qzdoom-gpl/src/p_sectors.cpp
Christoph Oelckers 386c00f17e - scriptified ASoundEnvironment.
This also exposes the functionality as a member function of Sector for easier script access.
2017-01-14 11:43:08 +01:00

2382 lines
56 KiB
C++

// Emacs style mode select -*- C++ -*-
//-----------------------------------------------------------------------------
//
// $Id:$
//
// Copyright (C) 1993-1996 by id Software, Inc.
//
// This source is available for distribution and/or modification
// only under the terms of the DOOM Source Code License as
// published by id Software. All rights reserved.
//
// The source is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// FITNESS FOR A PARTICULAR PURPOSE. See the DOOM Source Code License
// for more details.
//
// $Log:$
//
// DESCRIPTION:
// Sector utility functions.
//
//-----------------------------------------------------------------------------
#include "p_spec.h"
#include "p_lnspec.h"
#include "c_cvars.h"
#include "doomstat.h"
#include "g_level.h"
#include "nodebuild.h"
#include "p_terrain.h"
#include "po_man.h"
#include "serializer.h"
#include "r_utility.h"
#include "a_sharedglobal.h"
#include "p_local.h"
#include "r_sky.h"
#include "r_data/colormaps.h"
#include "g_levellocals.h"
#include "virtual.h"
// [RH]
// P_NextSpecialSector()
//
// Returns the next special sector attached to this sector
// with a certain special.
sector_t *sector_t::NextSpecialSector (int type, sector_t *nogood) const
{
sector_t *tsec;
for (auto ln : Lines)
{
if (NULL != (tsec = getNextSector (ln, this)) &&
tsec != nogood &&
tsec->special == type)
{
return tsec;
}
}
return NULL;
}
DEFINE_ACTION_FUNCTION(_Sector, NextSpecialSector)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(type);
PARAM_POINTER(nogood, sector_t);
ACTION_RETURN_POINTER(self->NextSpecialSector(type, nogood));
}
//
// P_FindLowestFloorSurrounding()
// FIND LOWEST FLOOR HEIGHT IN SURROUNDING SECTORS
//
double sector_t::FindLowestFloorSurrounding (vertex_t **v) const
{
sector_t *other;
double floor;
double ofloor;
vertex_t *spot;
if (Lines.Size() == 0) return GetPlaneTexZ(sector_t::floor);
spot = Lines[0]->v1;
floor = floorplane.ZatPoint(spot);
for (auto check : Lines)
{
if (NULL != (other = getNextSector (check, this)))
{
ofloor = other->floorplane.ZatPoint (check->v1);
if (ofloor < floor && ofloor < floorplane.ZatPoint (check->v1))
{
floor = ofloor;
spot = check->v1;
}
ofloor = other->floorplane.ZatPoint (check->v2);
if (ofloor < floor && ofloor < floorplane.ZatPoint (check->v2))
{
floor = ofloor;
spot = check->v2;
}
}
}
if (v != NULL)
*v = spot;
return floor;
}
DEFINE_ACTION_FUNCTION(_Sector, FindLowestFloorSurrounding)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
vertex_t *v;
double h = self->FindLowestFloorSurrounding(&v);
if (numret > 0) ret[0].SetFloat(h);
if (numret > 1) ret[1].SetPointer(v, ATAG_GENERIC);
return numret;
}
//
// P_FindHighestFloorSurrounding()
// FIND HIGHEST FLOOR HEIGHT IN SURROUNDING SECTORS
//
double sector_t::FindHighestFloorSurrounding (vertex_t **v) const
{
sector_t *other;
double floor;
double ofloor;
vertex_t *spot;
if (Lines.Size() == 0) return GetPlaneTexZ(sector_t::floor);
spot = Lines[0]->v1;
floor = -FLT_MAX;
for (auto check : Lines)
{
if (NULL != (other = getNextSector (check, this)))
{
ofloor = other->floorplane.ZatPoint (check->v1);
if (ofloor > floor)
{
floor = ofloor;
spot = check->v1;
}
ofloor = other->floorplane.ZatPoint (check->v2);
if (ofloor > floor)
{
floor = ofloor;
spot = check->v2;
}
}
}
if (v != NULL)
*v = spot;
return floor;
}
DEFINE_ACTION_FUNCTION(_Sector, FindHighestFloorSurrounding)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
vertex_t *v;
double h = self->FindHighestFloorSurrounding(&v);
if (numret > 0) ret[0].SetFloat(h);
if (numret > 1) ret[1].SetPointer(v, ATAG_GENERIC);
return numret;
}
//
// P_FindNextHighestFloor()
//
// Passed a sector and a floor height, returns the fixed point value
// of the smallest floor height in a surrounding sector larger than
// the floor height passed. If no such height exists the floorheight
// passed is returned.
//
// Rewritten by Lee Killough to avoid fixed array and to be faster
//
double sector_t::FindNextHighestFloor (vertex_t **v) const
{
double height;
double heightdiff;
double ofloor, floor;
sector_t *other;
vertex_t *spot;
if (Lines.Size() == 0) return GetPlaneTexZ(sector_t::floor);
spot = Lines[0]->v1;
height = floorplane.ZatPoint(spot);
heightdiff = FLT_MAX;
for (auto check : Lines)
{
if (NULL != (other = getNextSector (check, this)))
{
ofloor = other->floorplane.ZatPoint (check->v1);
floor = floorplane.ZatPoint (check->v1);
if (ofloor > floor && ofloor - floor < heightdiff && !IsLinked(other, false))
{
heightdiff = ofloor - floor;
height = ofloor;
spot = check->v1;
}
ofloor = other->floorplane.ZatPoint (check->v2);
floor = floorplane.ZatPoint (check->v2);
if (ofloor > floor && ofloor - floor < heightdiff && !IsLinked(other, false))
{
heightdiff = ofloor - floor;
height = ofloor;
spot = check->v2;
}
}
}
if (v != NULL)
*v = spot;
return height;
}
DEFINE_ACTION_FUNCTION(_Sector, FindNextHighestFloor)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
vertex_t *v;
double h = self->FindNextHighestFloor(&v);
if (numret > 0) ret[0].SetFloat(h);
if (numret > 1) ret[1].SetPointer(v, ATAG_GENERIC);
return numret;
}
//
// P_FindNextLowestFloor()
//
// Passed a sector and a floor height, returns the fixed point value
// of the largest floor height in a surrounding sector smaller than
// the floor height passed. If no such height exists the floorheight
// passed is returned.
