOFF,-FUZZOFF,FUZZOFF,FUZZOFF,
FUZZOFF,FUZZOFF,-FUZZOFF,FUZZOFF,FUZZOFF,-FUZZOFF,FUZZOFF
*/
static const int8_t fuzzinit[FUZZTABLE] = {
1,-1, 1,-1, 1, 1,-1,
1, 1,-1, 1, 1, 1,-1,
1, 1, 1,-1,-1,-1,-1,
1,-1,-1, 1, 1, 1, 1,-1,
1,-1, 1, 1,-1,-1, 1,
1,-1,-1,-1,-1, 1, 1,
1, 1,-1, 1, 1,-1, 1
};
for (int i = 0; i < FUZZTABLE; i++)
{
fuzzoffset[i] = fuzzinit[i] * fuzzoff;
}
}
namespace
{
bool R_SetBlendFunc(int op, fixed_t fglevel, fixed_t bglevel, int flags)
{
using namespace drawerargs;
// r_drawtrans is a seriously bad thing to turn off. I wonder if I should
// just remove it completely.
if (!r_drawtrans || (op == STYLEOP_Add && fglevel == FRACUNIT && bglevel == 0 && !(flags & STYLEF_InvertSource)))
{
if (flags & STYLEF_ColorIsFixed)
{
colfunc = R_FillColumn;
hcolfunc_post1 = rt_copy1col;
hcolfunc_post4 = rt_copy4cols;
}
else if (dc_translation == NULL)
{
colfunc = basecolfunc;
hcolfunc_post1 = rt_map1col;
hcolfunc_post4 = rt_map4cols;
}
else
{
colfunc = transcolfunc;
hcolfunc_post1 = rt_tlate1col;
hcolfunc_post4 = rt_tlate4cols;
}
return true;
}
if (flags & STYLEF_InvertSource)
{
dc_srcblend = Col2RGB8_Inverse[fglevel >> 10];
dc_destblend = Col2RGB8_LessPrecision[bglevel >> 10];
dc_srcalpha = fglevel;
dc_destalpha = bglevel;
}
else if (op == STYLEOP_Add && fglevel + bglevel <= FRACUNIT)
{
dc_srcblend = Col2RGB8[fglevel >> 10];
dc_destblend = Col2RGB8[bglevel >> 10];
dc_srcalpha = fglevel;
dc_destalpha = bglevel;
}
else
{
dc_srcblend = Col2RGB8_LessPrecision[fglevel >> 10];
dc_destblend = Col2RGB8_LessPrecision[bglevel >> 10];
dc_srcalpha = fglevel;
dc_destalpha = bglevel;
}
switch (op)
{
case STYLEOP_Add:
if (fglevel == 0 && bglevel == FRACUNIT)
{
return false;
}
if (fglevel + bglevel <= FRACUNIT)
{ // Colors won't overflow when added
if (flags & STYLEF_ColorIsFixed)
{
colfunc = R_FillAddColumn;
hcolfunc_post1 = rt_add1col;
hcolfunc_post4 = rt_add4cols;
}
else if (dc_translation == NULL)
{
colfunc = R_DrawAddColumn;
hcolfunc_post1 = rt_add1col;
hcolfunc_post4 = rt_add4cols;
}
else
{
colfunc = R_DrawTlatedAddColumn;
hcolfunc_post1 = rt_tlateadd1col;
hcolfunc_post4 = rt_tlateadd4cols;
}
}
else
{ // Colors might overflow when added
if (flags & STYLEF_ColorIsFixed)
{
colfunc = R_FillAddClampColumn;
hcolfunc_post1 = rt_addclamp1col;
hcolfunc_post4 = rt_addclamp4cols;
}
else if (dc_translation == NULL)
{
colfunc = R_DrawAddClampColumn;
hcolfunc_post1 = rt_addclamp1col;
hcolfunc_post4 = rt_addclamp4cols;
}
else
{
colfunc = R_DrawAddClampTranslatedColumn;
hcolfunc_post1 = rt_tlateaddclamp1col;
hcolfunc_post4 = rt_tlateaddclamp4cols;
}
}
return true;
case STYLEOP_Sub:
if (flags & STYLEF_ColorIsFixed)
{
colfunc = R_FillSubClampColumn;
hcolfunc_post1 = rt_subclamp1col;
hcolfunc_post4 = rt_subclamp4cols;
}
else if (dc_translation == NULL)
{
colfunc = R_DrawSubClampColumn;
hcolfunc_post1 = rt_subclamp1col;
hcolfunc_post4 = rt_subclamp4cols;
}
else
{
colfunc = R_DrawSubClampTranslatedColumn;
hcolfunc_post1 = rt_tlatesubclamp1col;
