qzdoom-gpl/src/thingdef/thingdef_expression.cpp
Randy Heit 38d7b7d203 - Fixed errors and warnings when compiling with GCC. (Unfortunately, the VC++ debug builds
become ungodly slow when using mods with complex DECORATE. The GCC debug builds run just
  fine, however. Hopefully this is something that can be fixed later with an assembly-optimized
  version of the main VM loop, because I don't relish the thought of being stuck with GDB
  for debugging.)
- Fixed: The ACS_Named* action specials were erroneously defined as taking strings instead of
  names.
- Fixed: Copy-paste error caused FxMultiNameState::Emit to generate code that called
  DecoNameToClass instead of DecoFindMultiNameState.
- Updated FxActionSpecialCall::Emit for named script specials.
- Fixed inverted asserts for FxMinusSign::Emit and FxUnaryNotBitwise::Emit.


SVN r3893 (scripting)
2012-10-18 03:19:27 +00:00

4185 lines
102 KiB
C++

/*
** thingdef_expression.cpp
**
** Expression evaluation
**
**---------------------------------------------------------------------------
** Copyright 2008 Christoph Oelckers
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
** 4. When not used as part of ZDoom or a ZDoom derivative, this code will be
** covered by the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or (at
** your option) any later version.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#include <malloc.h>
#include "actor.h"
#include "sc_man.h"
#include "tarray.h"
#include "templates.h"
#include "cmdlib.h"
#include "i_system.h"
#include "m_random.h"
#include "a_pickups.h"
#include "thingdef.h"
#include "p_lnspec.h"
#include "doomstat.h"
#include "thingdef_exp.h"
#include "m_fixed.h"
#include "vmbuilder.h"
// Accessible actor member variables
DEFINE_MEMBER_VARIABLE(alpha, AActor)
DEFINE_MEMBER_VARIABLE(angle, AActor)
DEFINE_MEMBER_VARIABLE(args, AActor)
DEFINE_MEMBER_VARIABLE(ceilingz, AActor)
DEFINE_MEMBER_VARIABLE(floorz, AActor)
DEFINE_MEMBER_VARIABLE(health, AActor)
DEFINE_MEMBER_VARIABLE(Mass, AActor)
DEFINE_MEMBER_VARIABLE(pitch, AActor)
DEFINE_MEMBER_VARIABLE(special, AActor)
DEFINE_MEMBER_VARIABLE(special1, AActor)
DEFINE_MEMBER_VARIABLE(special2, AActor)
DEFINE_MEMBER_VARIABLE(tid, AActor)
DEFINE_MEMBER_VARIABLE(TIDtoHate, AActor)
DEFINE_MEMBER_VARIABLE(waterlevel, AActor)
DEFINE_MEMBER_VARIABLE(x, AActor)
DEFINE_MEMBER_VARIABLE(y, AActor)
DEFINE_MEMBER_VARIABLE(z, AActor)
DEFINE_MEMBER_VARIABLE(velx, AActor)
DEFINE_MEMBER_VARIABLE(vely, AActor)
DEFINE_MEMBER_VARIABLE(velz, AActor)
DEFINE_MEMBER_VARIABLE_ALIAS(momx, velx, AActor)
DEFINE_MEMBER_VARIABLE_ALIAS(momy, vely, AActor)
DEFINE_MEMBER_VARIABLE_ALIAS(momz, velz, AActor)
DEFINE_MEMBER_VARIABLE(scaleX, AActor)
DEFINE_MEMBER_VARIABLE(scaleY, AActor)
DEFINE_MEMBER_VARIABLE(Damage, AActor)
DEFINE_MEMBER_VARIABLE(Score, AActor)
DEFINE_MEMBER_VARIABLE(accuracy, AActor)
DEFINE_MEMBER_VARIABLE(stamina, AActor)
ExpEmit::ExpEmit(VMFunctionBuilder *build, int type)
: RegNum(build->Registers[type].Get(1)), RegType(type), Konst(false), Fixed(false)
{
}
void ExpEmit::Free(VMFunctionBuilder *build)
{
if (!Fixed && !Konst)
{
build->Registers[RegType].Return(RegNum, 1);
}
}
//==========================================================================
//
// EvalExpression
// [GRB] Evaluates previously stored expression
//
//==========================================================================
int EvalExpressionI (DWORD xi, AActor *self)
{
FxExpression *x = StateParams.Get(xi);
if (x == NULL) return 0;
return x->EvalExpression (self).GetInt();
}
int EvalExpressionCol (DWORD xi, AActor *self)
{
FxExpression *x = StateParams.Get(xi);
if (x == NULL) return 0;
return x->EvalExpression (self).GetColor();
}
FSoundID EvalExpressionSnd (DWORD xi, AActor *self)
{
FxExpression *x = StateParams.Get(xi);
if (x == NULL) return 0;
return x->EvalExpression (self).GetSoundID();
}
double EvalExpressionF (DWORD xi, AActor *self)
{
FxExpression *x = StateParams.Get(xi);
if (x == NULL) return 0;
return x->EvalExpression (self).GetFloat();
}
fixed_t EvalExpressionFix (DWORD xi, AActor *self)
{
FxExpression *x = StateParams.Get(xi);
if (x == NULL) return 0;
ExpVal val = x->EvalExpression (self);
switch (val.Type)
{
default:
return 0;
case VAL_Int:
return val.Int << FRACBITS;
case VAL_Float:
return fixed_t(val.Float*FRACUNIT);
}
}
FName EvalExpressionName (DWORD xi, AActor *self)
{
FxExpression *x = StateParams.Get(xi);
if (x == NULL) return 0;
return x->EvalExpression (self).GetName();
}
const PClass * EvalExpressionClass (DWORD xi, AActor *self)
{
FxExpression *x = StateParams.Get(xi);
if (x == NULL) return 0;
return x->EvalExpression (self).GetClass();
}
FState *EvalExpressionState (DWORD xi, AActor *self)
{
FxExpression *x = StateParams.Get(xi);
if (x == NULL) return 0;
return x->EvalExpression (self).GetState();
}
//==========================================================================
//
//
//
//==========================================================================
static ExpVal GetVariableValue (void *address, FExpressionType &type)
{
// NOTE: This cannot access native variables of types
// char, short and float. These need to be redefined if necessary!
ExpVal ret;
switch(type.Type)
{
case VAL_Int:
ret.Type = VAL_Int;
ret.Int = *(int*)address;
break;
case VAL_Sound:
ret.Type = VAL_Sound;
ret.Int = *(FSoundID*)address;
break;
case VAL_Name:
ret.Type = VAL_Name;
ret.Int = *(FName*)address;
break;
case VAL_Color:
ret.Type = VAL_Color;
ret.Int = *(int*)address;
break;
case VAL_Bool:
ret.Type = VAL_Int;
ret.Int = *(bool*)address;
break;
case VAL_Float:
ret.Type = VAL_Float;
ret.Float = *(double*)address;
break;
case VAL_Fixed:
ret.Type = VAL_Float;
ret.Float = (*(fixed_t*)address) / 65536.;
break;
case VAL_Angle:
ret.Type = VAL_Float;
ret.Float = (*(angle_t*)address) * 90./ANGLE_90; // intentionally not using ANGLE_1
break;
case VAL_Object:
case VAL_Class:
ret.Type = ExpValType(type.Type); // object and class pointers don't retain their specific class information as values
ret.pointer = *(void**)address;
break;
default:
ret.Type = VAL_Unknown;
ret.pointer = NULL;
break;
}
return ret;
}
//==========================================================================
//
//
//
//==========================================================================
ExpVal FxExpression::EvalExpression (AActor *self)
{
ScriptPosition.Message(MSG_ERROR, "Unresolved expression found");
ExpVal val;
val.Type = VAL_Int;
val.Int = 0;
return val;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxExpression::Emit (VMFunctionBuilder *build)
{
ScriptPosition.Message(MSG_ERROR, "Unemitted expression found");
return ExpEmit();
}
//==========================================================================
//
//
//
//==========================================================================
bool FxExpression::isConstant() const
{
return false;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxExpression::Resolve(FCompileContext &ctx)
{
isresolved = true;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxExpression::ResolveAsBoolean(FCompileContext &ctx)
{
FxExpression *x = Resolve(ctx);
if (x != NULL)
{
switch (x->ValueType.Type)
{
case VAL_Sound:
case VAL_Color:
case VAL_Name:
x->ValueType = VAL_Int;
break;
default:
break;
}
}
return x;
}
//==========================================================================
//
//
//
//==========================================================================
void FxExpression::RequestAddress()
{
ScriptPosition.Message(MSG_ERROR, "invalid dereference\n");
}
//==========================================================================
//
//
//
//==========================================================================
FxParameter::FxParameter(FxExpression *operand)
: FxExpression(operand->ScriptPosition)
{
Operand = operand;
ValueType = operand->ValueType;
}
//==========================================================================
//
//
//
//==========================================================================
FxParameter::~FxParameter()
{
SAFE_DELETE(Operand);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxParameter::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(Operand, ctx);
ValueType = Operand->ValueType;
return this;
}
static void EmitConstantInt(VMFunctionBuilder *build, int val)
{
// If it fits in 24 bits, use PARAMI instead of PARAM.