//
// jff 02/03/98 Twiddled Lee's P_FindNextHighestFloor to make this
//
double sector_t::FindNextLowestFloor (vertex_t **v) const
{
double height;
double heightdiff;
double ofloor, floor;
sector_t *other;
vertex_t *spot;
if (Lines.Size() == 0) return GetPlaneTexZ(sector_t::floor);
spot = Lines[0]->v1;
height = floorplane.ZatPoint (spot);
heightdiff = FLT_MAX;
for (auto check : Lines)
{
if (NULL != (other = getNextSector (check, this)))
{
ofloor = other->floorplane.ZatPoint (check->v1);
floor = floorplane.ZatPoint (check->v1);
if (ofloor < floor && floor - ofloor < heightdiff && !IsLinked(other, false))
{
heightdiff = floor - ofloor;
height = ofloor;
spot = check->v1;
}
ofloor = other->floorplane.ZatPoint (check->v2);
floor = floorplane.ZatPoint(check->v2);
if (ofloor < floor && floor - ofloor < heightdiff && !IsLinked(other, false))
{
heightdiff = floor - ofloor;
height = ofloor;
spot = check->v2;
}
}
}
if (v != NULL)
*v = spot;
return height;
}
DEFINE_ACTION_FUNCTION(_Sector, FindNextLowestFloor)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
vertex_t *v;
double h = self->FindNextLowestFloor(&v);
if (numret > 0) ret[0].SetFloat(h);
if (numret > 1) ret[1].SetPointer(v, ATAG_GENERIC);
return numret;
}
//
// P_FindNextLowestCeiling()
//
// Passed a sector and a ceiling height, returns the fixed point value
// of the largest ceiling height in a surrounding sector smaller than
// the ceiling height passed. If no such height exists the ceiling height
// passed is returned.
//
// jff 02/03/98 Twiddled Lee's P_FindNextHighestFloor to make this
//
double sector_t::FindNextLowestCeiling (vertex_t **v) const
{
double height;
double heightdiff;
double oceil, ceil;
sector_t *other;
vertex_t *spot;
if (Lines.Size() == 0) return GetPlaneTexZ(sector_t::floor);
spot = Lines[0]->v1;
height = ceilingplane.ZatPoint(spot);
heightdiff = FLT_MAX;
for (auto check : Lines)
{
if (NULL != (other = getNextSector (check, this)))
{
oceil = other->ceilingplane.ZatPoint(check->v1);
ceil = ceilingplane.ZatPoint(check->v1);
if (oceil < ceil && ceil - oceil < heightdiff && !IsLinked(other, true))
{
heightdiff = ceil - oceil;
height = oceil;
spot = check->v1;
}
oceil = other->ceilingplane.ZatPoint(check->v2);
ceil = ceilingplane.ZatPoint(check->v2);
if (oceil < ceil && ceil - oceil < heightdiff && !IsLinked(other, true))
{
heightdiff = ceil - oceil;
height = oceil;
spot = check->v2;
}
}
}
if (v != NULL)
*v = spot;
return height;
}
DEFINE_ACTION_FUNCTION(_Sector, FindNextLowestCeiling)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
vertex_t *v;
double h = self->FindNextLowestCeiling(&v);
if (numret > 0) ret[0].SetFloat(h);
if (numret > 1) ret[1].SetPointer(v, ATAG_GENERIC);
return numret;
}
//
// P_FindNextHighestCeiling()
//
// Passed a sector and a ceiling height, returns the fixed point value
// of the smallest ceiling height in a surrounding sector larger than
// the ceiling height passed. If no such height exists the ceiling height
// passed is returned.
//
// jff 02/03/98 Twiddled Lee's P_FindNextHighestFloor to make this
//
double sector_t::FindNextHighestCeiling (vertex_t **v) const
{
double height;
double heightdiff;
double oceil, ceil;
sector_t *other;
vertex_t *spot;
if (Lines.Size() == 0) return GetPlaneTexZ(sector_t::ceiling);
spot = Lines[0]->v1;
height = ceilingplane.ZatPoint(spot);
heightdiff = FLT_MAX;
for (auto check : Lines)
{
if (NULL != (other = getNextSector (check, this)))
{
oceil = other->ceilingplane.ZatPoint(check->v1);
ceil = ceilingplane.ZatPoint(check->v1);
if (oceil > ceil && oceil - ceil < heightdiff && !IsLinked(other, true))
{
heightdiff = oceil - ceil;
height = oceil;
spot = check->v1;
}
oceil = other->ceilingplane.ZatPoint(check->v2);
ceil = ceilingplane.ZatPoint(check->v2);
if (oceil > ceil && oceil - ceil < heightdiff && !IsLinked(other, true))
{
heightdiff = oceil - ceil;
height = oceil;
spot = check->v2;
}
}
}
if (v != NULL)
*v = spot;
return height;
}
DEFINE_ACTION_FUNCTION(_Sector, FindNextHighestCeiling)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
vertex_t *v;
double h = self->FindNextHighestCeiling(&v);
if (numret > 0) ret[0].SetFloat(h);
if (numret > 1) ret[1].SetPointer(v, ATAG_GENERIC);
return numret;
}
//
// FIND LOWEST CEILING IN THE SURROUNDING SECTORS
//
double sector_t::FindLowestCeilingSurrounding (vertex_t **v) const
{
double height;
double oceil;
sector_t *other;
vertex_t *spot;
if (Lines.Size() == 0) return GetPlaneTexZ(sector_t::ceiling);
spot = Lines[0]->v1;
height = FLT_MAX;
for (auto check : Lines)
{
if (NULL != (other = getNextSector (check, this)))
{
oceil = other->ceilingplane.ZatPoint(check->v1);
if (oceil < height)
{
height = oceil;
spot = check->v1;
}
oceil = other->ceilingplane.ZatPoint(check->v2);
if (oceil < height)
{
height = oceil;
spot = check->v2;
}
}
}
if (v != NULL)
*v = spot;
return height;
}
DEFINE_ACTION_FUNCTION(_Sector, FindLowestCeilingSurrounding)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
vertex_t *v;
double h = self->FindLowestCeilingSurrounding(&v);
if (numret > 0) ret[0].SetFloat(h);
if (numret > 1) ret[1].SetPointer(v, ATAG_GENERIC);
return numret;
}
//
// FIND HIGHEST CEILING IN THE SURROUNDING SECTORS
//
double sector_t::FindHighestCeilingSurrounding (vertex_t **v) const
{
double height;
double oceil;
sector_t *other;
vertex_t *spot;
if (Lines.Size() == 0) return GetPlaneTexZ(sector_t::ceiling);
spot = Lines[0]->v1;
height = -FLT_MAX;
for (auto check : Lines)
{
if (NULL != (other = getNextSector (check, this)))
{
oceil = other->ceilingplane.ZatPoint(check->v1);
if (oceil > height)
{
height = oceil;
spot = check->v1;
}
oceil = other->ceilingplane.ZatPoint(check->v2);
if (oceil > height)
{
height = oceil;
spot = check->v2;
}
}
}
if (v != NULL)
*v = spot;
return height;
}
DEFINE_ACTION_FUNCTION(_Sector, FindHighestCeilingSurrounding)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
vertex_t *v;
double h = self->FindHighestCeilingSurrounding(&v);
if (numret > 0) ret[0].SetFloat(h);
if (numret > 1) ret[1].SetPointer(v, ATAG_GENERIC);
return numret;
}
//
// P_FindShortestTextureAround()
//
// Passed a sector number, returns the shortest lower texture on a
// linedef bounding the sector.