hcolfunc_post4 = rt_tlatesubclamp4cols;
}
return true;
case STYLEOP_RevSub:
if (fglevel == 0 && bglevel == FRACUNIT)
{
return false;
}
if (flags & STYLEF_ColorIsFixed)
{
colfunc = R_FillRevSubClampColumn;
hcolfunc_post1 = rt_subclamp1col;
hcolfunc_post4 = rt_subclamp4cols;
}
else if (dc_translation == NULL)
{
colfunc = R_DrawRevSubClampColumn;
hcolfunc_post1 = rt_revsubclamp1col;
hcolfunc_post4 = rt_revsubclamp4cols;
}
else
{
colfunc = R_DrawRevSubClampTranslatedColumn;
hcolfunc_post1 = rt_tlaterevsubclamp1col;
hcolfunc_post4 = rt_tlaterevsubclamp4cols;
}
return true;
default:
return false;
}
}
fixed_t GetAlpha(int type, fixed_t alpha)
{
switch (type)
{
case STYLEALPHA_Zero: return 0;
case STYLEALPHA_One: return OPAQUE;
case STYLEALPHA_Src: return alpha;
case STYLEALPHA_InvSrc: return OPAQUE - alpha;
default: return 0;
}
}
FDynamicColormap *basecolormapsave;
}
ESPSResult R_SetPatchStyle(FRenderStyle style, fixed_t alpha, int translation, uint32_t color)
{
using namespace drawerargs;
fixed_t fglevel, bglevel;
style.CheckFuzz();
if (style.BlendOp == STYLEOP_Shadow)
{
style = LegacyRenderStyles[STYLE_TranslucentStencil];
alpha = TRANSLUC33;
color = 0;
}
if (style.Flags & STYLEF_TransSoulsAlpha)
{
alpha = fixed_t(transsouls * OPAQUE);
}
else if (style.Flags & STYLEF_Alpha1)
{
alpha = FRACUNIT;
}
else
{
alpha = clamp<fixed_t>(alpha, 0, OPAQUE);
}
if (translation != -1)
{
dc_translation = NULL;
if (translation != 0)
{
FRemapTable *table = TranslationToTable(translation);
if (table != NULL && !table->Inactive)
{
dc_translation = table->Remap;
}
}
}
basecolormapsave = basecolormap;
hcolfunc_pre = R_DrawColumnHoriz;
// Check for special modes
if (style.BlendOp == STYLEOP_Fuzz)
{
colfunc = fuzzcolfunc;
return DoDraw0;
}
else if (style == LegacyRenderStyles[STYLE_Shaded])
{
// Shaded drawer only gets 16 levels of alpha because it saves memory.
if ((alpha >>= 12) == 0)
return DontDraw;
colfunc = R_DrawShadedColumn;
hcolfunc_post1 = rt_shaded1col;
hcolfunc_post4 = rt_shaded4cols;
dc_color = fixedcolormap ? fixedcolormap[APART(color)] : basecolormap->Maps[APART(color)];
dc_colormap = (basecolormap = &ShadeFakeColormap[16 - alpha])->Maps;
if (fixedlightlev >= 0 && fixedcolormap == NULL)
{
dc_colormap += fixedlightlev;
}
return r_columnmethod ? DoDraw1 : DoDraw0;
}
fglevel = GetAlpha(style.SrcAlpha, alpha);
bglevel = GetAlpha(style.DestAlpha, alpha);
if (style.Flags & STYLEF_ColorIsFixed)
{
uint32_t x = fglevel >> 10;
uint32_t r = RPART(color);
uint32_t g = GPART(color);
uint32_t b = BPART(color);
// dc_color is used by the rt_* routines. It is indexed into dc_srcblend.
dc_color = RGB32k.RGB[r >> 3][g >> 3][b >> 3];
if (style.Flags & STYLEF_InvertSource)
{
r = 255 - r;
g = 255 - g;
b = 255 - b;
}
uint32_t alpha = clamp(fglevel >> (FRACBITS - 8), 0, 255);
dc_srccolor_bgra = (alpha << 24) | (r << 16) | (g << 8) | b;
// dc_srccolor is used by the R_Fill* routines. It is premultiplied
// with the alpha.