if (((val << 8) >> 8) == val)
{
build->Emit(OP_PARAMI, val);
}
else
{
build->Emit(OP_PARAM, 0, REGT_INT | REGT_KONST, build->GetConstantInt(val));
}
}
ExpEmit FxParameter::Emit(VMFunctionBuilder *build)
{
if (Operand->isConstant())
{
ExpVal val = Operand->EvalExpression(NULL);
if (val.Type == VAL_Int || val.Type == VAL_Sound || val.Type == VAL_Name || val.Type == VAL_Color)
{
EmitConstantInt(build, val.Int);
}
else if (val.Type == VAL_Float)
{
build->Emit(OP_PARAM, 0, REGT_FLOAT | REGT_KONST, build->GetConstantFloat(val.Float));
}
else if (val.Type == VAL_Class || val.Type == VAL_Object)
{
build->Emit(OP_PARAM, 0, REGT_POINTER | REGT_KONST, build->GetConstantAddress(val.pointer, ATAG_OBJECT));
}
else if (val.Type == VAL_State)
{
build->Emit(OP_PARAM, 0, REGT_POINTER | REGT_KONST, build->GetConstantAddress(val.pointer, ATAG_STATE));
}
else if (val.Type == VAL_String)
{
build->Emit(OP_PARAM, 0, REGT_STRING | REGT_KONST, build->GetConstantString(val.GetString()));
}
else
{
build->Emit(OP_PARAM, 0, REGT_NIL, 0);
ScriptPosition.Message(MSG_ERROR, "Cannot emit needed constant");
}
}
else
{
ExpEmit where = Operand->Emit(build);
if (where.RegType == REGT_NIL)
{
ScriptPosition.Message(MSG_ERROR, "Attempted to pass a non-value");
build->Emit(OP_PARAM, 0, where.RegType, where.RegNum);
}
else
{
build->Emit(OP_PARAM, 0, where.RegType, where.RegNum);
where.Free(build);
}
}
return ExpEmit();
}
//==========================================================================
//
//
//
//==========================================================================
ExpVal FxConstant::EvalExpression (AActor *self)
{
return value;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxConstant::MakeConstant(PSymbol *sym, const FScriptPosition &pos)
{
FxExpression *x;
PSymbolConst *csym = dyn_cast<PSymbolConst>(sym);
if (csym != NULL)
{
switch(csym->ValueType)
{
case VAL_Int:
x = new FxConstant(csym->Value, pos);
break;
case VAL_Float:
x = new FxConstant(csym->Float, pos);
break;
default:
pos.Message(MSG_ERROR, "Invalid constant '%s'\n", csym->SymbolName.GetChars());
return NULL;
}
}
else
{
pos.Message(MSG_ERROR, "'%s' is not a constant\n", sym->SymbolName.GetChars());
x = NULL;
}
return x;
}
ExpEmit FxConstant::Emit(VMFunctionBuilder *build)
{
ExpEmit out;
out.Konst = true;
if (value.Type == VAL_Int || value.Type == VAL_Sound || value.Type == VAL_Name || value.Type == VAL_Color)
{
out.RegType = REGT_INT;
out.RegNum = build->GetConstantInt(value.Int);
}
else if (value.Type == VAL_Float)
{
out.RegType = REGT_FLOAT;
out.RegNum = build->GetConstantFloat(value.Float);
}
else if (value.Type == VAL_Class || value.Type == VAL_Object)
{
out.RegType = REGT_POINTER;
out.RegNum = build->GetConstantAddress(value.pointer, ATAG_OBJECT);
}
else if (value.Type == VAL_State)
{
out.RegType = REGT_POINTER;
out.RegNum = build->GetConstantAddress(value.pointer, ATAG_STATE);
}
else if (value.Type == VAL_String)
{
out.RegType = REGT_STRING;
out.RegNum = build->GetConstantString(value.GetString());
}
else
{
ScriptPosition.Message(MSG_ERROR, "Cannot emit needed constant");
out.RegType = REGT_NIL;
out.RegNum = 0;
}
return out;
}
//==========================================================================
//
//
//
//==========================================================================
FxIntCast::FxIntCast(FxExpression *x)
: FxExpression(x->ScriptPosition)
{
basex=x;
ValueType = VAL_Int;
}
//==========================================================================
//
//
//
//==========================================================================
FxIntCast::~FxIntCast()
{
SAFE_DELETE(basex);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxIntCast::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(basex, ctx);
if (basex->ValueType == VAL_Int)
{
FxExpression *x = basex;
basex = NULL;
delete this;
return x;
}
else if (basex->ValueType == VAL_Float)
{
if (basex->isConstant())
{
ExpVal constval = basex->EvalExpression(NULL);
FxExpression *x = new FxConstant(constval.GetInt(), ScriptPosition);
delete this;
return x;
}
return this;
}
else
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
}
//==========================================================================
//
//
//
//==========================================================================
ExpVal FxIntCast::EvalExpression (AActor *self)
{
ExpVal baseval = basex->EvalExpression(self);
baseval.Int = baseval.GetInt();
baseval.Type = VAL_Int;
return baseval;
}
ExpEmit FxIntCast::Emit(VMFunctionBuilder *build)
{
ExpEmit from = basex->Emit(build);
assert(!from.Konst);
assert(basex->ValueType == VAL_Float);
ExpEmit to(build, REGT_INT);
build->Emit(OP_CAST, to.RegNum, from.RegNum, CAST_F2I);
return to;
}
//==========================================================================
//
//
//
//==========================================================================
FxFloatCast::FxFloatCast(FxExpression *x)
: FxExpression(x->ScriptPosition)
{
basex=x;
ValueType = VAL_Float;
}
//==========================================================================
//
//
//
//==========================================================================
FxFloatCast::~FxFloatCast()
{
SAFE_DELETE(basex);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxFloatCast::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(basex, ctx);
if (basex->ValueType == VAL_Float)
{
FxExpression *x = basex;
basex = NULL;
delete this;
return x;
}
else if (basex->ValueType == VAL_Int)
{
if (basex->isConstant())
{
ExpVal constval = basex->EvalExpression(NULL);
FxExpression *x = new FxConstant(constval.GetFloat(), ScriptPosition);
delete this;
return x;
}
return this;
}
else
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
}
//==========================================================================
//
//
//
//==========================================================================
ExpVal FxFloatCast::EvalExpression (AActor *self)
{
ExpVal baseval = basex->EvalExpression(self);
baseval.Float = baseval.GetFloat();
baseval.Type = VAL_Float;
return baseval;
}
ExpEmit FxFloatCast::Emit(VMFunctionBuilder *build)
{
ExpEmit from = basex->Emit(build);
assert(!from.Konst);
assert(basex->ValueType == VAL_Int);
from.Free(build);
ExpEmit to(build, REGT_FLOAT);
build->Emit(OP_CAST, to.RegNum, from.RegNum, CAST_I2F);
return to;
}
//==========================================================================
//
//
//
//==========================================================================
FxPlusSign::FxPlusSign(FxExpression *operand)
: FxExpression(operand->ScriptPosition)
{
Operand=operand;
}
//==========================================================================
//
//
//
//==========================================================================
FxPlusSign::~FxPlusSign()
{
SAFE_DELETE(Operand);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxPlusSign::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(Operand, ctx);
if (Operand->ValueType.isNumeric())
{
FxExpression *e = Operand;
Operand = NULL;
delete this;
return e;
}
else
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
}
ExpEmit FxPlusSign::Emit(VMFunctionBuilder *build)
{
return Operand->Emit(build);
}
//==========================================================================
//
//
//
//==========================================================================
FxMinusSign::FxMinusSign(FxExpression *operand)
: FxExpression(operand->ScriptPosition)
{
Operand=operand;
}
//==========================================================================
//
//
//
//==========================================================================
FxMinusSign::~FxMinusSign()
{
SAFE_DELETE(Operand);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxMinusSign::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(Operand, ctx);
if (Operand->ValueType.isNumeric())
{
if (Operand->isConstant())
{
ExpVal val = Operand->EvalExpression(NULL);
FxExpression *e = val.Type == VAL_Int?
new FxConstant(-val.Int, ScriptPosition) :
new FxConstant(-val.Float, ScriptPosition);
delete this;
return e;
}
ValueType = Operand->ValueType;
return this;
}
else
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
}
//==========================================================================
//
//
//
//==========================================================================
ExpVal FxMinusSign::EvalExpression (AActor *self)
{
ExpVal ret;
if (ValueType == VAL_Int)
{
ret.Int = -Operand->EvalExpression(self).GetInt();
ret.Type = VAL_Int;
}
else
{
ret.Float = -Operand->EvalExpression(self).GetFloat();
ret.Type = VAL_Float;
}
return ret;
}
ExpEmit FxMinusSign::Emit(VMFunctionBuilder *build)
{
assert(ValueType.Type == Operand->ValueType.Type);
ExpEmit from = Operand->Emit(build);
assert(from.Konst == 0);
// Do it in-place.
if (ValueType == VAL_Int)
{
build->Emit(OP_NEG, from.RegNum, from.RegNum, 0);
}
else
{
assert(ValueType == VAL_Float);
build->Emit(OP_NEG, from.RegNum, from.RegNum, 0);
}
return from;
}
//==========================================================================
//
//
//
//==========================================================================
FxUnaryNotBitwise::FxUnaryNotBitwise(FxExpression *operand)
: FxExpression(operand->ScriptPosition)
{
Operand=operand;
}
//==========================================================================
//
//
//
//==========================================================================
FxUnaryNotBitwise::~FxUnaryNotBitwise()
{
SAFE_DELETE(Operand);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxUnaryNotBitwise::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(Operand, ctx);
if (Operand->ValueType == VAL_Float && ctx.lax)
{
// DECORATE allows floats here so cast them to int.
Operand = new FxIntCast(Operand);
Operand = Operand->Resolve(ctx);
if (Operand == NULL)
{
delete this;
return NULL;
}
}
if (Operand->ValueType != VAL_Int)
{
ScriptPosition.Message(MSG_ERROR, "Integer type expected");
delete this;
return NULL;
}
if (Operand->isConstant())
{
int result = ~Operand->EvalExpression(NULL).GetInt();
FxExpression *e = new FxConstant(result, ScriptPosition);
delete this;
return e;
}
ValueType = VAL_Int;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpVal FxUnaryNotBitwise::EvalExpression (AActor *self)
{
ExpVal ret;
ret.Int = ~Operand->EvalExpression(self).GetInt();
ret.Type = VAL_Int;
return ret;
}
ExpEmit FxUnaryNotBitwise::Emit(VMFunctionBuilder *build)
{
assert(ValueType.Type == Operand->ValueType.Type);
assert(ValueType == VAL_Int);
ExpEmit from = Operand->Emit(build);
assert(from.Konst == 0);
// Do it in-place.
build->Emit(OP_NOT, from.RegNum, from.RegNum, 0);
return from;
}
//==========================================================================
//
//
//
//==========================================================================
FxUnaryNotBoolean::FxUnaryNotBoolean(FxExpression *operand)
: FxExpression(operand->ScriptPosition)
{
Operand=operand;
}
//==========================================================================
//
//
//
//==========================================================================
FxUnaryNotBoolean::~FxUnaryNotBoolean()
{
SAFE_DELETE(Operand);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxUnaryNotBoolean::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (Operand)
{
Operand = Operand->ResolveAsBoolean(ctx);
}
if (!Operand)
{
delete this;
return NULL;
}
if (Operand->ValueType.isNumeric() || Operand->ValueType.isPointer())
{
if (Operand->isConstant())
{
bool result = !Operand->EvalExpression(NULL).GetBool();
FxExpression *e = new FxConstant(result, ScriptPosition);
delete this;
return e;
}
}
else
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
ValueType = VAL_Int;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpVal FxUnaryNotBoolean::EvalExpression (AActor *self)
{
ExpVal ret;
ret.Int = !Operand->EvalExpression(self).GetBool();
ret.Type = VAL_Int;
return ret;
}
ExpEmit FxUnaryNotBoolean::Emit(VMFunctionBuilder *build)
{
ExpEmit from = Operand->Emit(build);
assert(!from.Konst);
ExpEmit to(build, REGT_INT);
from.Free(build);
// Preload result with 0.
build->Emit(OP_LI, to.RegNum, 0, 0);
// Check source against 0.
if (from.RegType == REGT_INT)
{
build->Emit(OP_EQ_R, 0, from.RegNum, to.RegNum);
}
else if (from.RegType == REGT_FLOAT)
{
build->Emit(OP_EQF_K, 0, from.RegNum, build->GetConstantFloat(0));
}
else if (from.RegNum == REGT_POINTER)
{
build->Emit(OP_EQA_K, 0, from.RegNum, build->GetConstantAddress(NULL, ATAG_GENERIC));
}
build->Emit(OP_JMP, 1);
// Reload result with 1 if the comparison fell through.
build->Emit(OP_LI, to.RegNum, 1);
return to;
}
//==========================================================================
//
//
//
//==========================================================================
FxBinary::FxBinary(int o, FxExpression *l, FxExpression *r)
: FxExpression(l->ScriptPosition)
{
Operator=o;
left=l;
right=r;
}
//==========================================================================
//
//
//
//==========================================================================
FxBinary::~FxBinary()
{
SAFE_DELETE(left);
SAFE_DELETE(right);
}
//==========================================================================
//
//
//
//==========================================================================
bool FxBinary::ResolveLR(FCompileContext& ctx, bool castnumeric)
{
RESOLVE(left, ctx);
RESOLVE(right, ctx);
if (!left || !right)
{
delete this;
return false;
}
if (left->ValueType == VAL_Int && right->ValueType == VAL_Int)
{
ValueType = VAL_Int;
}
else if (left->ValueType.isNumeric() && right->ValueType.isNumeric())
{
ValueType = VAL_Float;
}
else if (left->ValueType == VAL_Object && right->ValueType == VAL_Object)
{
ValueType = VAL_Object;
}
else if (left->ValueType == VAL_Class && right->ValueType == VAL_Class)
{
ValueType = VAL_Class;
}
else
{
ValueType = VAL_Unknown;
}
if (castnumeric)
{
// later!