//
// jff 02/03/98 Add routine to find shortest lower texture
//
static inline void CheckShortestTex (FTextureID texnum, double &minsize)
{
if (texnum.isValid() || (texnum.isNull() && (i_compatflags & COMPATF_SHORTTEX)))
{
FTexture *tex = TexMan[texnum];
if (tex != NULL)
{
double h = tex->GetScaledHeight();
if (h < minsize)
{
minsize = h;
}
}
}
}
double sector_t::FindShortestTextureAround () const
{
double minsize = FLT_MAX;
for (auto check : Lines)
{
if (check->flags & ML_TWOSIDED)
{
CheckShortestTex (check->sidedef[0]->GetTexture(side_t::bottom), minsize);
CheckShortestTex (check->sidedef[1]->GetTexture(side_t::bottom), minsize);
}
}
return minsize < FLT_MAX ? minsize : TexMan[0]->GetHeight();
}
DEFINE_ACTION_FUNCTION(_Sector, FindShortestTextureAround)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
double h = self->FindShortestTextureAround();
ACTION_RETURN_FLOAT(h);
}
//
// P_FindShortestUpperAround()
//
// Passed a sector number, returns the shortest upper texture on a
// linedef bounding the sector.
//
// Note: If no upper texture exists MAXINT is returned.
//
// jff 03/20/98 Add routine to find shortest upper texture
//
double sector_t::FindShortestUpperAround () const
{
double minsize = FLT_MAX;
for (auto check : Lines)
{
if (check->flags & ML_TWOSIDED)
{
CheckShortestTex (check->sidedef[0]->GetTexture(side_t::top), minsize);
CheckShortestTex (check->sidedef[1]->GetTexture(side_t::top), minsize);
}
}
return minsize < FLT_MAX ? minsize : TexMan[0]->GetHeight();
}
DEFINE_ACTION_FUNCTION(_Sector, FindShortestUpperAround)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
double h = self->FindShortestUpperAround();
ACTION_RETURN_FLOAT(h);
}
//
// P_FindModelFloorSector()
//
// Passed a floor height and a sector number, return a pointer to a
// a sector with that floor height across the lowest numbered two sided
// line surrounding the sector.
//
// Note: If no sector at that height bounds the sector passed, return NULL
//
// jff 02/03/98 Add routine to find numeric model floor
// around a sector specified by sector number
// jff 3/14/98 change first parameter to plain height to allow call
// from routine not using floormove_t
//
sector_t *sector_t::FindModelFloorSector (double floordestheight) const
{
sector_t *sec;
for (auto check : Lines)
{
sec = getNextSector (check, this);
if (sec != NULL &&
(sec->floorplane.ZatPoint(check->v1) == floordestheight ||
sec->floorplane.ZatPoint(check->v2) == floordestheight))
{
return sec;
}
}
return NULL;
}
DEFINE_ACTION_FUNCTION(_Sector, FindModelFloorSector)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_FLOAT(fdh);
auto h = self->FindModelFloorSector(fdh);
ACTION_RETURN_POINTER(h);
}
//
// P_FindModelCeilingSector()
//
// Passed a ceiling height and a sector number, return a pointer to a
// a sector with that ceiling height across the lowest numbered two sided
// line surrounding the sector.
//
// Note: If no sector at that height bounds the sector passed, return NULL
//
// jff 02/03/98 Add routine to find numeric model ceiling
// around a sector specified by sector number
// used only from generalized ceiling types
// jff 3/14/98 change first parameter to plain height to allow call
// from routine not using ceiling_t
//
sector_t *sector_t::FindModelCeilingSector (double floordestheight) const
{
sector_t *sec;
for (auto check : Lines)
{
sec = getNextSector (check, this);
if (sec != NULL &&
(sec->ceilingplane.ZatPoint(check->v1) == floordestheight ||
sec->ceilingplane.ZatPoint(check->v2) == floordestheight))
{
return sec;
}
}
return NULL;
}
DEFINE_ACTION_FUNCTION(_Sector, FindModelCeilingSector)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_FLOAT(fdh);
auto h = self->FindModelCeilingSector(fdh);
ACTION_RETURN_POINTER(h);
}
//
// Find minimum light from an adjacent sector
//
int sector_t::FindMinSurroundingLight (int min) const
{
sector_t* check;
for (auto line : Lines)
{
if (NULL != (check = getNextSector (line, this)) &&
check->lightlevel < min)
{
min = check->lightlevel;
}
}
return min;
}
DEFINE_ACTION_FUNCTION(_Sector, FindMinSurroundingLight)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(min);
auto h = self->FindMinSurroundingLight(min);
ACTION_RETURN_INT(h);
}
//
// Find the highest point on the floor of the sector
//
double sector_t::FindHighestFloorPoint (vertex_t **v) const
{
double height = -FLT_MAX;
double probeheight;
vertex_t *spot = NULL;
if (!floorplane.isSlope())
{
if (v != NULL)
{
if (Lines.Size() == 0) *v = &level.vertexes[0];
else *v = Lines[0]->v1;
}
return -floorplane.fD();
}
for (auto line : Lines)
{
probeheight = floorplane.ZatPoint(line->v1);
if (probeheight > height)
{
height = probeheight;
spot = line->v1;
}
probeheight = floorplane.ZatPoint(line->v2);
if (probeheight > height)
{
height = probeheight;
spot = line->v2;
}
}
if (v != NULL)
*v = spot;
return height;
}
DEFINE_ACTION_FUNCTION(_Sector, FindHighestFloorPoint)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
vertex_t *v;
double h = self->FindHighestFloorPoint(&v);
if (numret > 0) ret[0].SetFloat(h);
if (numret > 1) ret[1].SetPointer(v, ATAG_GENERIC);
return numret;
}
//
// Find the lowest point on the ceiling of the sector
//
double sector_t::FindLowestCeilingPoint (vertex_t **v) const
{
double height = FLT_MAX;
double probeheight;
vertex_t *spot = NULL;
if (!ceilingplane.isSlope())
{
if (v != NULL)
{
if (Lines.Size() == 0) *v = &level.vertexes[0];
else *v = Lines[0]->v1;
}
return ceilingplane.fD();
}
for (auto line : Lines)
{