dc_srccolor = ((((r*x) >> 4) << 20) | ((g*x) >> 4) | ((((b)*x) >> 4) << 10)) & 0x3feffbff;
hcolfunc_pre = R_FillColumnHoriz;
R_SetColorMapLight(identitycolormap.Maps, 0, 0);
}
if (!R_SetBlendFunc(style.BlendOp, fglevel, bglevel, style.Flags))
{
return DontDraw;
}
return r_columnmethod ? DoDraw1 : DoDraw0;
}
ESPSResult R_SetPatchStyle(FRenderStyle style, float alpha, int translation, uint32_t color)
{
return R_SetPatchStyle(style, FLOAT2FIXED(alpha), translation, color);
}
void R_FinishSetPatchStyle()
{
basecolormap = basecolormapsave;
}
const uint8_t *R_GetColumn(FTexture *tex, int col)
{
int width;
// If the texture's width isn't a power of 2, then we need to make it a
// positive offset for proper clamping.
if (col < 0 && (width = tex->GetWidth()) != (1 << tex->WidthBits))
{
col = width + (col % width);
}
return tex->GetColumn(col, nullptr);
}
bool R_GetTransMaskDrawers(void(**drawCol1)(), void(**drawCol4)())
{
if (colfunc == R_DrawAddColumn)
{
*drawCol1 = R_DrawWallAddCol1;
*drawCol4 = R_DrawWallAddCol4;
return true;
}
if (colfunc == R_DrawAddClampColumn)
{
*drawCol1 = R_DrawWallAddClampCol1;
*drawCol4 = R_DrawWallAddClampCol4;
return true;
}
if (colfunc == R_DrawSubClampColumn)
{
*drawCol1 = R_DrawWallSubClampCol1;
*drawCol4 = R_DrawWallSubClampCol4;
return true;
}
if (colfunc == R_DrawRevSubClampColumn)
{
*drawCol1 = R_DrawWallRevSubClampCol1;
*drawCol4 = R_DrawWallRevSubClampCol4;
return true;
}
return false;
}
void R_SetColorMapLight(lighttable_t *base_colormap, float light, int shade)
{
using namespace drawerargs;
dc_colormap = base_colormap + (GETPALOOKUP(light, shade) << COLORMAPSHIFT);
}
void R_SetColorMapLight(FDynamicColormap *base_colormap, float light, int shade)
{
R_SetColorMapLight(base_colormap->Maps, light, shade);
}
void R_SetDSColorMapLight(lighttable_t *base_colormap, float light, int shade)
{
using namespace drawerargs;
ds_colormap = base_colormap + (GETPALOOKUP(light, shade) << COLORMAPSHIFT);
}
void R_SetDSColorMapLight(FDynamicColormap *base_colormap, float light, int shade)
{
R_SetDSColorMapLight(base_colormap->Maps, light, shade);
}
void R_SetTranslationMap(lighttable_t *translation)
{
using namespace drawerargs;
dc_colormap = translation;
}
void rt_initcols(uint8_t *buffer)
{
using namespace drawerargs;
for (int y = 3; y >= 0; y--)
horizspan[y] = dc_ctspan[y] = &dc_tspans[y][0];
DrawerCommandQueue::QueueCommand<RtInitColsPalCommand>(buffer);
}
void rt_span_coverage(int x, int start, int stop)
{
using namespace drawerargs;
unsigned int **tspan = &dc_ctspan[x & 3];
(*tspan)[0] = start;
(*tspan)[1] = stop;
*tspan += 2;
}
void rt_flip_posts()
{
using namespace drawerargs;
unsigned int *front = horizspan[dc_x & 3];
unsigned int *back = dc_ctspan[dc_x & 3] - 2;
while (front < back)
{
swapvalues(front[0], back[0]);
swapvalues(front[1], back[1]);
front += 2;
back -= 2;
}
}
void rt_draw4cols(int sx)
{
using namespace drawerargs;
int x, bad;
unsigned int maxtop, minbot, minnexttop;
// Place a dummy "span" in each column. These don't get
// drawn. They're just here to avoid special cases in the
// max/min calculations below.