}
return true;
}
void FxBinary::Promote(FCompileContext &ctx)
{
if (left->ValueType == VAL_Float && right->ValueType == VAL_Int)
{
right = (new FxFloatCast(right))->Resolve(ctx);
}
else if (left->ValueType == VAL_Int && right->ValueType == VAL_Float)
{
left = (new FxFloatCast(left))->Resolve(ctx);
}
}
//==========================================================================
//
//
//
//==========================================================================
FxAddSub::FxAddSub(int o, FxExpression *l, FxExpression *r)
: FxBinary(o, l, r)
{
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxAddSub::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (!ResolveLR(ctx, true)) return NULL;
if (!ValueType.isNumeric())
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
else if (left->isConstant() && right->isConstant())
{
if (ValueType == VAL_Float)
{
double v;
double v1 = left->EvalExpression(NULL).GetFloat();
double v2 = right->EvalExpression(NULL).GetFloat();
v = Operator == '+'? v1 + v2 :
Operator == '-'? v1 - v2 : 0;
FxExpression *e = new FxConstant(v, ScriptPosition);
delete this;
return e;
}
else
{
int v;
int v1 = left->EvalExpression(NULL).GetInt();
int v2 = right->EvalExpression(NULL).GetInt();
v = Operator == '+'? v1 + v2 :
Operator == '-'? v1 - v2 : 0;
FxExpression *e = new FxConstant(v, ScriptPosition);
delete this;
return e;
}
}
Promote(ctx);
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpVal FxAddSub::EvalExpression (AActor *self)
{
ExpVal ret;
if (ValueType == VAL_Float)
{
double v1 = left->EvalExpression(self).GetFloat();
double v2 = right->EvalExpression(self).GetFloat();
ret.Type = VAL_Float;
ret.Float = Operator == '+'? v1 + v2 :
Operator == '-'? v1 - v2 : 0;
}
else
{
int v1 = left->EvalExpression(self).GetInt();
int v2 = right->EvalExpression(self).GetInt();
ret.Type = VAL_Int;
ret.Int = Operator == '+'? v1 + v2 :
Operator == '-'? v1 - v2 : 0;
}
return ret;
}
ExpEmit FxAddSub::Emit(VMFunctionBuilder *build)
{
assert(Operator == '+' || Operator == '-');
ExpEmit op1 = left->Emit(build);
ExpEmit op2 = right->Emit(build);
if (Operator == '+')
{
// Since addition is commutative, only the second operand may be a constant.
if (op1.Konst)
{
swapvalues(op1, op2);
}
assert(!op1.Konst);
op1.Free(build);
op2.Free(build);
if (ValueType == VAL_Float)
{
assert(op1.RegType == REGT_FLOAT && op2.RegType == REGT_FLOAT);
ExpEmit to(build, REGT_FLOAT);
build->Emit(op2.Konst ? OP_ADDF_RK : OP_ADDF_RR, to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
else
{
assert(ValueType == VAL_Int);
assert(op1.RegType == REGT_INT && op2.RegType == REGT_INT);
ExpEmit to(build, REGT_INT);
build->Emit(op2.Konst ? OP_ADD_RK : OP_ADD_RR, to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
}
else
{
// Subtraction is not commutative, so either side may be constant (but not both).
assert(!op1.Konst || !op2.Konst);
op1.Free(build);
op2.Free(build);
if (ValueType == VAL_Float)
{
assert(op1.RegType == REGT_FLOAT && op2.RegType == REGT_FLOAT);
ExpEmit to(build, REGT_FLOAT);
build->Emit(op1.Konst ? OP_SUBF_KR : op2.Konst ? OP_SUBF_RK : OP_SUBF_RR,
to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
else
{
assert(ValueType == VAL_Int);
assert(op1.RegType == REGT_INT && op2.RegType == REGT_INT);
ExpEmit to(build, REGT_INT);
build->Emit(op1.Konst ? OP_SUB_KR : op2.Konst ? OP_SUB_RK : OP_SUB_RR,
to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
}
}
//==========================================================================
//
//
//
//==========================================================================
FxMulDiv::FxMulDiv(int o, FxExpression *l, FxExpression *r)
: FxBinary(o, l, r)
{
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxMulDiv::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (!ResolveLR(ctx, true)) return NULL;
if (!ValueType.isNumeric())
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
else if (left->isConstant() && right->isConstant())
{
if (ValueType == VAL_Float)
{
double v;
double v1 = left->EvalExpression(NULL).GetFloat();
double v2 = right->EvalExpression(NULL).GetFloat();
if (Operator != '*' && v2 == 0)
{
ScriptPosition.Message(MSG_ERROR, "Division by 0");
delete this;
return NULL;
}
v = Operator == '*'? v1 * v2 :
Operator == '/'? v1 / v2 :
Operator == '%'? fmod(v1, v2) : 0;
FxExpression *e = new FxConstant(v, ScriptPosition);
delete this;
return e;
}
else
{
int v;
int v1 = left->EvalExpression(NULL).GetInt();
int v2 = right->EvalExpression(NULL).GetInt();
if (Operator != '*' && v2 == 0)
{
ScriptPosition.Message(MSG_ERROR, "Division by 0");
delete this;
return NULL;
}
v = Operator == '*'? v1 * v2 :
Operator == '/'? v1 / v2 :
Operator == '%'? v1 % v2 : 0;
FxExpression *e = new FxConstant(v, ScriptPosition);
delete this;
return e;
}
}
Promote(ctx);
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpVal FxMulDiv::EvalExpression (AActor *self)
{
ExpVal ret;
if (ValueType == VAL_Float)
{
double v1 = left->EvalExpression(self).GetFloat();
double v2 = right->EvalExpression(self).GetFloat();
if (Operator != '*' && v2 == 0)
{
I_Error("Division by 0");
}
ret.Type = VAL_Float;
ret.Float = Operator == '*'? v1 * v2 :
Operator == '/'? v1 / v2 :
Operator == '%'? fmod(v1, v2) : 0;
}
else
{
int v1 = left->EvalExpression(self).GetInt();
int v2 = right->EvalExpression(self).GetInt();
if (Operator != '*' && v2 == 0)
{
I_Error("Division by 0");
}
ret.Type = VAL_Int;
ret.Int = Operator == '*'? v1 * v2 :
Operator == '/'? v1 / v2 :
Operator == '%'? v1 % v2 : 0;
}
return ret;
}
ExpEmit FxMulDiv::Emit(VMFunctionBuilder *build)
{
ExpEmit op1 = left->Emit(build);
ExpEmit op2 = right->Emit(build);
if (Operator == '*')
{
// Multiplication is commutative, so only the second operand may be constant.
if (op1.Konst)
{
swapvalues(op1, op2);
}
assert(!op1.Konst);
op1.Free(build);
op2.Free(build);
if (ValueType == VAL_Float)
{
assert(op1.RegType == REGT_FLOAT && op2.RegType == REGT_FLOAT);
ExpEmit to(build, REGT_FLOAT);
build->Emit(op2.Konst ? OP_MULF_RK : OP_MULF_RR, to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
else
{
assert(ValueType == VAL_Int);
assert(op1.RegType == REGT_INT && op2.RegType == REGT_INT);
ExpEmit to(build, REGT_INT);
build->Emit(op2.Konst ? OP_MUL_RK : OP_MUL_RR, to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
}
else
{
// Division is not commutative, so either side may be constant (but not both).
assert(!op1.Konst || !op2.Konst);
assert(Operator == '%' || Operator == '/');
op1.Free(build);
op2.Free(build);
if (ValueType == VAL_Float)
{
assert(op1.RegType == REGT_FLOAT && op2.RegType == REGT_FLOAT);
ExpEmit to(build, REGT_FLOAT);
build->Emit(Operator == '/' ? (op1.Konst ? OP_DIVF_KR : op2.Konst ? OP_DIVF_RK : OP_DIVF_RR)
: (op1.Konst ? OP_MODF_KR : op2.Konst ? OP_MODF_RK : OP_MODF_RR),
to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
else
{
assert(ValueType == VAL_Int);
assert(op1.RegType == REGT_INT && op2.RegType == REGT_INT);
ExpEmit to(build, REGT_INT);
build->Emit(Operator == '/' ? (op1.Konst ? OP_DIV_KR : op2.Konst ? OP_DIV_RK : OP_DIV_RR)
: (op1.Konst ? OP_MOD_KR : op2.Konst ? OP_MOD_RK : OP_MOD_RR),
to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
}
}
//==========================================================================
//
//
//
//==========================================================================
FxCompareRel::FxCompareRel(int o, FxExpression *l, FxExpression *r)
: FxBinary(o, l, r)
{
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxCompareRel::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (!ResolveLR(ctx, true)) return NULL;
if (!ValueType.isNumeric())
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
else if (left->isConstant() && right->isConstant())
{
int v;
if (ValueType == VAL_Float)
{
double v1 = left->EvalExpression(NULL).GetFloat();
double v2 = right->EvalExpression(NULL).GetFloat();
v = Operator == '<'? v1 < v2 :
Operator == '>'? v1 > v2 :
Operator == TK_Geq? v1 >= v2 :
Operator == TK_Leq? v1 <= v2 : 0;
}
else
{
int v1 = left->EvalExpression(NULL).GetInt();
int v2 = right->EvalExpression(NULL).GetInt();
v = Operator == '<'? v1 < v2 :
Operator == '>'? v1 > v2 :
Operator == TK_Geq? v1 >= v2 :
Operator == TK_Leq? v1 <= v2 : 0;
}
FxExpression *e = new FxConstant(v, ScriptPosition);
delete this;
return e;
}
Promote(ctx);
ValueType = VAL_Int;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpVal FxCompareRel::EvalExpression (AActor *self)
{
ExpVal ret;
ret.Type = VAL_Int;
if (left->ValueType == VAL_Float || right->ValueType == VAL_Float)
{
double v1 = left->EvalExpression(self).GetFloat();
double v2 = right->EvalExpression(self).GetFloat();
ret.Int = Operator == '<'? v1 < v2 :
Operator == '>'? v1 > v2 :
Operator == TK_Geq? v1 >= v2 :
Operator == TK_Leq? v1 <= v2 : 0;
}
else
{
int v1 = left->EvalExpression(self).GetInt();
int v2 = right->EvalExpression(self).GetInt();
ret.Int = Operator == '<'? v1 < v2 :
Operator == '>'? v1 > v2 :
Operator == TK_Geq? v1 >= v2 :
Operator == TK_Leq? v1 <= v2 : 0;
}
return ret;
}
ExpEmit FxCompareRel::Emit(VMFunctionBuilder *build)
{
ExpEmit op1 = left->Emit(build);
ExpEmit op2 = right->Emit(build);
assert(op1.RegType == op2.RegType);
assert(op1.RegType == REGT_INT || op1.RegType == REGT_FLOAT);
assert(!op1.Konst || !op2.Konst);
assert(Operator == '<' || Operator == '>' || Operator == TK_Geq || Operator == TK_Leq);
static const VM_UBYTE InstrMap[][4] =
{
{ OP_LT_RR, OP_LTF_RR, 0 }, // <
{ OP_LE_RR, OP_LEF_RR, 1 }, // >
{ OP_LT_RR, OP_LTF_RR, 1 }, // >=
{ OP_LE_RR, OP_LE_RR, 0 } // <=
};
int instr, check, index;
index = Operator == '<' ? 0 :
Operator == '>' ? 1 :
Operator == TK_Geq ? 2 : 3;
instr = InstrMap[index][op1.RegType == REGT_INT ? 0 : 1];
check = InstrMap[index][2];
if (op2.Konst)
{
instr += 1;
}
else
{
op2.Free(build);
}
if (op1.Konst)
{
instr += 2;
}
else
{
op1.Free(build);
}
ExpEmit to(build, op1.RegType);
// See FxUnaryNotBoolean for comments, since it's the same thing.
build->Emit(OP_LI, to.RegNum, 0, 0);
build->Emit(instr, check, op1.RegNum, op2.RegNum);
build->Emit(OP_JMP, 1);
build->Emit(OP_LI, to.RegNum, 1);
return to;
}
//==========================================================================
//
//
//
//==========================================================================
FxCompareEq::FxCompareEq(int o, FxExpression *l, FxExpression *r)
: FxBinary(o, l, r)
{
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxCompareEq::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (!ResolveLR(ctx, true)) return NULL;
if (!left || !right)
{
delete this;
return NULL;
}
if (!ValueType.isNumeric() && !ValueType.isPointer())
{
if (left->ValueType.Type == right->ValueType.Type)
{
// compare other types?