probeheight = ceilingplane.ZatPoint(line->v1);
if (probeheight < height)
{
height = probeheight;
spot = line->v1;
}
probeheight = ceilingplane.ZatPoint(line->v2);
if (probeheight < height)
{
height = probeheight;
spot = line->v2;
}
}
if (v != NULL)
*v = spot;
return height;
}
DEFINE_ACTION_FUNCTION(_Sector, FindLowestCeilingPoint)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
vertex_t *v;
double h = self->FindLowestCeilingPoint(&v);
if (numret > 0) ret[0].SetFloat(h);
if (numret > 1) ret[1].SetPointer(v, ATAG_GENERIC);
return numret;
}
//=====================================================================================
//
//
//=====================================================================================
void sector_t::SetColor(int r, int g, int b, int desat)
{
PalEntry color = PalEntry (r,g,b);
ColorMap = GetSpecialLights (color, ColorMap->Fade, desat);
P_RecalculateAttachedLights(this);
}
DEFINE_ACTION_FUNCTION(_Sector, SetColor)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_COLOR(color);
PARAM_INT(desat);
self->ColorMap = GetSpecialLights(color, self->ColorMap->Fade, desat);
P_RecalculateAttachedLights(self);
return 0;
}
//=====================================================================================
//
//
//=====================================================================================
void sector_t::SetFade(int r, int g, int b)
{
PalEntry fade = PalEntry (r,g,b);
ColorMap = GetSpecialLights (ColorMap->Color, fade, ColorMap->Desaturate);
P_RecalculateAttachedLights(this);
}
DEFINE_ACTION_FUNCTION(_Sector, SetFade)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_COLOR(fade);
self->ColorMap = GetSpecialLights(self->ColorMap->Color, fade, self->ColorMap->Desaturate);
P_RecalculateAttachedLights(self);
return 0;
}
//===========================================================================
//
// sector_t :: ClosestPoint
//
// Given a point (x,y), returns the point (ox,oy) on the sector's defining
// lines that is nearest to (x,y).
//
//===========================================================================
void sector_t::ClosestPoint(const DVector2 &in, DVector2 &out) const
{
double x = in.X, y = in.Y;
double bestdist = HUGE_VAL;
double bestx = 0, besty = 0;
for (auto check : Lines)
{
vertex_t *v1 = check->v1;
vertex_t *v2 = check->v2;
double a = v2->fX() - v1->fX();
double b = v2->fY() - v1->fY();
double den = a*a + b*b;
double ix, iy, dist;
if (den == 0)
{ // Line is actually a point!
ix = v1->fX();
iy = v1->fY();
}
else
{
double num = (x - v1->fX()) * a + (y - v1->fY()) * b;
double u = num / den;
if (u <= 0)
{
ix = v1->fX();
iy = v1->fY();
}
else if (u >= 1)
{
ix = v2->fX();
iy = v2->fY();
}
else
{
ix = v1->fX() + u * a;
iy = v1->fY() + u * b;
}
}
a = (ix - x);
b = (iy - y);
dist = a*a + b*b;
if (dist < bestdist)
{
bestdist = dist;
bestx = ix;
besty = iy;
}
}
out = { bestx, besty };
}
//=====================================================================================
//
//
//=====================================================================================
bool sector_t::PlaneMoving(int pos)
{
if (pos == floor)
return (floordata != NULL || (planes[floor].Flags & PLANEF_BLOCKED));
else
return (ceilingdata != NULL || (planes[ceiling].Flags & PLANEF_BLOCKED));
}
DEFINE_ACTION_FUNCTION(_Sector, PlaneMoving)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
ACTION_RETURN_BOOL(self->PlaneMoving(pos));
}
//=====================================================================================
//
//
//=====================================================================================
int sector_t::GetFloorLight () const
{
if (GetFlags(sector_t::floor) & PLANEF_ABSLIGHTING)
{
return GetPlaneLight(floor);
}
else
{
return ClampLight(lightlevel + GetPlaneLight(floor));
}
}
DEFINE_ACTION_FUNCTION(_Sector, GetFloorLight)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
ACTION_RETURN_INT(self->GetFloorLight());
}
//=====================================================================================
//
//
//=====================================================================================
int sector_t::GetCeilingLight () const
{
if (GetFlags(ceiling) & PLANEF_ABSLIGHTING)
{
return GetPlaneLight(ceiling);
}
else
{
return ClampLight(lightlevel + GetPlaneLight(ceiling));
}
}
DEFINE_ACTION_FUNCTION(_Sector, GetCeilingLight)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
ACTION_RETURN_INT(self->GetCeilingLight());
}
//=====================================================================================
//
//
//=====================================================================================
FSectorPortal *sector_t::ValidatePortal(int which)
{
FSectorPortal *port = GetPortal(which);
if (port->mType == PORTS_SKYVIEWPOINT && port->mSkybox == nullptr) return nullptr; // A skybox without a viewpoint is just a regular sky.
if (PortalBlocksView(which)) return nullptr; // disabled or obstructed linked portal.
if ((port->mFlags & PORTSF_SKYFLATONLY) && GetTexture(which) != skyflatnum) return nullptr; // Skybox without skyflat texture
return port;
}
//=====================================================================================
//
//
//=====================================================================================
sector_t *sector_t::GetHeightSec() const
{
if (heightsec == NULL)
{
return NULL;
}
if (heightsec->MoreFlags & SECF_IGNOREHEIGHTSEC)
{
return NULL;
}
if (e && e->XFloor.ffloors.Size())
{
// If any of these fake floors render their planes, ignore heightsec.