for (x = 0; x < 4; ++x)
{
dc_ctspan[x][0] = screen->GetHeight()+1;
dc_ctspan[x][1] = screen->GetHeight();
}
for (;;)
{
// If a column is out of spans, mark it as such
bad = 0;
minnexttop = 0xffffffff;
for (x = 0; x < 4; ++x)
{
if (horizspan[x] >= dc_ctspan[x])
{
bad |= 1 << x;
}
else if ((horizspan[x]+2)[0] < minnexttop)
{
minnexttop = (horizspan[x]+2)[0];
}
}
// Once all columns are out of spans, we're done
if (bad == 15)
{
return;
}
// Find the largest shared area for the spans in each column
maxtop = MAX (MAX (horizspan[0][0], horizspan[1][0]),
MAX (horizspan[2][0], horizspan[3][0]));
minbot = MIN (MIN (horizspan[0][1], horizspan[1][1]),
MIN (horizspan[2][1], horizspan[3][1]));
// If there is no shared area with these spans, draw each span
// individually and advance to the next spans until we reach a shared area.
// However, only draw spans down to the highest span in the next set of
// spans. If we allow the entire height of a span to be drawn, it could
// prevent any more shared areas from being drawn in these four columns.
//
// Example: Suppose we have the following arrangement:
// A CD
// A CD
// B D
// B D
// aB D
// aBcD
// aBcD
// aBc
//
// If we draw the entire height of the spans, we end up drawing this first:
// A CD
// A CD
// B D
// B D
// B D
// B D
// B D
// B D
// B
//
// This leaves only the "a" and "c" columns to be drawn, and they are not
// part of a shared area, but if we can include B and D with them, we can
// get a shared area. So we cut off everything in the first set just
// above the "a" column and end up drawing this first:
// A CD
// A CD
// B D
// B D
//
// Then the next time through, we have the following arrangement with an
// easily shared area to draw:
// aB D
// aBcD
// aBcD
// aBc
if (bad != 0 || maxtop > minbot)
{
int drawcount = 0;
for (x = 0; x < 4; ++x)
{
if (!(bad & 1))
{
if (horizspan[x][1] < minnexttop)
{
hcolfunc_post1 (x, sx+x, horizspan[x][0], horizspan[x][1]);
horizspan[x] += 2;
drawcount++;
}
else if (minnexttop > horizspan[x][0])
{
hcolfunc_post1 (x, sx+x, horizspan[x][0], minnexttop-1);
horizspan[x][0] = minnexttop;
drawcount++;
}
}
bad >>= 1;
}
// Drawcount *should* always be non-zero. The reality is that some situations
// can make this not true. Unfortunately, I'm not sure what those situations are.
if (drawcount == 0)
{
return;
}
continue;
}
// Draw any span fragments above the shared area.
for (x = 0; x < 4; ++x)
{
if (maxtop > horizspan[x][0])
{
hcolfunc_post1 (x, sx+x, horizspan[x][0], maxtop-1);
}
}
// Draw the shared area.
hcolfunc_post4 (sx, maxtop, minbot);
// For each column, if part of the span is past the shared area,
// set its top to just below the shared area. Otherwise, advance
// to the next span in that column.
for (x = 0; x < 4; ++x)
{
if (minbot < horizspan[x][1])
{
horizspan[x][0] = minbot+1;
}
else
{
horizspan[x] += 2;
}
}
}
}
void R_SetupSpanBits(FTexture *tex)
{
using namespace drawerargs;
tex->GetWidth();
ds_xbits = tex->WidthBits;
ds_ybits = tex->HeightBits;
if ((1 << ds_xbits) > tex->GetWidth())
{
ds_xbits--;
}
if ((1 << ds_ybits) > tex->GetHeight())
{
ds_ybits--;
}
}
void R_SetSpanColormap(lighttable_t *colormap)
{
using namespace drawerargs;
ds_colormap = colormap;
}
void R_SetSpanSource(FTexture *tex)
{
using namespace drawerargs;
ds_source = tex->GetPixels();
}
/////////////////////////////////////////////////////////////////////////
void R_FillColumnHoriz()
{
using namespace drawerargs;
if (dc_count <= 0)
return;
int x = dc_x & 3;
unsigned int **span = &dc_ctspan[x];
(*span)[0] = dc_yl;
(*span)[1] = dc_yh;
*span += 2;
DrawerCommandQueue::QueueCommand<FillColumnHorizPalCommand>();
}
void R_DrawColumnHoriz()
{
using namespace drawerargs;
if (dc_count <= 0)
return;
int x = dc_x & 3;
unsigned int **span = &dc_ctspan[x];
(*span)[0] = dc_yl;
(*span)[1] = dc_yh;
*span += 2;
DrawerCommandQueue::QueueCommand<DrawColumnHorizPalCommand>();
}
// Copies one span at hx to the screen at sx.