if (left->ValueType == VAL_Sound || left->ValueType == VAL_Color || left->ValueType == VAL_Name)
{
left->ValueType = right->ValueType = VAL_Int;
goto cont;
}
}
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
cont:
if (left->isConstant() && right->isConstant())
{
int v;
if (ValueType == VAL_Float)
{
double v1 = left->EvalExpression(NULL).GetFloat();
double v2 = right->EvalExpression(NULL).GetFloat();
v = Operator == TK_Eq? v1 == v2 : v1 != v2;
}
else
{
int v1 = left->EvalExpression(NULL).GetInt();
int v2 = right->EvalExpression(NULL).GetInt();
v = Operator == TK_Eq? v1 == v2 : v1 != v2;
}
FxExpression *e = new FxConstant(v, ScriptPosition);
delete this;
return e;
}
Promote(ctx);
ValueType = VAL_Int;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpVal FxCompareEq::EvalExpression (AActor *self)
{
ExpVal ret;
ret.Type = VAL_Int;
if (left->ValueType == VAL_Float || right->ValueType == VAL_Float)
{
double v1 = left->EvalExpression(self).GetFloat();
double v2 = right->EvalExpression(self).GetFloat();
ret.Int = Operator == TK_Eq? v1 == v2 : v1 != v2;
}
else if (left->ValueType == VAL_Int)
{
int v1 = left->EvalExpression(self).GetInt();
int v2 = right->EvalExpression(self).GetInt();
ret.Int = Operator == TK_Eq? v1 == v2 : v1 != v2;
}
else
{
// Implement pointer comparison
ret.Int = 0;
}
return ret;
}
ExpEmit FxCompareEq::Emit(VMFunctionBuilder *build)
{
ExpEmit op1 = left->Emit(build);
ExpEmit op2 = right->Emit(build);
assert(op1.RegType == op2.RegType);
assert(op1.RegType == REGT_INT || op1.RegType == REGT_FLOAT || op1.RegType == REGT_POINTER);
int instr;
// Only the second operand may be constant.
if (op1.Konst)
{
swapvalues(op1, op2);
}
assert(!op1.Konst);
instr = op1.RegType == REGT_INT ? OP_EQ_R :
op1.RegType == REGT_FLOAT ? OP_EQF_R :
OP_EQA_R;
op1.Free(build);
if (!op2.Konst)
{
op2.Free(build);
}
else
{
instr += 1;
}
ExpEmit to(build, op1.RegType);
// See FxUnaryNotBoolean for comments, since it's the same thing.
build->Emit(OP_LI, to.RegNum, 0, 0);
build->Emit(instr, Operator != TK_Eq, op1.RegNum, op2.RegNum);
build->Emit(OP_JMP, 1);
build->Emit(OP_LI, to.RegNum, 1);
return to;
}
//==========================================================================
//
//
//
//==========================================================================
FxBinaryInt::FxBinaryInt(int o, FxExpression *l, FxExpression *r)
: FxBinary(o, l, r)
{
ValueType = VAL_Int;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxBinaryInt::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (!ResolveLR(ctx, false)) return NULL;
if (ctx.lax && ValueType == VAL_Float)
{
// For DECORATE which allows floats here.
if (left->ValueType != VAL_Int)
{
left = new FxIntCast(left);
left = left->Resolve(ctx);
}
if (right->ValueType != VAL_Int)
{
right = new FxIntCast(right);
right = left->Resolve(ctx);
}
if (left == NULL || right == NULL)
{
delete this;
return NULL;
}
ValueType = VAL_Int;
}
if (ValueType != VAL_Int)
{
ScriptPosition.Message(MSG_ERROR, "Integer type expected");
delete this;
return NULL;
}
else if (left->isConstant() && right->isConstant())
{
int v1 = left->EvalExpression(NULL).GetInt();
int v2 = right->EvalExpression(NULL).GetInt();
FxExpression *e = new FxConstant(
Operator == TK_LShift? v1 << v2 :
Operator == TK_RShift? v1 >> v2 :
Operator == TK_URShift? int((unsigned int)(v1) >> v2) :
Operator == '&'? v1 & v2 :
Operator == '|'? v1 | v2 :
Operator == '^'? v1 ^ v2 : 0, ScriptPosition);
delete this;
return e;
}
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpVal FxBinaryInt::EvalExpression (AActor *self)
{
int v1 = left->EvalExpression(self).GetInt();
int v2 = right->EvalExpression(self).GetInt();
ExpVal ret;
ret.Type = VAL_Int;
ret.Int =
Operator == TK_LShift? v1 << v2 :
Operator == TK_RShift? v1 >> v2 :
Operator == TK_URShift? int((unsigned int)(v1) >> v2) :
Operator == '&'? v1 & v2 :
Operator == '|'? v1 | v2 :
Operator == '^'? v1 ^ v2 : 0;
return ret;
}
ExpEmit FxBinaryInt::Emit(VMFunctionBuilder *build)
{
assert(left->ValueType == VAL_Int);
assert(right->ValueType == VAL_Int);
static const VM_UBYTE InstrMap[][4] =
{
{ OP_SLL_RR, OP_SLL_KR, OP_SLL_RI }, // TK_LShift
{ OP_SRA_RR, OP_SRA_KR, OP_SRA_RI }, // TK_RShift
{ OP_SRL_RR, OP_SRL_KR, OP_SRL_RI }, // TK_URShift
{ OP_AND_RR, 0, OP_AND_RK }, // '&'
{ OP_OR_RR, 0, OP_OR_RK }, // '|'
{ OP_XOR_RR, 0, OP_XOR_RK }, // '^'
};
int index, instr, rop;
ExpEmit op1, op2;
index = Operator == TK_LShift ? 0 :
Operator == TK_RShift ? 1 :
Operator == TK_URShift ? 2 :
Operator == '&' ? 3 :
Operator == '|' ? 4 :
Operator == '^' ? 5 : -1;
assert(index >= 0);
op1 = left->Emit(build);
if (index < 3)
{ // Shift instructions use right-hand immediates instead of constant registers.
if (right->isConstant())
{
rop = right->EvalExpression(NULL).GetInt();
op2.Konst = true;
}
else
{
op2 = right->Emit(build);
assert(!op2.Konst);
op2.Free(build);
rop = op2.RegNum;
}
}
else
{ // The other operators only take a constant on the right-hand side.
op2 = right->Emit(build);
if (op1.Konst)
{
swapvalues(op1, op2);
}
assert(!op1.Konst);
rop = op2.RegNum;
op2.Free(build);
}
if (!op1.Konst)
{
op1.Free(build);
if (!op2.Konst)
{
instr = InstrMap[index][0];
}
else
{
instr = InstrMap[index][2];
}
}
else
{
assert(!op2.Konst);
instr = InstrMap[index][1];
}
assert(instr != 0);
ExpEmit to(build, REGT_INT);
build->Emit(instr, to.RegNum, op1.RegNum, rop);
return to;
}
//==========================================================================
//
//
//
//==========================================================================
FxBinaryLogical::FxBinaryLogical(int o, FxExpression *l, FxExpression *r)
: FxExpression(l->ScriptPosition)
{
Operator=o;
left=l;
right=r;
ValueType = VAL_Int;
}
//==========================================================================
//
//
//
//==========================================================================
FxBinaryLogical::~FxBinaryLogical()
{
SAFE_DELETE(left);
SAFE_DELETE(right);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxBinaryLogical::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (left) left = left->ResolveAsBoolean(ctx);
if (right) right = right->ResolveAsBoolean(ctx);
if (!left || !right)
{
delete this;
return NULL;
}
int b_left=-1, b_right=-1;
if (left->isConstant()) b_left = left->EvalExpression(NULL).GetBool();
if (right->isConstant()) b_right = right->EvalExpression(NULL).GetBool();
// Do some optimizations. This will throw out all sub-expressions that are not
// needed to retrieve the final result.
if (Operator == TK_AndAnd)
{
if (b_left==0 || b_right==0)
{
FxExpression *x = new FxConstant(0, ScriptPosition);
delete this;
return x;
}
else if (b_left==1 && b_right==1)
{
FxExpression *x = new FxConstant(1, ScriptPosition);
delete this;
return x;
}
else if (b_left==1)
{
FxExpression *x = right;
right=NULL;
delete this;
return x;
}
else if (b_right==1)
{
FxExpression *x = left;
left=NULL;
delete this;
return x;
}
}
else if (Operator == TK_OrOr)
{
if (b_left==1 || b_right==1)
{
FxExpression *x = new FxConstant(1, ScriptPosition);
delete this;
return x;
}
if (b_left==0 && b_right==0)
{
FxExpression *x = new FxConstant(0, ScriptPosition);
delete this;
return x;
}
else if (b_left==0)
{
FxExpression *x = right;
right=NULL;
delete this;
return x;
}
else if (b_right==0)
{
FxExpression *x = left;
left=NULL;
delete this;
return x;
}
}
if (left->ValueType != VAL_Int && left->ValueType != VAL_Sound)
{
left = new FxIntCast(left);
}
if (right->ValueType != VAL_Int && right->ValueType != VAL_Sound)
{
right = new FxIntCast(right);
}
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpVal FxBinaryLogical::EvalExpression (AActor *self)
{
bool b_left = left->EvalExpression(self).GetBool();
ExpVal ret;
ret.Type = VAL_Int;
ret.Int = false;
if (Operator == TK_AndAnd)
{
ret.Int = (b_left && right->EvalExpression(self).GetBool());
}
else if (Operator == TK_OrOr)
{
ret.Int = (b_left || right->EvalExpression(self).GetBool());
}
return ret;
}
ExpEmit FxBinaryLogical::Emit(VMFunctionBuilder *build)
{
// This is not the "right" way to do these, but it works for now.
// (Problem: No information sharing is done between nodes to reduce the
// code size if you have something like a1 && a2 && a3 && ... && an.)
assert(left->ValueType == VAL_Int && right->ValueType == VAL_Int);
ExpEmit op1 = left->Emit(build);
assert(!op1.Konst);
int zero = build->GetConstantInt(0);
op1.Free(build);
if (Operator == TK_AndAnd)
{
build->Emit(OP_EQ_K, 1, op1.RegNum, zero);
// If op1 is 0, skip evaluation of op2.
size_t patchspot = build->Emit(OP_JMP, 0, 0, 0);
// Evaluate op2.
ExpEmit op2 = right->Emit(build);
assert(!op2.Konst);
op2.Free(build);
ExpEmit to(build, REGT_INT);
build->Emit(OP_EQ_K, 0, op2.RegNum, zero);
build->Emit(OP_JMP, 2);
build->Emit(OP_LI, to.RegNum, 1);
build->Emit(OP_JMP, 1);
size_t target = build->Emit(OP_LI, to.RegNum, 0);
build->Backpatch(patchspot, target);
return to;
}
else
{
assert(Operator == TK_OrOr);
build->Emit(OP_EQ_K, 0, op1.RegNum, zero);
// If op1 is not 0, skip evaluation of op2.
size_t patchspot = build->Emit(OP_JMP, 0, 0, 0);
// Evaluate op2.
ExpEmit op2 = right->Emit(build);
assert(!op2.Konst);
op2.Free(build);
ExpEmit to(build, REGT_INT);
build->Emit(OP_EQ_K, 1, op2.RegNum, zero);
build->Emit(OP_JMP, 2);
build->Emit(OP_LI, to.RegNum, 0);
build->Emit(OP_JMP, 1);
size_t target = build->Emit(OP_LI, to.RegNum, 1);
build->Backpatch(patchspot, target);
return to;
}
}
//==========================================================================
//
//
//
//==========================================================================
FxConditional::FxConditional(FxExpression *c, FxExpression *t, FxExpression *f)
: FxExpression(c->ScriptPosition)
{
condition = c;
truex=t;
falsex=f;
}
//==========================================================================
//
//
//
//==========================================================================
FxConditional::~FxConditional()
{
SAFE_DELETE(condition);
SAFE_DELETE(truex);
SAFE_DELETE(falsex);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxConditional::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (condition) condition = condition->ResolveAsBoolean(ctx);
RESOLVE(truex, ctx);
RESOLVE(falsex, ctx);
ABORT(condition && truex && falsex);
if (truex->ValueType == VAL_Int && falsex->ValueType == VAL_Int)
ValueType = VAL_Int;
else if (truex->ValueType.isNumeric() && falsex->ValueType.isNumeric())
ValueType = VAL_Float;
//else if (truex->ValueType != falsex->ValueType)
if (condition->isConstant())
{
ExpVal condval = condition->EvalExpression(NULL);
bool result = condval.GetBool();
FxExpression *e = result? truex:falsex;
delete (result? falsex:truex);
falsex = truex = NULL;
delete this;
return e;
}
if (ValueType == VAL_Float)
{
if (truex->ValueType != VAL_Float)
{
truex = new FxFloatCast(truex);
RESOLVE(truex, ctx);
}
if (falsex->ValueType != VAL_Float)
{
falsex = new FxFloatCast(falsex);
RESOLVE(falsex, ctx);
}
}
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpVal FxConditional::EvalExpression (AActor *self)
{
ExpVal condval = condition->EvalExpression(self);
bool result = condval.GetBool();
FxExpression *e = result? truex:falsex;
return e->EvalExpression(self);
}
ExpEmit FxConditional::Emit(VMFunctionBuilder *build)
{
ExpEmit out;
// The true and false expressions ought to be assigned to the
// same temporary instead of being copied to it. Oh well; good enough
// for now.