for (unsigned i = e->XFloor.ffloors.Size(); i-- > 0; )
{
if ((e->XFloor.ffloors[i]->flags & (FF_EXISTS | FF_RENDERPLANES)) == (FF_EXISTS | FF_RENDERPLANES))
{
return NULL;
}
}
}
return heightsec;
}
DEFINE_ACTION_FUNCTION(_Sector, GetHeightSec)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
ACTION_RETURN_POINTER(self->GetHeightSec());
}
//=====================================================================================
//
//
//=====================================================================================
void sector_t::GetSpecial(secspecial_t *spec)
{
spec->special = special;
spec->damageamount = damageamount;
spec->damagetype = damagetype;
spec->damageinterval = damageinterval;
spec->leakydamage = leakydamage;
spec->Flags = Flags & SECF_SPECIALFLAGS;
}
DEFINE_ACTION_FUNCTION(_Sector, GetSpecial)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_POINTER(spec, secspecial_t);
self->GetSpecial(spec);
return 0;
}
//=====================================================================================
//
//
//=====================================================================================
void sector_t::SetSpecial(const secspecial_t *spec)
{
special = spec->special;
damageamount = spec->damageamount;
damagetype = spec->damagetype;
damageinterval = spec->damageinterval;
leakydamage = spec->leakydamage;
Flags = (Flags & ~SECF_SPECIALFLAGS) | (spec->Flags & SECF_SPECIALFLAGS);
}
DEFINE_ACTION_FUNCTION(_Sector, SetSpecial)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_POINTER(spec, secspecial_t);
self->SetSpecial(spec);
return 0;
}
//=====================================================================================
//
//
//=====================================================================================
void sector_t::TransferSpecial(sector_t *model)
{
special = model->special;
damageamount = model->damageamount;
damagetype = model->damagetype;
damageinterval = model->damageinterval;
leakydamage = model->leakydamage;
Flags = (Flags&~SECF_SPECIALFLAGS) | (model->Flags & SECF_SPECIALFLAGS);
}
DEFINE_ACTION_FUNCTION(_Sector, TransferSpecial)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_POINTER(spec, sector_t);
self->TransferSpecial(spec);
return 0;
}
//=====================================================================================
//
//
//=====================================================================================
int sector_t::GetTerrain(int pos) const
{
return terrainnum[pos] >= 0 ? terrainnum[pos] : TerrainTypes[GetTexture(pos)];
}
DEFINE_ACTION_FUNCTION(_Sector, GetTerrain)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
ACTION_RETURN_INT(self->GetTerrain(pos));
}
//=====================================================================================
//
//
//=====================================================================================
void sector_t::CheckPortalPlane(int plane)
{
if (GetPortalType(plane) == PORTS_LINKEDPORTAL)
{
double portalh = GetPortalPlaneZ(plane);
double planeh = GetPlaneTexZ(plane);
int obstructed = PLANEF_OBSTRUCTED * (plane == sector_t::floor ? planeh > portalh : planeh < portalh);
planes[plane].Flags = (planes[plane].Flags & ~PLANEF_OBSTRUCTED) | obstructed;
}
}
DEFINE_ACTION_FUNCTION(_Sector, CheckPortalPlane)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(plane);
self->CheckPortalPlane(plane);
return 0;
}
//===========================================================================
//
// Finds the highest ceiling at the given position, all portals considered
//
//===========================================================================
double sector_t::HighestCeilingAt(const DVector2 &p, sector_t **resultsec)
{
sector_t *check = this;
double planeheight = -FLT_MAX;
DVector2 pos = p;
// Continue until we find a blocking portal or a portal below where we actually are.
while (!check->PortalBlocksMovement(ceiling) && planeheight < check->GetPortalPlaneZ(ceiling))
{
pos += check->GetPortalDisplacement(ceiling);
planeheight = check->GetPortalPlaneZ(ceiling);
check = P_PointInSector(pos);
}
if (resultsec) *resultsec = check;
return check->ceilingplane.ZatPoint(pos);
}
DEFINE_ACTION_FUNCTION(_Sector, HighestCeilingAt)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_FLOAT(x);
PARAM_FLOAT(y);
sector_t *s;
double h = self->HighestCeilingAt(DVector2(x, y), &s);
if (numret > 0) ret[0].SetFloat(h);
if (numret > 1) ret[1].SetPointer(s, ATAG_GENERIC);
return numret;
}
//===========================================================================
//
// Finds the lowest floor at the given position, all portals considered
//
//===========================================================================
double sector_t::LowestFloorAt(const DVector2 &p, sector_t **resultsec)
{
sector_t *check = this;
double planeheight = FLT_MAX;
DVector2 pos = p;
// Continue until we find a blocking portal or a portal above where we actually are.
while (!check->PortalBlocksMovement(floor) && planeheight > check->GetPortalPlaneZ(floor))
{
pos += check->GetPortalDisplacement(floor);
planeheight = check->GetPortalPlaneZ(ceiling);
check = P_PointInSector(pos);
}
if (resultsec) *resultsec = check;
return check->floorplane.ZatPoint(pos);
}
DEFINE_ACTION_FUNCTION(_Sector, LowestFloorAt)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_FLOAT(x);
PARAM_FLOAT(y);
sector_t *s;
double h = self->LowestFloorAt(DVector2(x, y), &s);
if (numret > 0) ret[0].SetFloat(h);
if (numret > 1) ret[1].SetPointer(s, ATAG_GENERIC);
return numret;
}
//=====================================================================================
//
//
//=====================================================================================
double sector_t::NextHighestCeilingAt(double x, double y, double bottomz, double topz, int flags, sector_t **resultsec, F3DFloor **resultffloor)
{
sector_t *sec = this;
double planeheight = -FLT_MAX;
while (true)
{
// Looking through planes from bottom to top
double realceil = sec->ceilingplane.ZatPoint(x, y);
for (int i = sec->e->XFloor.ffloors.Size() - 1; i >= 0; --i)
{
F3DFloor *rover = sec->e->XFloor.ffloors[i];
if (!(rover->flags & FF_SOLID) || !(rover->flags & FF_EXISTS)) continue;
double ff_bottom = rover->bottom.plane->ZatPoint(x, y);
double ff_top = rover->top.plane->ZatPoint(x, y);
double delta1 = bottomz - (ff_bottom + ((ff_top - ff_bottom) / 2));
double delta2 = topz - (ff_bottom + ((ff_top - ff_bottom) / 2));
if (ff_bottom < realceil && fabs(delta1) > fabs(delta2))
{
if (resultsec) *resultsec = sec;
if (resultffloor) *resultffloor = rover;
return ff_bottom;
}
}
if ((flags & FFCF_NOPORTALS) || sec->PortalBlocksMovement(ceiling) || planeheight >= sec->GetPortalPlaneZ(ceiling))
{ // Use sector's ceiling
if (resultffloor) *resultffloor = NULL;
if (resultsec) *resultsec = sec;
return realceil;
}
else
{
DVector2 pos = sec->GetPortalDisplacement(ceiling);
x += pos.X;
y += pos.Y;
planeheight = sec->GetPortalPlaneZ(ceiling);
sec = P_PointInSector(x, y);
}
}
}
DEFINE_ACTION_FUNCTION(_Sector, NextHighestCeilingAt)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_FLOAT(x);
PARAM_FLOAT(y);
PARAM_FLOAT(bottomz);
PARAM_FLOAT(topz);
PARAM_INT_DEF(flags);
sector_t *resultsec;
F3DFloor *resultff;
double resultheight = self->NextHighestCeilingAt(x, y, bottomz, topz, flags, &resultsec, &resultff);
if (numret > 2)
{
ret[2].SetPointer(resultff, ATAG_GENERIC);
numret = 3;
}
if (numret > 1)
{
ret[1].SetPointer(resultsec, ATAG_GENERIC);
}
if (numret > 0)
{
ret[0].SetFloat(resultheight);
}
return numret;
}
//=====================================================================================
//
//
//=====================================================================================
double sector_t::NextLowestFloorAt(double x, double y, double z, int flags, double steph, sector_t **resultsec, F3DFloor **resultffloor)
{
sector_t *sec = this;
double planeheight = FLT_MAX;
while (true)
{
// Looking through planes from top to bottom
unsigned numff = sec->e->XFloor.ffloors.Size();
double realfloor = sec->floorplane.ZatPoint(x, y);
for (unsigned i = 0; i < numff; ++i)
{
F3DFloor *ff = sec->e->XFloor.ffloors[i];
// either with feet above the 3D floor or feet with less than 'stepheight' map units inside
if ((ff->flags & (FF_EXISTS | FF_SOLID)) == (FF_EXISTS | FF_SOLID))
{
double ffz = ff->top.plane->ZatPoint(x, y);
double ffb = ff->bottom.plane->ZatPoint(x, y);
if (ffz > realfloor && (z >= ffz || (!(flags & FFCF_3DRESTRICT) && (ffb < z && ffz < z + steph))))
{ // This floor is beneath our feet.