void rt_copy1col(int hx, int sx, int yl, int yh)
{
DrawerCommandQueue::QueueCommand<DrawColumnRt1CopyPalCommand>(hx, sx, yl, yh);
}
// Copies all four spans to the screen starting at sx.
void rt_copy4cols(int sx, int yl, int yh)
{
DrawerCommandQueue::QueueCommand<DrawColumnRt4CopyPalCommand>(0, sx, yl, yh);
}
// Maps one span at hx to the screen at sx.
void rt_map1col(int hx, int sx, int yl, int yh)
{
DrawerCommandQueue::QueueCommand<DrawColumnRt1PalCommand>(hx, sx, yl, yh);
}
// Maps all four spans to the screen starting at sx.
void rt_map4cols(int sx, int yl, int yh)
{
DrawerCommandQueue::QueueCommand<DrawColumnRt4PalCommand>(0, sx, yl, yh);
}
// Translates one span at hx to the screen at sx.
void rt_tlate1col(int hx, int sx, int yl, int yh)
{
DrawerCommandQueue::QueueCommand<DrawColumnRt1TranslatedPalCommand>(hx, sx, yl, yh);
rt_map1col(hx, sx, yl, yh);
}
// Translates all four spans to the screen starting at sx.
void rt_tlate4cols(int sx, int yl, int yh)
{
DrawerCommandQueue::QueueCommand<DrawColumnRt4TranslatedPalCommand>(0, sx, yl, yh);
rt_map4cols(sx, yl, yh);
}
// Adds one span at hx to the screen at sx without clamping.
void rt_add1col(int hx, int sx, int yl, int yh)
{
DrawerCommandQueue::QueueCommand<DrawColumnRt1AddPalCommand>(hx, sx, yl, yh);
}
// Adds all four spans to the screen starting at sx without clamping.
void rt_add4cols(int sx, int yl, int yh)
{
DrawerCommandQueue::QueueCommand<DrawColumnRt4AddPalCommand>(0, sx, yl, yh);
}
// Translates and adds one span at hx to the screen at sx without clamping.
void rt_tlateadd1col(int hx, int sx, int yl, int yh)
{
DrawerCommandQueue::QueueCommand<DrawColumnRt1TranslatedPalCommand>(hx, sx, yl, yh);
rt_add1col(hx, sx, yl, yh);
}
// Translates and adds all four spans to the screen starting at sx without clamping.
void rt_tlateadd4cols(int sx, int yl, int yh)
{
DrawerCommandQueue::QueueCommand<DrawColumnRt4TranslatedPalCommand>(0, sx, yl, yh);
rt_add4cols(sx, yl, yh);
}
// Shades one span at hx to the screen at sx.
void rt_shaded1col(int hx, int sx, int yl, int yh)
{
DrawerCommandQueue::QueueCommand<DrawColumnRt1ShadedPalCommand>(hx, sx, yl, yh);
}
// Shades all four spans to the screen starting at sx.
void rt_shaded4cols(int sx, int yl, int yh)
{
DrawerCommandQueue::QueueCommand<DrawColumnRt4ShadedPalCommand>(0, sx, yl, yh);
}
// Adds one span at hx to the screen at sx with clamping.
void rt_addclamp1col(int hx, int sx, int yl, int yh)
{
DrawerCommandQueue::QueueCommand<DrawColumnRt1AddClampPalCommand>(hx, sx, yl, yh);
}
// Adds all four spans to the screen starting at sx with clamping.
void rt_addclamp4cols(int sx, int yl, int yh)
{
DrawerCommandQueue::QueueCommand<DrawColumnRt4AddClampPalCommand>(0, sx, yl, yh);
}
// Translates and adds one span at hx to the screen at sx with clamping.
void rt_tlateaddclamp1col(int hx, int sx, int yl, int yh)
{
DrawerCommandQueue::QueueCommand<DrawColumnRt1TranslatedPalCommand>(hx, sx, yl, yh);
rt_addclamp1col(hx, sx, yl, yh);
}
// Translates and adds all four spans to the screen starting at sx with clamping.