ExpEmit cond = condition->Emit(build);
assert(cond.RegType == REGT_INT && !cond.Konst);
// Test condition.
build->Emit(OP_EQ_K, 1, cond.RegNum, build->GetConstantInt(0));
size_t patchspot = build->Emit(OP_JMP, 0);
// Evaluate true expression.
if (truex->isConstant() && truex->ValueType == VAL_Int)
{
out = ExpEmit(build, REGT_INT);
build->EmitLoadInt(out.RegNum, truex->EvalExpression(NULL).GetInt());
}
else
{
ExpEmit trueop = truex->Emit(build);
if (trueop.Konst)
{
assert(trueop.RegType == REGT_FLOAT);
out = ExpEmit(build, REGT_FLOAT);
build->Emit(OP_LKF, out.RegNum, trueop.RegNum);
}
else
{
// Use the register returned by the true condition as the
// target for the false condition.
out = trueop;
}
}
// Evaluate false expression.
build->BackpatchToHere(patchspot);
if (falsex->isConstant() && falsex->ValueType == VAL_Int)
{
build->EmitLoadInt(out.RegNum, falsex->EvalExpression(NULL).GetInt());
}
else
{
ExpEmit falseop = falsex->Emit(build);
if (falseop.Konst)
{
assert(falseop.RegType == REGT_FLOAT);
build->Emit(OP_LKF, out.RegNum, falseop.RegNum);
}
else
{
// Move result from the register returned by "false" to the one
// returned by "true" so that only one register is returned by
// this tree.
falseop.Free(build);
if (falseop.RegType == REGT_INT)
{
build->Emit(OP_MOVE, out.RegNum, falseop.RegNum, 0);
}
else
{
assert(falseop.RegType == REGT_FLOAT);
build->Emit(OP_MOVEF, out.RegNum, falseop.RegNum, 0);
}
}
}
return out;
}
//==========================================================================
//
//
//
//==========================================================================
FxAbs::FxAbs(FxExpression *v)
: FxExpression(v->ScriptPosition)
{
val = v;
ValueType = v->ValueType;
}
//==========================================================================
//
//
//
//==========================================================================
FxAbs::~FxAbs()
{
SAFE_DELETE(val);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxAbs::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(val, ctx);
if (!val->ValueType.isNumeric())
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
else if (val->isConstant())
{
ExpVal value = val->EvalExpression(NULL);
switch (value.Type)
{
case VAL_Int:
value.Int = abs(value.Int);
break;
case VAL_Float:
value.Float = fabs(value.Float);
default:
// shouldn't happen
delete this;
return NULL;
}
FxExpression *x = new FxConstant(value, ScriptPosition);
delete this;
return x;
}
ValueType = val->ValueType;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpVal FxAbs::EvalExpression (AActor *self)
{
ExpVal value = val->EvalExpression(self);
switch (value.Type)
{
default:
case VAL_Int:
value.Int = abs(value.Int);
break;
case VAL_Float:
value.Float = fabs(value.Float);
break;
}
return value;
}
ExpEmit FxAbs::Emit(VMFunctionBuilder *build)
{
ExpEmit absofsteal = val->Emit(build);
assert(!absofsteal.Konst);
ExpEmit out(build, absofsteal.RegType);
if (absofsteal.RegType == REGT_INT)
{
build->Emit(OP_ABS, out.RegNum, absofsteal.RegNum, 0);
}
else
{
assert(absofsteal.RegType == REGT_FLOAT);
build->Emit(OP_FLOP, out.RegNum, absofsteal.RegNum, FLOP_ABS);
}
return out;
}
//==========================================================================
//
//
//
//==========================================================================
FxRandom::FxRandom(FRandom * r, FxExpression *mi, FxExpression *ma, const FScriptPosition &pos)
: FxExpression(pos)
{
if (mi != NULL && ma != NULL)
{
min = new FxParameter(new FxIntCast(mi));
max = new FxParameter(new FxIntCast(ma));
}
else min = max = NULL;
rng = r;
ValueType = VAL_Int;
}
//==========================================================================
//
//
//
//==========================================================================
FxRandom::~FxRandom()
{
SAFE_DELETE(min);
SAFE_DELETE(max);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxRandom::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
if (min && max)
{
RESOLVE(min, ctx);
RESOLVE(max, ctx);
ABORT(min && max);
assert(min->ValueType == ValueType.Type);
assert(max->ValueType == ValueType.Type);
}
return this;
};
//==========================================================================
//
//
//
//==========================================================================
ExpVal FxRandom::EvalExpression (AActor *self)
{
ExpVal val;
val.Type = VAL_Int;
if (min != NULL && max != NULL)
{
int minval = min->EvalExpression (self).GetInt();
int maxval = max->EvalExpression (self).GetInt();
if (maxval < minval)
{
swapvalues (maxval, minval);
}
val.Int = (*rng)(maxval - minval + 1) + minval;
}
else
{
val.Int = (*rng)();
}
return val;
}
int DecoRandom(VMFrameStack *stack, VMValue *param, int numparam, VMReturn *ret, int numret)
{
assert(numparam >= 1 && numparam <= 3);
FRandom *rng = reinterpret_cast<FRandom *>(param[0].a);
if (numparam == 1)
{
ret->SetInt((*rng)());
}
else if (numparam == 2)
{
int maskval = param[1].i;
ret->SetInt(rng->Random2(maskval));
}
else if (numparam == 3)
{
int min = param[1].i, max = param[2].i;
if (max < min)
{
swapvalues(max, min);
}
ret->SetInt((*rng)(max - min + 1) + min);
}
return 1;
}
ExpEmit FxRandom::Emit(VMFunctionBuilder *build)
{
// Find the DecoRandom function. If not found, create it and install it
// in Actor.
VMFunction *callfunc;
PSymbol *sym = RUNTIME_CLASS(AActor)->Symbols.FindSymbol(NAME_DecoRandom, false);
if (sym == NULL)
{
PSymbolVMFunction *symfunc = new PSymbolVMFunction(NAME_DecoRandom);
VMNativeFunction *calldec = new VMNativeFunction(DecoRandom, NAME_DecoRandom);
symfunc->Function = calldec;
sym = symfunc;
RUNTIME_CLASS(AActor)->Symbols.AddSymbol(sym);
}
assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolVMFunction)));
assert(((PSymbolVMFunction *)sym)->Function != NULL);
callfunc = ((PSymbolVMFunction *)sym)->Function;
build->Emit(OP_PARAM, 0, REGT_POINTER | REGT_KONST, build->GetConstantAddress(rng, ATAG_RNG));
if (min != NULL && max != NULL)
{
min->Emit(build);
max->Emit(build);
build->Emit(OP_CALL_K, build->GetConstantAddress(callfunc, ATAG_OBJECT), 3, 1);
}
else
{
build->Emit(OP_CALL_K, build->GetConstantAddress(callfunc, ATAG_OBJECT), 1, 1);
}
ExpEmit out(build, REGT_INT);
build->Emit(OP_RESULT, 0, REGT_INT, out.RegNum);
return out;
}
//==========================================================================
//
//
//
//==========================================================================
FxFRandom::FxFRandom(FRandom *r, FxExpression *mi, FxExpression *ma, const FScriptPosition &pos)
: FxRandom(r, NULL, NULL, pos)
{
if (mi != NULL && ma != NULL)
{
min = new FxParameter(new FxFloatCast(mi));
max = new FxParameter(new FxFloatCast(ma));
}
ValueType = VAL_Float;
}
//==========================================================================
//
//
//
//==========================================================================
ExpVal FxFRandom::EvalExpression (AActor *self)
{
ExpVal val;
val.Type = VAL_Float;
int random = (*rng)(0x40000000);
double frandom = random / double(0x40000000);
if (min != NULL && max != NULL)
{
double minval = min->EvalExpression (self).GetFloat();
double maxval = max->EvalExpression (self).GetFloat();
if (maxval < minval)
{
swapvalues (maxval, minval);
}
val.Float = frandom * (maxval - minval) + minval;
}
else
{
val.Float = frandom;
}
return val;
}
int DecoFRandom(VMFrameStack *stack, VMValue *param, int numparam, VMReturn *ret, int numret)
{
assert(numparam == 1 || numparam == 3);
FRandom *rng = reinterpret_cast<FRandom *>(param[0].a);
int random = (*rng)(0x40000000);
double frandom = random / double(0x40000000);
if (numparam == 3)
{
double min = param[1].f, max = param[2].f;
if (max < min)
{
swapvalues(max, min);
}
ret->SetFloat(frandom * (max - min) + min);
}
else
{
ret->SetFloat(frandom);
}
return 1;
}
ExpEmit FxFRandom::Emit(VMFunctionBuilder *build)
{
// Find the DecoFRandom function. If not found, create it and install it
// in Actor.
VMFunction *callfunc;
PSymbol *sym = RUNTIME_CLASS(AActor)->Symbols.FindSymbol(NAME_DecoFRandom, false);
if (sym == NULL)
{
PSymbolVMFunction *symfunc = new PSymbolVMFunction(NAME_DecoFRandom);
VMNativeFunction *calldec = new VMNativeFunction(DecoFRandom, NAME_DecoFRandom);
symfunc->Function = calldec;
sym = symfunc;
RUNTIME_CLASS(AActor)->Symbols.AddSymbol(sym);
}
assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolVMFunction)));
assert(((PSymbolVMFunction *)sym)->Function != NULL);
callfunc = ((PSymbolVMFunction *)sym)->Function;
build->Emit(OP_PARAM, 0, REGT_POINTER | REGT_KONST, build->GetConstantAddress(rng, ATAG_RNG));
if (min != NULL && max != NULL)
{
min->Emit(build);
max->Emit(build);
build->Emit(OP_CALL_K, build->GetConstantAddress(callfunc, ATAG_OBJECT), 3, 1);
}
else
{
build->Emit(OP_CALL_K, build->GetConstantAddress(callfunc, ATAG_OBJECT), 1, 1);
}
ExpEmit out(build, REGT_FLOAT);
build->Emit(OP_RESULT, 0, REGT_FLOAT, out.RegNum);
return out;
}
//==========================================================================
//
//
//
//==========================================================================
FxRandom2::FxRandom2(FRandom *r, FxExpression *m, const FScriptPosition &pos)
: FxExpression(pos)
{
rng = r;
if (m) mask = new FxIntCast(m);
else mask = new FxConstant(-1, pos);
mask = new FxParameter(mask);
ValueType = VAL_Int;
}
//==========================================================================
//
//
//
//==========================================================================
FxRandom2::~FxRandom2()
{
SAFE_DELETE(mask);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxRandom2::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(mask, ctx);
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpVal FxRandom2::EvalExpression (AActor *self)
{
ExpVal maskval = mask->EvalExpression(self);
int imaskval = maskval.GetInt();
maskval.Type = VAL_Int;
maskval.Int = rng->Random2(imaskval);
return maskval;
}
ExpEmit FxRandom2::Emit(VMFunctionBuilder *build)
{
// Find the DecoRandom function. If not found, create it and install it
// in Actor.