if (resultsec) *resultsec = sec;
if (resultffloor) *resultffloor = ff;
return ffz;
}
}
}
if ((flags & FFCF_NOPORTALS) || sec->PortalBlocksMovement(sector_t::floor) || planeheight <= sec->GetPortalPlaneZ(floor))
{ // Use sector's floor
if (resultffloor) *resultffloor = NULL;
if (resultsec) *resultsec = sec;
return realfloor;
}
else
{
DVector2 pos = sec->GetPortalDisplacement(floor);
x += pos.X;
y += pos.Y;
planeheight = sec->GetPortalPlaneZ(floor);
sec = P_PointInSector(x, y);
}
}
}
DEFINE_ACTION_FUNCTION(_Sector, NextLowestFloorAt)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_FLOAT(x);
PARAM_FLOAT(y);
PARAM_FLOAT(z);
PARAM_INT_DEF(flags);
PARAM_FLOAT_DEF(steph);
sector_t *resultsec;
F3DFloor *resultff;
double resultheight = self->NextLowestFloorAt(x, y, z, flags, steph, &resultsec, &resultff);
if (numret > 2)
{
ret[2].SetPointer(resultff, ATAG_GENERIC);
numret = 3;
}
if (numret > 1)
{
ret[1].SetPointer(resultsec, ATAG_GENERIC);
}
if (numret > 0)
{
ret[0].SetFloat(resultheight);
}
return numret;
}
//===========================================================================
//
//
//
//===========================================================================
double sector_t::GetFriction(int plane, double *pMoveFac) const
{
if (Flags & SECF_FRICTION)
{
if (pMoveFac) *pMoveFac = movefactor;
return friction;
}
FTerrainDef *terrain = &Terrains[GetTerrain(plane)];
if (terrain->Friction != 0)
{
if (pMoveFac) *pMoveFac = terrain->MoveFactor;
return terrain->Friction;
}
else
{
if (pMoveFac) *pMoveFac = ORIG_FRICTION_FACTOR;
return ORIG_FRICTION;
}
}
DEFINE_ACTION_FUNCTION(_Sector, GetFriction)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(plane);
double mf;
double h = self->GetFriction(plane, &mf);
if (numret > 0) ret[0].SetFloat(h);
if (numret > 1) ret[1].SetFloat(mf);
return numret;
}
//===========================================================================
//
//
//
//===========================================================================
void sector_t::RemoveForceField()
{
for (auto line : Lines)
{
if (line->backsector != NULL && line->special == ForceField)
{
line->flags &= ~(ML_BLOCKING | ML_BLOCKEVERYTHING);
line->special = 0;
line->sidedef[0]->SetTexture(side_t::mid, FNullTextureID());
line->sidedef[1]->SetTexture(side_t::mid, FNullTextureID());
}
}
}
DEFINE_ACTION_FUNCTION(_Sector, RemoveForceField)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
self->RemoveForceField();
return 0;
}
//===========================================================================
//
// phares 3/12/98: End of friction effects
//
//===========================================================================
void sector_t::AdjustFloorClip() const
{
msecnode_t *node;
for (node = touching_thinglist; node; node = node->m_snext)
{
if (node->m_thing->flags2 & MF2_FLOORCLIP)
{
node->m_thing->AdjustFloorClip();
}
}
}
DEFINE_ACTION_FUNCTION(_Sector, AdjustFloorClip)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
self->AdjustFloorClip();
return 0;
}
//===========================================================================
//
//
//
//===========================================================================
bool sector_t::TriggerSectorActions(AActor *thing, int activation)
{
AActor *act = SecActTarget;
bool res = false;
while (act != nullptr)
{
AActor *next = act->tracer;
IFVIRTUALPTRNAME(act, "SectorAction", TriggerAction)
{
VMValue params[3] = { (DObject *)act, thing, activation };
VMReturn ret;
int didit;
ret.IntAt(&didit);
GlobalVMStack.Call(func, params, 3, &ret, 1, nullptr);
if (didit)
{
if (act->flags4 & MF4_STANDSTILL)
{
act->Destroy();
}
}
act = next;
res |= !!didit;
}
}
return res;
}
DEFINE_ACTION_FUNCTION(_Sector, TriggerSectorActions)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_OBJECT(thing, AActor);
PARAM_INT(activation);
ACTION_RETURN_BOOL(self->TriggerSectorActions(thing, activation));
}
//===========================================================================
//
//
//
//===========================================================================
DEFINE_ACTION_FUNCTION(_Sector, PointInSector)
{
PARAM_PROLOGUE;
PARAM_FLOAT(x);
PARAM_FLOAT(y);
ACTION_RETURN_POINTER(P_PointInSector(x, y));
}
DEFINE_ACTION_FUNCTION(_Sector, SetXOffset)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
PARAM_FLOAT(o);
self->SetXOffset(pos, o);
return 0;
}
DEFINE_ACTION_FUNCTION(_Sector, AddXOffset)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
PARAM_FLOAT(o);
self->AddXOffset(pos, o);
return 0;
}
DEFINE_ACTION_FUNCTION(_Sector, GetXOffset)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
ACTION_RETURN_FLOAT(self->GetXOffset(pos));
}
DEFINE_ACTION_FUNCTION(_Sector, SetYOffset)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
PARAM_FLOAT(o);
self->SetXOffset(pos, o);
return 0;
}
DEFINE_ACTION_FUNCTION(_Sector, AddYOffset)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
PARAM_FLOAT(o);
self->AddXOffset(pos, o);
return 0;
}
DEFINE_ACTION_FUNCTION(_Sector, GetYOffset)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
PARAM_BOOL_DEF(addbase);
ACTION_RETURN_FLOAT(self->GetYOffset(pos, addbase));
}
DEFINE_ACTION_FUNCTION(_Sector, SetXScale)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
PARAM_FLOAT(o);
self->SetXScale(pos, o);
return 0;
}
DEFINE_ACTION_FUNCTION(_Sector, GetXScale)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