void rt_tlateaddclamp4cols(int sx, int yl, int yh)
{
DrawerCommandQueue::QueueCommand<DrawColumnRt4TranslatedPalCommand>(0, sx, yl, yh);
rt_addclamp4cols(sx, yl, yh);
}
// Subtracts one span at hx to the screen at sx with clamping.
void rt_subclamp1col(int hx, int sx, int yl, int yh)
{
DrawerCommandQueue::QueueCommand<DrawColumnRt1SubClampPalCommand>(hx, sx, yl, yh);
}
// Subtracts all four spans to the screen starting at sx with clamping.
void rt_subclamp4cols(int sx, int yl, int yh)
{
DrawerCommandQueue::QueueCommand<DrawColumnRt4SubClampPalCommand>(0, sx, yl, yh);
}
// Translates and subtracts one span at hx to the screen at sx with clamping.
void rt_tlatesubclamp1col(int hx, int sx, int yl, int yh)
{
DrawerCommandQueue::QueueCommand<DrawColumnRt1TranslatedPalCommand>(hx, sx, yl, yh);
rt_subclamp1col(hx, sx, yl, yh);
}
// Translates and subtracts all four spans to the screen starting at sx with clamping.
void rt_tlatesubclamp4cols(int sx, int yl, int yh)
{
DrawerCommandQueue::QueueCommand<DrawColumnRt4TranslatedPalCommand>(0, sx, yl, yh);
rt_subclamp4cols(sx, yl, yh);
}
// Subtracts one span at hx from the screen at sx with clamping.
void rt_revsubclamp1col(int hx, int sx, int yl, int yh)
{
DrawerCommandQueue::QueueCommand<DrawColumnRt1RevSubClampPalCommand>(hx, sx, yl, yh);
}
// Subtracts all four spans from the screen starting at sx with clamping.
void rt_revsubclamp4cols(int sx, int yl, int yh)
{
DrawerCommandQueue::QueueCommand<DrawColumnRt4RevSubClampPalCommand>(0, sx, yl, yh);
}
// Translates and subtracts one span at hx from the screen at sx with clamping.
void rt_tlaterevsubclamp1col(int hx, int sx, int yl, int yh)
{
DrawerCommandQueue::QueueCommand<DrawColumnRt1TranslatedPalCommand>(hx, sx, yl, yh);
rt_revsubclamp1col(hx, sx, yl, yh);
}
// Translates and subtracts all four spans from the screen starting at sx with clamping.
void rt_tlaterevsubclamp4cols(int sx, int yl, int yh)
{
DrawerCommandQueue::QueueCommand<DrawColumnRt4TranslatedPalCommand>(0, sx, yl, yh);
rt_revsubclamp4cols(sx, yl, yh);
}
void R_DrawWallCol1()
{
DrawerCommandQueue::QueueCommand<DrawWall1PalCommand>();
}
void R_DrawWallCol4()
{
DrawerCommandQueue::QueueCommand<DrawWall4PalCommand>();
}
void R_DrawWallMaskedCol1()
{
DrawerCommandQueue::QueueCommand<DrawWallMasked1PalCommand>();
}
void R_DrawWallMaskedCol4()
{
DrawerCommandQueue::QueueCommand<DrawWallMasked4PalCommand>();
}
void R_DrawWallAddCol1()
{
DrawerCommandQueue::QueueCommand<DrawWallAdd1PalCommand>();
}
void R_DrawWallAddCol4()
{
DrawerCommandQueue::QueueCommand<DrawWallAdd4PalCommand>();
}
void R_DrawWallAddClampCol1()
{
DrawerCommandQueue::QueueCommand<DrawWallAddClamp1PalCommand>();
}
void R_DrawWallAddClampCol4()
{
DrawerCommandQueue::QueueCommand<DrawWallAddClamp4PalCommand>();
}
void R_DrawWallSubClampCol1()
{
DrawerCommandQueue::QueueCommand<DrawWallSubClamp1PalCommand>();
}
void R_DrawWallSubClampCol4()
{
DrawerCommandQueue::QueueCommand<DrawWallSubClamp4PalCommand>();
}
void R_DrawWallRevSubClampCol1()
{
DrawerCommandQueue::QueueCommand<DrawWallRevSubClamp1PalCommand>();
}
void R_DrawWallRevSubClampCol4()