VMFunction *callfunc;
PSymbol *sym = RUNTIME_CLASS(AActor)->Symbols.FindSymbol(NAME_DecoRandom, false);
if (sym == NULL)
{
PSymbolVMFunction *symfunc = new PSymbolVMFunction(NAME_DecoRandom);
VMNativeFunction *calldec = new VMNativeFunction(DecoRandom, NAME_DecoRandom);
symfunc->Function = calldec;
sym = symfunc;
RUNTIME_CLASS(AActor)->Symbols.AddSymbol(sym);
}
assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolVMFunction)));
assert(((PSymbolVMFunction *)sym)->Function != NULL);
callfunc = ((PSymbolVMFunction *)sym)->Function;
build->Emit(OP_PARAM, 0, REGT_POINTER | REGT_KONST, build->GetConstantAddress(rng, ATAG_RNG));
mask->Emit(build);
build->Emit(OP_CALL_K, build->GetConstantAddress(callfunc, ATAG_OBJECT), 2, 1);
ExpEmit out(build, REGT_INT);
build->Emit(OP_RESULT, 0, REGT_INT, out.RegNum);
return out;
}
//==========================================================================
//
//
//
//==========================================================================
FxIdentifier::FxIdentifier(FName name, const FScriptPosition &pos)
: FxExpression(pos)
{
Identifier = name;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxIdentifier::Resolve(FCompileContext& ctx)
{
PSymbol * sym;
FxExpression *newex = NULL;
//FBaseCVar * cv = NULL;
//FString s;
int num;
//const PClass *Class;
CHECKRESOLVED();
// see if the current class (if valid) defines something with this name.
if ((sym = ctx.FindInClass(Identifier)) != NULL)
{
if (sym->IsKindOf(RUNTIME_CLASS(PSymbolConst)))
{
ScriptPosition.Message(MSG_DEBUGLOG, "Resolving name '%s' as class constant\n", Identifier.GetChars());
newex = FxConstant::MakeConstant(sym, ScriptPosition);
}
else if (sym->IsKindOf(RUNTIME_CLASS(PSymbolVariable)))
{
PSymbolVariable *vsym = static_cast<PSymbolVariable*>(sym);
ScriptPosition.Message(MSG_DEBUGLOG, "Resolving name '%s' as member variable, index %d\n", Identifier.GetChars(), vsym->offset);
newex = new FxClassMember((new FxSelf(ScriptPosition))->Resolve(ctx), vsym, ScriptPosition);
}
else
{
ScriptPosition.Message(MSG_ERROR, "Invalid member identifier '%s'\n", Identifier.GetChars());
}
}
// now check the global identifiers.
else if ((sym = ctx.FindGlobal(Identifier)) != NULL)
{
if (sym->IsKindOf(RUNTIME_CLASS(PSymbolConst)))
{
ScriptPosition.Message(MSG_DEBUGLOG, "Resolving name '%s' as global constant\n", Identifier.GetChars());
newex = FxConstant::MakeConstant(sym, ScriptPosition);
}
else if (sym->IsKindOf(RUNTIME_CLASS(PSymbolVariable))) // global variables will always be native
{
PSymbolVariable *vsym = static_cast<PSymbolVariable*>(sym);
ScriptPosition.Message(MSG_DEBUGLOG, "Resolving name '%s' as global variable, address %d\n", Identifier.GetChars(), vsym->offset);
newex = new FxGlobalVariable(vsym, ScriptPosition);
}
else
{
ScriptPosition.Message(MSG_ERROR, "Invalid global identifier '%s'\n", Identifier.GetChars());
}
}
/*
else if ((Class = PClass::FindClass(Identifier)))
{
pos.Message(MSG_DEBUGLOG, "Resolving name '%s' as class name\n", Identifier.GetChars());
newex = new FxClassType(Class, ScriptPosition);
}
}
*/
// also check for CVars
/*
else if ((cv = FindCVar(Identifier, NULL)) != NULL)
{
CLOG(CL_RESOLVE, LPrintf("Resolving name '%s' as cvar\n", Identifier.GetChars()));
newex = new FxCVar(cv, ScriptPosition);
}
*/
// and line specials
else if ((num = P_FindLineSpecial(Identifier, NULL, NULL)))
{
ScriptPosition.Message(MSG_DEBUGLOG, "Resolving name '%s' as line special %d\n", Identifier.GetChars(), num);
newex = new FxConstant(num, ScriptPosition);
}
else
{
ScriptPosition.Message(MSG_ERROR, "Unknown identifier '%s'", Identifier.GetChars());
newex = new FxConstant(0, ScriptPosition);
}
delete this;
return newex? newex->Resolve(ctx) : NULL;
}
//==========================================================================
//
//
//
//==========================================================================
FxSelf::FxSelf(const FScriptPosition &pos)
: FxExpression(pos)
{
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxSelf::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (!ctx.cls)
{
// can't really happen with DECORATE's expression evaluator.
ScriptPosition.Message(MSG_ERROR, "self used outside of a member function");
delete this;
return NULL;
}
ValueType = ctx.cls;
ValueType.Type = VAL_Object;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpVal FxSelf::EvalExpression (AActor *self)
{
ExpVal ret;
ret.Type = VAL_Object;
ret.pointer = self;
return ret;
}
ExpEmit FxSelf::Emit(VMFunctionBuilder *build)
{
// self is always the first pointer passed to the function;
ExpEmit me(0, REGT_POINTER);
me.Fixed = true;
return me;
}
//==========================================================================
//
//
//
//==========================================================================
FxGlobalVariable::FxGlobalVariable(PSymbolVariable *mem, const FScriptPosition &pos)
: FxExpression(pos)
{
var = mem;
AddressRequested = false;
}
//==========================================================================
//
//
//
//==========================================================================
void FxGlobalVariable::RequestAddress()
{
AddressRequested = true;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxGlobalVariable::Resolve(FCompileContext&)
{
CHECKRESOLVED();
switch (var->ValueType.Type)
{
case VAL_Int:
case VAL_Bool:
ValueType = VAL_Int;
break;
case VAL_Float:
case VAL_Fixed:
case VAL_Angle:
ValueType = VAL_Float;
case VAL_Object:
case VAL_Class:
ValueType = var->ValueType;
break;
default:
ScriptPosition.Message(MSG_ERROR, "Invalid type for global variable");
delete this;
return NULL;
}
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpVal FxGlobalVariable::EvalExpression (AActor *self)
{
ExpVal ret;
if (!AddressRequested)
{
ret = GetVariableValue((void*)var->offset, var->ValueType);
}
else
{
ret.pointer = (void*)var->offset;
ret.Type = VAL_Pointer;
}
return ret;
}
//==========================================================================
//
//
//
//==========================================================================
FxClassMember::FxClassMember(FxExpression *x, PSymbolVariable* mem, const FScriptPosition &pos)
: FxExpression(pos)
{
classx = x;
membervar = mem;
AddressRequested = false;
//if (classx->IsDefaultObject()) Readonly=true;
}
//==========================================================================
//
//
//
//==========================================================================
FxClassMember::~FxClassMember()
{
SAFE_DELETE(classx);
}
//==========================================================================
//
//
//
//==========================================================================
void FxClassMember::RequestAddress()
{
AddressRequested = true;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxClassMember::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(classx, ctx);
if (classx->ValueType != VAL_Object && classx->ValueType != VAL_Class)
{
ScriptPosition.Message(MSG_ERROR, "Member variable requires a class or object");
delete this;
return NULL;
}
switch (membervar->ValueType.Type)
{
case VAL_Int:
case VAL_Bool:
ValueType = VAL_Int;
break;
case VAL_Float:
case VAL_Fixed:
case VAL_Angle:
ValueType = VAL_Float;
break;
case VAL_Object:
case VAL_Class:
case VAL_Array:
ValueType = membervar->ValueType;
break;
default:
ScriptPosition.Message(MSG_ERROR, "Invalid type for member variable %s", membervar->SymbolName.GetChars());
delete this;
return NULL;
}
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpVal FxClassMember::EvalExpression (AActor *self)
{
char *object = NULL;
if (classx->ValueType == VAL_Class)
{
// not implemented yet
}
else
{
object = classx->EvalExpression(self).GetPointer<char>();
}
if (object == NULL)
{
I_Error("Accessing member variable without valid object");
}
ExpVal ret;
if (!AddressRequested)
{
ret = GetVariableValue(object + membervar->offset, membervar->ValueType);
}
else
{
ret.pointer = object + membervar->offset;
ret.Type = VAL_Pointer;
}
return ret;
}
ExpEmit FxClassMember::Emit(VMFunctionBuilder *build)
{
ExpEmit obj = classx->Emit(build);
assert(obj.RegType == REGT_POINTER);
if (AddressRequested)
{
if (membervar->offset == 0)
{
return obj;
}
obj.Free(build);
ExpEmit out(build, REGT_POINTER);
build->Emit(OP_ADDA_RK, out.RegNum, obj.RegNum, build->GetConstantInt((int)membervar->offset));
return out;
}
int offsetreg = build->GetConstantInt((int)membervar->offset);
ExpEmit loc, tmp;
if (obj.Konst)
{
// If the situation where we are dereferencing a constant
// pointer is common, then it would probably be worthwhile
// to add new opcodes for those. But as of right now, I
// don't expect it to be a particularly common case.
ExpEmit newobj(build, REGT_POINTER);
build->Emit(OP_LKP, newobj.RegNum, obj.RegNum);
obj = newobj;
}
switch (membervar->ValueType.Type)
{
case VAL_Int:
case VAL_Sound:
case VAL_Name:
case VAL_Color:
loc = ExpEmit(build, REGT_INT);
build->Emit(OP_LW, loc.RegNum, obj.RegNum, offsetreg);
break;
case VAL_Bool:
loc = ExpEmit(build, REGT_INT);
// Some implementations have 1 byte bools, and others have
// 4 byte bools. For all I know, there might be some with
// 2 byte bools, too.
build->Emit((sizeof(bool) == 1 ? OP_LBU : sizeof(bool) == 2 ? OP_LHU : OP_LW),
loc.RegNum, obj.RegNum, offsetreg);
break;
case VAL_Float:
loc = ExpEmit(build, REGT_FLOAT);
build->Emit(OP_LDP, loc.RegNum, obj.RegNum, offsetreg);
break;
case VAL_Fixed:
loc = ExpEmit(build, REGT_FLOAT);
build->Emit(OP_LX, loc.RegNum, obj.RegNum, offsetreg);
break;
case VAL_Angle:
loc = ExpEmit(build, REGT_FLOAT);
tmp = ExpEmit(build, REGT_INT);
build->Emit(OP_LW, tmp.RegNum, obj.RegNum, offsetreg);
build->Emit(OP_CAST, loc.RegNum, tmp.RegNum, CAST_I2F);
build->Emit(OP_MULF_RK, loc.RegNum, loc.RegNum, build->GetConstantFloat(90.0 / ANGLE_90));
tmp.Free(build);
break;
case VAL_Object:
case VAL_Class:
loc = ExpEmit(build, REGT_POINTER);
build->Emit(OP_LO, loc.RegNum, obj.RegNum, offsetreg);
break;
default:
assert(0);
}
obj.Free(build);
return loc;
}
//==========================================================================
//
//
//
//==========================================================================
FxArrayElement::FxArrayElement(FxExpression *base, FxExpression *_index)
:FxExpression(base->ScriptPosition)
{
Array=base;
index = _index;
//AddressRequested = false;
}
//==========================================================================
//
//
//
//==========================================================================
FxArrayElement::~FxArrayElement()
{
SAFE_DELETE(Array);
SAFE_DELETE(index);
}
//==========================================================================
//
//
//
//==========================================================================
/*
void FxArrayElement::RequestAddress()
{
AddressRequested = true;
}
*/
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxArrayElement::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(Array,ctx);
SAFE_RESOLVE(index,ctx);
if (index->ValueType == VAL_Float && ctx.lax)
{
// DECORATE allows floats here so cast them to int.
index = new FxIntCast(index);
index = index->Resolve(ctx);
if (index == NULL)
{
delete this;
return NULL;
}
}
if (index->ValueType != VAL_Int)
{
ScriptPosition.Message(MSG_ERROR, "Array index must be integer");
delete this;
return NULL;
}
if (Array->ValueType != VAL_Array)
{
ScriptPosition.Message(MSG_ERROR, "'[]' can only be used with arrays.");
delete this;
return NULL;
}
ValueType = Array->ValueType.GetBaseType();
if (ValueType != VAL_Int)
{
// int arrays only for now
ScriptPosition.Message(MSG_ERROR, "Only integer arrays are supported.");
delete this;
return NULL;
}
Array->RequestAddress();
return this;
}
//==========================================================================
//
// in its current state this won't be able to do more than handle the args array.