ACTION_RETURN_FLOAT(self->GetXScale(pos));
}
DEFINE_ACTION_FUNCTION(_Sector, SetYScale)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
PARAM_FLOAT(o);
self->SetXScale(pos, o);
return 0;
}
DEFINE_ACTION_FUNCTION(_Sector, GetYScale)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
ACTION_RETURN_FLOAT(self->GetYScale(pos));
}
DEFINE_ACTION_FUNCTION(_Sector, SetAngle)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
PARAM_ANGLE(o);
self->SetAngle(pos, o);
return 0;
}
DEFINE_ACTION_FUNCTION(_Sector, GetAngle)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
PARAM_BOOL_DEF(addbase);
ACTION_RETURN_FLOAT(self->GetAngle(pos, addbase).Degrees);
}
DEFINE_ACTION_FUNCTION(_Sector, SetBase)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
PARAM_FLOAT(o);
PARAM_ANGLE(a);
self->SetBase(pos, o, a);
return 0;
}
DEFINE_ACTION_FUNCTION(_Sector, SetAlpha)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
PARAM_FLOAT(o);
self->SetAlpha(pos, o);
return 0;
}
DEFINE_ACTION_FUNCTION(_Sector, GetAlpha)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
ACTION_RETURN_FLOAT(self->GetAlpha(pos));
}
DEFINE_ACTION_FUNCTION(_Sector, GetFlags)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
ACTION_RETURN_INT(self->GetFlags(pos));
}
DEFINE_ACTION_FUNCTION(_Sector, GetVisFlags)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
ACTION_RETURN_INT(self->GetVisFlags(pos));
}
DEFINE_ACTION_FUNCTION(_Sector, ChangeFlags)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
PARAM_INT(a);
PARAM_INT(o);
self->ChangeFlags(pos, a, o);
return 0;
}
DEFINE_ACTION_FUNCTION(_Sector, SetPlaneLight)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
PARAM_INT(o);
self->SetPlaneLight(pos, o);
return 0;
}
DEFINE_ACTION_FUNCTION(_Sector, GetPlaneLight)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
ACTION_RETURN_INT(self->GetPlaneLight(pos));
}
class FSetTextureID : public FTextureID
{
public:
FSetTextureID(int v) : FTextureID(v) {}
};
DEFINE_ACTION_FUNCTION(_Sector, SetTexture)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
PARAM_INT(o);
PARAM_BOOL_DEF(adj);
self->SetTexture(pos, FSetTextureID(o), adj);
return 0;
}
DEFINE_ACTION_FUNCTION(_Sector, GetTexture)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
ACTION_RETURN_INT(self->GetTexture(pos).GetIndex());
}
DEFINE_ACTION_FUNCTION(_Sector, SetPlaneTexZ)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
PARAM_FLOAT(o);
PARAM_BOOL_DEF(dirty);
self->SetPlaneTexZ(pos, o, dirty);
return 0;
}
DEFINE_ACTION_FUNCTION(_Sector, GetPlaneTexZ)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
ACTION_RETURN_FLOAT(self->GetPlaneTexZ(pos));
}
DEFINE_ACTION_FUNCTION(_Sector, SetLightLevel)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(o);
self->SetLightLevel(o);
return 0;
}
DEFINE_ACTION_FUNCTION(_Sector, ChangeLightLevel)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(o);
self->ChangeLightLevel(o);
return 0;
}
DEFINE_ACTION_FUNCTION(_Sector, GetLightLevel)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
ACTION_RETURN_INT(self->GetLightLevel());
}
DEFINE_ACTION_FUNCTION(_Sector, ClearSpecial)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
self->ClearSpecial();
return 0;
}
DEFINE_ACTION_FUNCTION(_Sector, PortalBlocksView)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
ACTION_RETURN_BOOL(self->PortalBlocksView(pos));
}
DEFINE_ACTION_FUNCTION(_Sector, PortalBlocksSight)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
ACTION_RETURN_BOOL(self->PortalBlocksSight(pos));
}
DEFINE_ACTION_FUNCTION(_Sector, PortalBlocksMovement)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
ACTION_RETURN_BOOL(self->PortalBlocksMovement(pos));
}
DEFINE_ACTION_FUNCTION(_Sector, PortalBlocksSound)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
ACTION_RETURN_BOOL(self->PortalBlocksSound(pos));
}
DEFINE_ACTION_FUNCTION(_Sector, PortalIsLinked)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
ACTION_RETURN_BOOL(self->PortalIsLinked(pos));
}
DEFINE_ACTION_FUNCTION(_Sector, ClearPortal)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
self->ClearPortal(pos);
return 0;
}
DEFINE_ACTION_FUNCTION(_Sector, GetPortalPlaneZ)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
ACTION_RETURN_FLOAT(self->GetPortalPlaneZ(pos));
}
DEFINE_ACTION_FUNCTION(_Sector, GetPortalDisplacement)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
ACTION_RETURN_VEC2(self->GetPortalDisplacement(pos));
}
DEFINE_ACTION_FUNCTION(_Sector, GetPortalType)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
ACTION_RETURN_INT(self->GetPortalType(pos));
}
DEFINE_ACTION_FUNCTION(_Sector, GetOppositePortalGroup)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(pos);
ACTION_RETURN_INT(self->GetOppositePortalGroup(pos));
}
DEFINE_ACTION_FUNCTION(_Sector, CenterFloor)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
ACTION_RETURN_FLOAT(self->CenterFloor());
}
DEFINE_ACTION_FUNCTION(_Sector, CenterCeiling)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
ACTION_RETURN_FLOAT(self->CenterCeiling());
}
DEFINE_ACTION_FUNCTION(_Sector, Index)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
unsigned ndx = self->Index();
if (ndx >= level.sectors.Size())
{
// This qualifies as an array out of bounds exception. Normally it can only happen when a sector copy is concerned which scripts should not be able to create.