{
DrawerCommandQueue::QueueCommand<DrawWallRevSubClamp4PalCommand>();
}
void R_DrawSingleSkyCol1(uint32_t solid_top, uint32_t solid_bottom)
{
DrawerCommandQueue::QueueCommand<DrawSingleSky1PalCommand>(solid_top, solid_bottom);
}
void R_DrawSingleSkyCol4(uint32_t solid_top, uint32_t solid_bottom)
{
DrawerCommandQueue::QueueCommand<DrawSingleSky4PalCommand>(solid_top, solid_bottom);
}
void R_DrawDoubleSkyCol1(uint32_t solid_top, uint32_t solid_bottom)
{
DrawerCommandQueue::QueueCommand<DrawDoubleSky1PalCommand>(solid_top, solid_bottom);
}
void R_DrawDoubleSkyCol4(uint32_t solid_top, uint32_t solid_bottom)
{
DrawerCommandQueue::QueueCommand<DrawDoubleSky4PalCommand>(solid_top, solid_bottom);
}
void R_DrawColumn()
{
DrawerCommandQueue::QueueCommand<DrawColumnPalCommand>();
}
void R_FillColumn()
{
DrawerCommandQueue::QueueCommand<FillColumnPalCommand>();
}
void R_FillAddColumn()
{
DrawerCommandQueue::QueueCommand<FillColumnAddPalCommand>();
}
void R_FillAddClampColumn()
{
DrawerCommandQueue::QueueCommand<FillColumnAddClampPalCommand>();
}
void R_FillSubClampColumn()
{
DrawerCommandQueue::QueueCommand<FillColumnSubClampPalCommand>();
}
void R_FillRevSubClampColumn()
{
DrawerCommandQueue::QueueCommand<FillColumnRevSubClampPalCommand>();
}
void R_DrawFuzzColumn()
{
using namespace drawerargs;
DrawerCommandQueue::QueueCommand<DrawFuzzColumnPalCommand>();
dc_yl = MAX(dc_yl, 1);
dc_yh = MIN(dc_yh, fuzzviewheight);
if (dc_yl <= dc_yh)
fuzzpos = (fuzzpos + dc_yh - dc_yl + 1) % FUZZTABLE;
}
void R_DrawAddColumn()
{
DrawerCommandQueue::QueueCommand<DrawColumnAddPalCommand>();
}
void R_DrawTranslatedColumn()
{
DrawerCommandQueue::QueueCommand<DrawColumnTranslatedPalCommand>();
}
void R_DrawTlatedAddColumn()
{
DrawerCommandQueue::QueueCommand<DrawColumnTlatedAddPalCommand>();
}
void R_DrawShadedColumn()
{
DrawerCommandQueue::QueueCommand<DrawColumnShadedPalCommand>();
}
void R_DrawAddClampColumn()
{
DrawerCommandQueue::QueueCommand<DrawColumnAddClampPalCommand>();
}
void R_DrawAddClampTranslatedColumn()
{
DrawerCommandQueue::QueueCommand<DrawColumnAddClampTranslatedPalCommand>();
}
void R_DrawSubClampColumn()
{
DrawerCommandQueue::QueueCommand<DrawColumnSubClampPalCommand>();
}
void R_DrawSubClampTranslatedColumn()
{
DrawerCommandQueue::QueueCommand<DrawColumnSubClampTranslatedPalCommand>();
}
void R_DrawRevSubClampColumn()
{
DrawerCommandQueue::QueueCommand<DrawColumnRevSubClampPalCommand>();
}
void R_DrawRevSubClampTranslatedColumn()
{
DrawerCommandQueue::QueueCommand<DrawColumnRevSubClampTranslatedPalCommand>();
}
void R_DrawSpan()
{
DrawerCommandQueue::QueueCommand<DrawSpanPalCommand>();
}
void R_DrawSpanMasked()
{
DrawerCommandQueue::QueueCommand<DrawSpanMaskedPalCommand>();
}
void R_DrawSpanTranslucent()
{
DrawerCommandQueue::QueueCommand<DrawSpanTranslucentPalCommand>();
}
void R_DrawSpanMaskedTranslucent()
{
DrawerCommandQueue::QueueCommand<DrawSpanMaskedTranslucentPalCommand>();
}
void R_DrawSpanAddClamp()
{
DrawerCommandQueue::QueueCommand<DrawSpanAddClampPalCommand>();
}
void R_DrawSpanMaskedAddClamp()
{
DrawerCommandQueue::QueueCommand<DrawSpanMaskedAddClampPalCommand>();