//
//==========================================================================
ExpVal FxArrayElement::EvalExpression (AActor *self)
{
int * arraystart = Array->EvalExpression(self).GetPointer<int>();
int indexval = index->EvalExpression(self).GetInt();
if (indexval < 0 || indexval >= Array->ValueType.size)
{
I_Error("Array index out of bounds");
}
ExpVal ret;
ret.Int = arraystart[indexval];
ret.Type = VAL_Int;
return ret;
}
ExpEmit FxArrayElement::Emit(VMFunctionBuilder *build)
{
ExpEmit start = Array->Emit(build);
ExpEmit dest(build, REGT_INT);
if (start.Konst)
{
ExpEmit tmpstart(build, REGT_POINTER);
build->Emit(OP_LKP, tmpstart.RegNum, start.RegNum);
start = tmpstart;
}
if (index->isConstant())
{
int indexval = index->EvalExpression(NULL).GetInt();
if (indexval < 0 || indexval >= Array->ValueType.size)
{
I_Error("Array index out of bounds");
}
indexval <<= 2;
build->Emit(OP_LW, dest.RegNum, start.RegNum, build->GetConstantInt(indexval));
}
else
{
ExpEmit indexv(index->Emit(build));
build->Emit(OP_SLL_RI, indexv.RegNum, indexv.RegNum, 2);
build->Emit(OP_BOUND, indexv.RegNum, Array->ValueType.size);
build->Emit(OP_LW_R, dest.RegNum, start.RegNum, indexv.RegNum);
indexv.Free(build);
}
start.Free(build);
return dest;
}
//==========================================================================
//
//
//
//==========================================================================
FxFunctionCall::FxFunctionCall(FxExpression *self, FName methodname, FArgumentList *args, const FScriptPosition &pos)
: FxExpression(pos)
{
Self = self;
MethodName = methodname;
ArgList = args;
}
//==========================================================================
//
//
//
//==========================================================================
FxFunctionCall::~FxFunctionCall()
{
SAFE_DELETE(Self);
SAFE_DELETE(ArgList);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxFunctionCall::Resolve(FCompileContext& ctx)
{
// There's currently only 3 global functions.
// If this changes later, it won't be here!
if (MethodName == NAME_Sin || MethodName == NAME_Cos || MethodName == NAME_Sqrt)
{
if (Self != NULL)
{
ScriptPosition.Message(MSG_ERROR, "Global functions cannot have a self pointer");
delete this;
return NULL;
}
FxExpression *x = new FxGlobalFunctionCall(MethodName, ArgList, ScriptPosition);
ArgList = NULL;
delete this;
return x->Resolve(ctx);
}
int min, max, special;
if (MethodName == NAME_ACS_NamedExecuteWithResult || MethodName == NAME_CallACS)
{
special = -ACS_ExecuteWithResult;
min = 1;
max = 5;
}
else
{
special = P_FindLineSpecial(MethodName.GetChars(), &min, &max);
}
if (special != 0 && min >= 0)
{
int paramcount = ArgList? ArgList->Size() : 0;
if (paramcount < min)
{
ScriptPosition.Message(MSG_ERROR, "Not enough parameters for '%s' (expected %d, got %d)",
MethodName.GetChars(), min, paramcount);
delete this;
return NULL;
}
else if (paramcount > max)
{
ScriptPosition.Message(MSG_ERROR, "too many parameters for '%s' (expected %d, got %d)",
MethodName.GetChars(), max, paramcount);
delete this;
return NULL;
}
FxExpression *x = new FxActionSpecialCall(Self, special, ArgList, ScriptPosition);
ArgList = NULL;
delete this;
return x->Resolve(ctx);
}
ScriptPosition.Message(MSG_ERROR, "Call to unknown function '%s'", MethodName.GetChars());
delete this;
return NULL;
}
//==========================================================================
//
// FxActionSpecialCall
//
// If special is negative, then the first argument will be treated as a
// name for ACS_NamedExecuteWithResult.
//
//==========================================================================
FxActionSpecialCall::FxActionSpecialCall(FxExpression *self, int special, FArgumentList *args, const FScriptPosition &pos)
: FxExpression(pos)
{
Self = self;
Special = special;
ArgList = args;
}
//==========================================================================
//
//
//
//==========================================================================
FxActionSpecialCall::~FxActionSpecialCall()
{
SAFE_DELETE(Self);
SAFE_DELETE(ArgList);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxActionSpecialCall::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
bool failed = false;
if (ArgList != NULL)
{
for(unsigned i = 0; i < ArgList->Size(); i++)
{
(*ArgList)[i] = (*ArgList)[i]->Resolve(ctx);
if ((*ArgList)[i] == NULL) failed = true;
if (Special < 0 && i == 0)
{
if ((*ArgList)[i]->ValueType != VAL_Name)
{
ScriptPosition.Message(MSG_ERROR, "Name expected for parameter %d", i);
failed = true;
}
}
else if ((*ArgList)[i]->ValueType != VAL_Int)
{
if (ctx.lax && ((*ArgList)[i]->ValueType == VAL_Float))
{
(*ArgList)[i] = new FxIntCast((*ArgList)[i]);
}
else
{
ScriptPosition.Message(MSG_ERROR, "Integer expected for parameter %d", i);
failed = true;
}
}
}
if (failed)
{
delete this;
return NULL;
}
}
ValueType = VAL_Int;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpVal FxActionSpecialCall::EvalExpression (AActor *self)
{
int v[5] = {0,0,0,0,0};
int special = Special;
if (Self != NULL)
{
self = Self->EvalExpression(self).GetPointer<AActor>();
}
if (ArgList != NULL)
{
for(unsigned i = 0; i < ArgList->Size(); i++)
{
if (special < 0)
{
special = -special;
v[i] = -(*ArgList)[i]->EvalExpression(self).GetName();
}
else
{
v[i] = (*ArgList)[i]->EvalExpression(self).GetInt();
}
}
}
ExpVal ret;
ret.Type = VAL_Int;
ret.Int = P_ExecuteSpecial(special, NULL, self, false, v[0], v[1], v[2], v[3], v[4]);
return ret;
}
int DecoCallLineSpecial(VMFrameStack *stack, VMValue *param, int numparam, VMReturn *ret, int numret)
{
assert(numparam > 2 && numparam < 7);
assert(numret == 1);
assert(param[0].Type == REGT_INT);
assert(param[1].Type == REGT_POINTER);
int v[5] = { 0 };
for (int i = 2; i < numparam; ++i)
{
v[i - 2] = param[i].i;
}
ret->SetInt(LineSpecials[param[0].i](NULL, reinterpret_cast<AActor*>(param[1].a), false, v[0], v[1], v[2], v[3], v[4]));
return 1;
}
ExpEmit FxActionSpecialCall::Emit(VMFunctionBuilder *build)
{
assert(Self == NULL);
unsigned i = 0;
build->Emit(OP_PARAMI, abs(Special)); // pass special number
build->Emit(OP_PARAM, 0, REGT_POINTER, 0); // pass self
if (ArgList != NULL)
{
for (; i < ArgList->Size(); ++i)
{
FxExpression *argex = (*ArgList)[i];
if (Special < 0 && i == 0)
{
assert(argex->ValueType == VAL_Name);
assert(argex->isConstant());
EmitConstantInt(build, -argex->EvalExpression(NULL).GetName());
}
else
{
assert(argex->ValueType == VAL_Int);
if (argex->isConstant())
{
EmitConstantInt(build, argex->EvalExpression(NULL).GetInt());
}
else
{
ExpEmit arg(argex->Emit(build));
build->Emit(OP_PARAM, 0, arg.RegType, arg.RegNum);
arg.Free(build);
}
}
}
}
// Find the DecoCallLineSpecial function. If not found, create it and install it
// in Actor.
VMFunction *callfunc;
PSymbol *sym = RUNTIME_CLASS(AActor)->Symbols.FindSymbol(NAME_DecoCallLineSpecial, false);
if (sym == NULL)
{
PSymbolVMFunction *symfunc = new PSymbolVMFunction(NAME_DecoCallLineSpecial);
VMNativeFunction *calldec = new VMNativeFunction(DecoCallLineSpecial, NAME_DecoCallLineSpecial);
symfunc->Function = calldec;
sym = symfunc;
RUNTIME_CLASS(AActor)->Symbols.AddSymbol(sym);
}
assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolVMFunction)));
assert(((PSymbolVMFunction *)sym)->Function != NULL);
callfunc = ((PSymbolVMFunction *)sym)->Function;
ExpEmit dest(build, REGT_INT);
build->Emit(OP_CALL_K, build->GetConstantAddress(callfunc, ATAG_OBJECT), 2 + i, 1);
build->Emit(OP_RESULT, 0, REGT_INT, dest.RegNum);
return dest;
}
//==========================================================================
//
//
//
//==========================================================================
FxGlobalFunctionCall::FxGlobalFunctionCall(FName fname, FArgumentList *args, const FScriptPosition &pos)
: FxExpression(pos)
{
Name = fname;
ArgList = args;
}
//==========================================================================
//
//
//
//==========================================================================
FxGlobalFunctionCall::~FxGlobalFunctionCall()
{
SAFE_DELETE(ArgList);
}
FxExpression *FxGlobalFunctionCall::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (ArgList == NULL || ArgList->Size() != 1)
{
ScriptPosition.Message(MSG_ERROR, "%s only has one parameter", Name.GetChars());
delete this;
return NULL;
}
(*ArgList)[0] = (*ArgList)[0]->Resolve(ctx);
if ((*ArgList)[0] == NULL)
{
delete this;
return NULL;
}
if (!(*ArgList)[0]->ValueType.isNumeric())
{
ScriptPosition.Message(MSG_ERROR, "numeric value expected for parameter");
delete this;
return NULL;
}
if ((*ArgList)[0]->isConstant())
{
double v = (*ArgList)[0]->EvalExpression(NULL).GetFloat();
if (Name == NAME_Sqrt)
{
v = sqrt(v);
}
else
{
v *= M_PI / 180.0; // convert from degrees to radians
v = (Name == NAME_Sin) ? sin(v) : cos(v);
}
FxExpression *x = new FxConstant(v, ScriptPosition);
delete this;
return x;
}
if ((*ArgList)[0]->ValueType == VAL_Int)
{
(*ArgList)[0] = new FxFloatCast((*ArgList)[0]);
}
ValueType = VAL_Float;
return this;
}
//==========================================================================
//
//
//==========================================================================
ExpVal FxGlobalFunctionCall::EvalExpression (AActor *self)
{
double v = (*ArgList)[0]->EvalExpression(self).GetFloat();
ExpVal ret;
ret.Type = VAL_Float;
if (Name == NAME_Sqrt)
{
ret.Float = sqrt(v);
}
else
{
v *= M_PI / 180.0; // convert from degrees to radians
ret.Float = (Name == NAME_Sin) ? sin(v) : cos(v);
}
return ret;
}
ExpEmit FxGlobalFunctionCall::Emit(VMFunctionBuilder *build)
{
ExpEmit v = (*ArgList)[0]->Emit(build);
assert(!v.Konst && v.RegType == REGT_FLOAT);
build->Emit(OP_MULF_RK, v.RegNum, v.RegNum, build->GetConstantFloat(M_PI / 180.0));
build->Emit(OP_FLOP, v.RegNum, v.RegNum,
(Name == NAME_Sqrt) ? FLOP_SQRT :
(Name == NAME_Sin) ? FLOP_SIN :
FLOP_COS);
return v;
}
//==========================================================================
//
//==========================================================================
FxClassTypeCast::FxClassTypeCast(const PClass *dtype, FxExpression *x)
: FxExpression(x->ScriptPosition)
{
desttype = dtype;
basex=x;
}
//==========================================================================
//
//
//
//==========================================================================
FxClassTypeCast::~FxClassTypeCast()
{
SAFE_DELETE(basex);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxClassTypeCast::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(basex, ctx);
if (basex->ValueType != VAL_Name)
{
ScriptPosition.Message(MSG_ERROR, "Cannot convert to class type");
delete this;
return NULL;
}
if (basex->isConstant())
{
FName clsname = basex->EvalExpression(NULL).GetName();
const PClass *cls = NULL;
if (clsname != NAME_None || !ctx.isconst)
{
cls= PClass::FindClass(clsname);
if (cls == NULL)
{
if (!ctx.lax)
{
ScriptPosition.Message(MSG_ERROR,"Unknown class name '%s'", clsname.GetChars());
delete this;
return NULL;
}
// Since this happens in released WADs it must pass without a terminal error... :(
ScriptPosition.Message(MSG_WARNING,
"Unknown class name '%s'",
clsname.GetChars(), desttype->TypeName.GetChars());
}
else
{
if (!cls->IsDescendantOf(desttype))
{
ScriptPosition.Message(MSG_ERROR,"class '%s' is not compatible with '%s'", clsname.GetChars(), desttype->TypeName.GetChars());
delete this;
return NULL;
}
}
ScriptPosition.Message(MSG_DEBUG,"resolving '%s' as class name", clsname.GetChars());
}
FxExpression *x = new FxConstant(cls, ScriptPosition);
delete this;
return x;
}
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpVal FxClassTypeCast::EvalExpression (AActor *self)
{
FName clsname = basex->EvalExpression(NULL).GetName();
const PClass *cls = PClass::FindClass(clsname);
if (!cls->IsDescendantOf(desttype))
{
Printf("class '%s' is not compatible with '%s'", clsname.GetChars(), desttype->TypeName.GetChars());
cls = NULL;
}
ExpVal ret;
ret.Type = VAL_Class;
ret.pointer = (void*)cls;
return ret;
}
int DecoNameToClass(VMFrameStack *stack, VMValue *param, int numparam, VMReturn *ret, int numret)
{
assert(numparam == 2);
assert(numret == 1);
assert(param[0].Type == REGT_INT);
assert(param[1].Type == REGT_POINTER);
assert(ret->RegType == REGT_POINTER);
FName clsname = ENamedName(param[0].i);
const PClass *cls = PClass::FindClass(clsname);
const PClass *desttype = reinterpret_cast<PClass *>(param[0].a);
if (!cls->IsDescendantOf(desttype))
{
Printf("class '%s' is not compatible with '%s'", clsname.GetChars(), desttype->TypeName.GetChars());
cls = NULL;
}
ret->SetPointer(const_cast<PClass *>(cls), ATAG_OBJECT);
return 1;
}
ExpEmit FxClassTypeCast::Emit(VMFunctionBuilder *build)
{
if (basex->ValueType != VAL_Name)
{
return ExpEmit(build->GetConstantAddress(NULL, ATAG_OBJECT), REGT_POINTER, true);
}
ExpEmit clsname = basex->Emit(build);
assert(!clsname.Konst);
ExpEmit dest(build, REGT_POINTER);
build->Emit(OP_PARAM, 0, clsname.RegType, clsname.RegNum);
build->Emit(OP_PARAM, 0, REGT_POINTER | REGT_KONST, build->GetConstantAddress(const_cast<PClass *>(desttype), ATAG_OBJECT));
// Find the DecoNameToClass function. If not found, create it and install it
// in Actor.