}
void R_FillSpan()
{
DrawerCommandQueue::QueueCommand<FillSpanPalCommand>();
}
void R_DrawTiltedSpan(int y, int x1, int x2, const FVector3 &plane_sz, const FVector3 &plane_su, const FVector3 &plane_sv, bool plane_shade, int planeshade, float planelightfloat, fixed_t pviewx, fixed_t pviewy)
{
DrawerCommandQueue::QueueCommand<DrawTiltedSpanPalCommand>(y, x1, x2, plane_sz, plane_su, plane_sv, plane_shade, planeshade, planelightfloat, pviewx, pviewy);
}
void R_DrawColoredSpan(int y, int x1, int x2)
{
DrawerCommandQueue::QueueCommand<DrawColoredSpanPalCommand>(y, x1, x2);
}
namespace
{
const uint8_t *slab_colormap;
}
void R_SetupDrawSlab(uint8_t *colormap)
{
slab_colormap = colormap;
}
void R_DrawSlab(int dx, fixed_t v, int dy, fixed_t vi, const uint8_t *vptr, uint8_t *p)
{
DrawerCommandQueue::QueueCommand<DrawSlabPalCommand>(dx, v, dy, vi, vptr, p, slab_colormap);
}
void R_DrawFogBoundarySection(int y, int y2, int x1)
{
for (; y < y2; ++y)
{
int x2 = spanend[y];
DrawerCommandQueue::QueueCommand<DrawFogBoundaryLinePalCommand>(y, x1, x2);
}
}
void R_DrawFogBoundary(int x1, int x2, short *uclip, short *dclip)
{
// This is essentially the same as R_MapVisPlane but with an extra step
// to create new horizontal spans whenever the light changes enough that
// we need to use a new colormap.
double lightstep = rw_lightstep;
double light = rw_light + rw_lightstep*(x2 - x1 - 1);
int x = x2 - 1;
int t2 = uclip[x];
int b2 = dclip[x];
int rcolormap = GETPALOOKUP(light, wallshade);
int lcolormap;
uint8_t *basecolormapdata = basecolormap->Maps;
if (b2 > t2)
{
fillshort(spanend + t2, b2 - t2, x);
}
R_SetColorMapLight(basecolormap->Maps, (float)light, wallshade);
uint8_t *fake_dc_colormap = basecolormap->Maps + (GETPALOOKUP(light, wallshade) << COLORMAPSHIFT);
for (--x; x >= x1; --x)
{
int t1 = uclip[x];
int b1 = dclip[x];
const int xr = x + 1;
int stop;
light -= rw_lightstep;
lcolormap = GETPALOOKUP(light, wallshade);
if (lcolormap != rcolormap)
{
if (t2 < b2 && rcolormap != 0)
{ // Colormap 0 is always the identity map, so rendering it is
// just a waste of time.
R_DrawFogBoundarySection(t2, b2, xr);
}
if (t1 < t2) t2 = t1;
if (b1 > b2) b2 = b1;
if (t2 < b2)
{
fillshort(spanend + t2, b2 - t2, x);
}
rcolormap = lcolormap;
R_SetColorMapLight(basecolormap->Maps, (float)light, wallshade);
fake_dc_colormap = basecolormap->Maps + (GETPALOOKUP(light, wallshade) << COLORMAPSHIFT);
}
else
{
if (fake_dc_colormap != basecolormapdata)
{
stop = MIN(t1, b2);
while (t2 < stop)
{
int y = t2++;
DrawerCommandQueue::QueueCommand<DrawFogBoundaryLinePalCommand>(y, xr, spanend[y]);
}
stop = MAX(b1, t2);
while (b2 > stop)
{
int y = --b2;
DrawerCommandQueue::QueueCommand<DrawFogBoundaryLinePalCommand>(y, xr, spanend[y]);
}
}
else
{
t2 = MAX(t2, MIN(t1, b2));
b2 = MIN(b2, MAX(b1, t2));
}
stop = MIN(t2, b1);
while (t1 < stop)
{
spanend[t1++] = x;
}
stop = MAX(b2, t2);
while (b1 > stop)
{
spanend[--b1] = x;
}
}
t2 = uclip[x];
b2 = dclip[x];
}
if (t2 < b2 && rcolormap != 0)
{
R_DrawFogBoundarySection(t2, b2, x1);
}
}
void R_DrawParticle(vissprite_t *sprite)
{
R_DrawParticle_C(sprite);
}
}