VMFunction *callfunc;
PSymbol *sym = RUNTIME_CLASS(AActor)->Symbols.FindSymbol(NAME_DecoNameToClass, false);
if (sym == NULL)
{
PSymbolVMFunction *symfunc = new PSymbolVMFunction(NAME_DecoNameToClass);
VMNativeFunction *calldec = new VMNativeFunction(DecoNameToClass, NAME_DecoNameToClass);
symfunc->Function = calldec;
sym = symfunc;
RUNTIME_CLASS(AActor)->Symbols.AddSymbol(sym);
}
assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolVMFunction)));
assert(((PSymbolVMFunction *)sym)->Function != NULL);
callfunc = ((PSymbolVMFunction *)sym)->Function;
build->Emit(OP_CALL_K, build->GetConstantAddress(callfunc, ATAG_OBJECT), 2, 1);
build->Emit(OP_RESULT, 0, REGT_POINTER, dest.RegNum);
clsname.Free(build);
return dest;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxStateByIndex::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
if (ctx.cls->NumOwnedStates == 0)
{
// This can't really happen
assert(false);
}
if (ctx.cls->NumOwnedStates <= index)
{
ScriptPosition.Message(MSG_ERROR, "%s: Attempt to jump to non existing state index %d",
ctx.cls->TypeName.GetChars(), index);
delete this;
return NULL;
}
FxExpression *x = new FxConstant(ctx.cls->OwnedStates + index, ScriptPosition);
delete this;
return x;
}
//==========================================================================
//
//
//
//==========================================================================
FxMultiNameState::FxMultiNameState(const char *_statestring, const FScriptPosition &pos)
:FxExpression(pos)
{
FName scopename;
FString statestring = _statestring;
int scopeindex = statestring.IndexOf("::");
if (scopeindex >= 0)
{
scopename = FName(statestring, scopeindex, false);
statestring = statestring.Right(statestring.Len() - scopeindex - 2);
}
else
{
scopename = NULL;
}
names = MakeStateNameList(statestring);
names.Insert(0, scopename);
scope = NULL;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxMultiNameState::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
if (names[0] == NAME_None)
{
scope = NULL;
}
else if (names[0] == NAME_Super)
{
scope = dyn_cast<PClassActor>(ctx.cls->ParentClass);
}
else
{
scope = PClass::FindActor(names[0]);
if (scope == NULL)
{
ScriptPosition.Message(MSG_ERROR, "Unknown class '%s' in state label", names[0].GetChars());
delete this;
return NULL;
}
else if (!scope->IsDescendantOf(ctx.cls))
{
ScriptPosition.Message(MSG_ERROR, "'%s' is not an ancestor of '%s'", names[0].GetChars(),ctx.cls->TypeName.GetChars());
delete this;
return NULL;
}
}
if (scope != NULL)
{
FState *destination = NULL;
// If the label is class specific we can resolve it right here
if (names[1] != NAME_None)
{
destination = scope->FindState(names.Size()-1, &names[1], false);
if (destination == NULL)
{
ScriptPosition.Message(ctx.lax? MSG_WARNING:MSG_ERROR, "Unknown state jump destination");
if (!ctx.lax)
{
delete this;
return NULL;
}
return this;
}
}
FxExpression *x = new FxConstant(destination, ScriptPosition);
delete this;
return x;
}
names.Delete(0);
names.ShrinkToFit();
ValueType = VAL_State;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpVal FxMultiNameState::EvalExpression (AActor *self)
{
ExpVal ret;
ret.Type = VAL_State;
ret.pointer = self->GetClass()->FindState(names.Size(), &names[0]);
if (ret.pointer == NULL)
{
const char *dot="";
Printf("Jump target '");
for (unsigned int i=0;i<names.Size();i++)
{
Printf("%s%s", dot, names[i].GetChars());
dot = ".";
}
Printf("' not found in %s\n", self->GetClass()->TypeName.GetChars());
}
return ret;
}
int DecoFindMultiNameState(VMFrameStack *stack, VMValue *param, int numparam, VMReturn *ret, int numret)
{
assert(numparam > 1);
assert(numret == 1);
assert(ret->RegType == REGT_POINTER);
FName *names = (FName *)alloca((numparam - 1) * sizeof(FName));
for (int i = 1; i < numparam; ++i)
{
PARAM_NAME_AT(i, zaname);
names[i - 1] = zaname;
}
PARAM_OBJECT_AT(0, self, AActor);
FState *state = self->GetClass()->FindState(numparam - 1, names);
if (state == NULL)
{
const char *dot = "";
Printf("Jump target '");
for (int i = 0; i < numparam - 1; i++)
{
Printf("%s%s", dot, names[i].GetChars());
dot = ".";
}
Printf("' not found in %s\n", self->GetClass()->TypeName.GetChars());
}
ret->SetPointer(state, ATAG_STATE);
return 1;
}
ExpEmit FxMultiNameState::Emit(VMFunctionBuilder *build)
{
ExpEmit dest(build, REGT_POINTER);
build->Emit(OP_PARAM, 0, REGT_POINTER, 1); // pass stateowner
for (unsigned i = 0; i < names.Size(); ++i)
{
EmitConstantInt(build, names[i]);
}
// Find the DecoFindMultiNameState function. If not found, create it and install it
// in Actor.
VMFunction *callfunc;
PSymbol *sym = RUNTIME_CLASS(AActor)->Symbols.FindSymbol(NAME_DecoFindMultiNameState, false);
if (sym == NULL)
{
PSymbolVMFunction *symfunc = new PSymbolVMFunction(NAME_DecoFindMultiNameState);
VMNativeFunction *calldec = new VMNativeFunction(DecoFindMultiNameState, NAME_DecoFindMultiNameState);
symfunc->Function = calldec;
sym = symfunc;
RUNTIME_CLASS(AActor)->Symbols.AddSymbol(sym);
}
assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolVMFunction)));
assert(((PSymbolVMFunction *)sym)->Function != NULL);
callfunc = ((PSymbolVMFunction *)sym)->Function;
build->Emit(OP_CALL_K, build->GetConstantAddress(callfunc, ATAG_OBJECT), names.Size() + 1, 1);
build->Emit(OP_RESULT, 0, REGT_POINTER, dest.RegNum);
return dest;
}
//==========================================================================
//
// NOTE: I don't expect any of the following to survive Doomscript ;)
//
//==========================================================================
FStateExpressions StateParams;
//==========================================================================
//
//
//
//==========================================================================
void FStateExpressions::Clear()
{
for(unsigned i=0; i<Size(); i++)
{
if (expressions[i].expr != NULL && !expressions[i].cloned)
{
delete expressions[i].expr;
}
}
expressions.Clear();
}
//==========================================================================
//
//
//
//==========================================================================
int FStateExpressions::Add(FxExpression *x, PClassActor *o, bool c)
{
int idx = expressions.Reserve(1);
FStateExpression &exp = expressions[idx];
exp.expr = x;
exp.owner = o;
exp.constant = c;
exp.cloned = false;
return idx;
}
//==========================================================================
//
//
//
//==========================================================================
int FStateExpressions::Reserve(int num, PClassActor *cls)
{
int idx = expressions.Reserve(num);
FStateExpression *exp = &expressions[idx];
for(int i = 0; i < num; i++)
{
exp[i].expr = NULL;
exp[i].owner = cls;
exp[i].constant = false;
exp[i].cloned = false;
}
return idx;
}
//==========================================================================
//
//
//
//==========================================================================
void FStateExpressions::Set(int num, FxExpression *x, bool cloned)
{
if (num >= 0 && num < int(Size()))
{
assert(expressions[num].expr == NULL || expressions[num].cloned);
expressions[num].expr = x;
expressions[num].cloned = cloned;
}
}
//==========================================================================
//
//
//
//==========================================================================
void FStateExpressions::Copy(int dest, int src, int cnt)
{
for(int i=0; i<cnt; i++)
{
// For now set only a reference because these expressions may change when being resolved
expressions[dest+i].expr = (FxExpression*)intptr_t(src+i);
expressions[dest+i].cloned = true;
}
}
//==========================================================================
//
//
//
//==========================================================================
int FStateExpressions::ResolveAll()
{
int errorcount = 0;
FCompileContext ctx;
ctx.lax = true;
for(unsigned i=0; i<Size(); i++)
{
if (expressions[i].cloned)
{
// Now that everything coming before has been resolved we may copy the actual pointer.
unsigned ii = unsigned((intptr_t)expressions[i].expr);
expressions[i].expr = expressions[ii].expr;
}
else if (expressions[i].expr != NULL)
{
ctx.cls = expressions[i].owner;
ctx.isconst = expressions[i].constant;
expressions[i].expr = expressions[i].expr->Resolve(ctx);
if (expressions[i].expr == NULL)
{
errorcount++;
}
else if (expressions[i].constant && !expressions[i].expr->isConstant())
{
expressions[i].expr->ScriptPosition.Message(MSG_ERROR, "Constant expression expected");
errorcount++;
}
}
}
for(unsigned i=0; i<Size(); i++)
{
if (expressions[i].expr != NULL)
{
if (!expressions[i].expr->isresolved)
{
expressions[i].expr->ScriptPosition.Message(MSG_ERROR, "Expression at index %d not resolved\n", i);
errorcount++;
}
}
}
return errorcount;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FStateExpressions::Get(int num)
{
if (num >= 0 && num < int(Size()))
return expressions[num].expr;
return NULL;
}