ThrowAbortException(X_ARRAY_OUT_OF_BOUNDS, "Accessed invalid sector");
}
ACTION_RETURN_INT(ndx);
}
DEFINE_ACTION_FUNCTION(_Sector, SetEnvironmentID)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_INT(envnum);
Zones[self->ZoneNumber].Environment = S_FindEnvironment(envnum);
return 0;
}
DEFINE_ACTION_FUNCTION(_Sector, SetEnvironment)
{
PARAM_SELF_STRUCT_PROLOGUE(sector_t);
PARAM_STRING(env);
Zones[self->ZoneNumber].Environment = S_FindEnvironment(env);
return 0;
}
//===========================================================================
//
// line_t exports
//
//===========================================================================
DEFINE_ACTION_FUNCTION(_Line, isLinePortal)
{
PARAM_SELF_STRUCT_PROLOGUE(line_t);
ACTION_RETURN_BOOL(self->isLinePortal());
}
DEFINE_ACTION_FUNCTION(_Line, isVisualPortal)
{
PARAM_SELF_STRUCT_PROLOGUE(line_t);
ACTION_RETURN_BOOL(self->isVisualPortal());
}
DEFINE_ACTION_FUNCTION(_Line, getPortalDestination)
{
PARAM_SELF_STRUCT_PROLOGUE(line_t);
ACTION_RETURN_POINTER(self->getPortalDestination());
}
DEFINE_ACTION_FUNCTION(_Line, getPortalAlignment)
{
PARAM_SELF_STRUCT_PROLOGUE(line_t);
ACTION_RETURN_INT(self->getPortalAlignment());
}
DEFINE_ACTION_FUNCTION(_Line, Index)
{
PARAM_SELF_STRUCT_PROLOGUE(line_t);
unsigned ndx = self->Index();
if (ndx >= level.lines.Size())
{
ThrowAbortException(X_ARRAY_OUT_OF_BOUNDS, "Accessed invalid line");
}
ACTION_RETURN_INT(ndx);
}
//===========================================================================
//
//
//
//===========================================================================
DEFINE_ACTION_FUNCTION(_Side, GetTexture)
{
PARAM_SELF_STRUCT_PROLOGUE(side_t);
PARAM_INT(which);
ACTION_RETURN_INT(self->GetTexture(which).GetIndex());
}
DEFINE_ACTION_FUNCTION(_Side, SetTexture)
{
PARAM_SELF_STRUCT_PROLOGUE(side_t);
PARAM_INT(which);
PARAM_INT(tex);
self->SetTexture(which, FSetTextureID(tex));
return 0;
}
DEFINE_ACTION_FUNCTION(_Side, SetTextureXOffset)
{
PARAM_SELF_STRUCT_PROLOGUE(side_t);
PARAM_INT(which);
PARAM_FLOAT(ofs);
self->SetTextureXOffset(which, ofs);
return 0;
}
DEFINE_ACTION_FUNCTION(_Side, AddTextureXOffset)
{
PARAM_SELF_STRUCT_PROLOGUE(side_t);
PARAM_INT(which);
PARAM_FLOAT(ofs);
self->AddTextureXOffset(which, ofs);
return 0;
}
DEFINE_ACTION_FUNCTION(_Side, GetTextureXOffset)
{
PARAM_SELF_STRUCT_PROLOGUE(side_t);
PARAM_INT(which);
ACTION_RETURN_FLOAT(self->GetTextureXOffset(which));
}
DEFINE_ACTION_FUNCTION(_Side, SetTextureYOffset)
{
PARAM_SELF_STRUCT_PROLOGUE(side_t);
PARAM_INT(which);
PARAM_FLOAT(ofs);
self->SetTextureYOffset(which, ofs);
return 0;
}
DEFINE_ACTION_FUNCTION(_Side, AddTextureYOffset)
{
PARAM_SELF_STRUCT_PROLOGUE(side_t);
PARAM_INT(which);
PARAM_FLOAT(ofs);
self->AddTextureYOffset(which, ofs);
return 0;
}
DEFINE_ACTION_FUNCTION(_Side, GetTextureYOffset)
{
PARAM_SELF_STRUCT_PROLOGUE(side_t);
PARAM_INT(which);
ACTION_RETURN_FLOAT(self->GetTextureYOffset(which));
}
DEFINE_ACTION_FUNCTION(_Side, SetTextureXScale)
{
PARAM_SELF_STRUCT_PROLOGUE(side_t);
PARAM_INT(which);
PARAM_FLOAT(ofs);
self->SetTextureXScale(which, ofs);
return 0;
}
DEFINE_ACTION_FUNCTION(_Side, MultiplyTextureXScale)
{
PARAM_SELF_STRUCT_PROLOGUE(side_t);
PARAM_INT(which);
PARAM_FLOAT(ofs);
self->MultiplyTextureXScale(which, ofs);
return 0;
}
DEFINE_ACTION_FUNCTION(_Side, GetTextureXScale)
{
PARAM_SELF_STRUCT_PROLOGUE(side_t);
PARAM_INT(which);
ACTION_RETURN_FLOAT(self->GetTextureXScale(which));
}
DEFINE_ACTION_FUNCTION(_Side, SetTextureYScale)
{
PARAM_SELF_STRUCT_PROLOGUE(side_t);
PARAM_INT(which);
PARAM_FLOAT(ofs);
self->SetTextureYScale(which, ofs);
return 0;
}
DEFINE_ACTION_FUNCTION(_Side, MultiplyTextureYScale)
{
PARAM_SELF_STRUCT_PROLOGUE(side_t);
PARAM_INT(which);
PARAM_FLOAT(ofs);
self->MultiplyTextureYScale(which, ofs);
return 0;
}
DEFINE_ACTION_FUNCTION(_Side, GetTextureYScale)
{
PARAM_SELF_STRUCT_PROLOGUE(side_t);
PARAM_INT(which);
ACTION_RETURN_FLOAT(self->GetTextureYScale(which));
}
DEFINE_ACTION_FUNCTION(_Side, V1)
{
PARAM_SELF_STRUCT_PROLOGUE(side_t);
ACTION_RETURN_POINTER(self->V1());
}
DEFINE_ACTION_FUNCTION(_Side, V2)
{
PARAM_SELF_STRUCT_PROLOGUE(side_t);
ACTION_RETURN_POINTER(self->V2());
}
DEFINE_ACTION_FUNCTION(_Side, Index)
{
PARAM_SELF_STRUCT_PROLOGUE(side_t);
ACTION_RETURN_INT(self->Index());
}
DEFINE_ACTION_FUNCTION(_Vertex, Index)
{
PARAM_SELF_STRUCT_PROLOGUE(vertex_t);
ACTION_RETURN_INT(self->Index());
}
//===========================================================================
//
//
//
//===========================================================================
FSerializer &Serialize(FSerializer &arc, const char *key, secspecial_t &spec, secspecial_t *def)
{
if (arc.BeginObject(key))
{
arc("special", spec.special)
("damageamount", spec.damageamount)
("damagetype", spec.damagetype)
("damageinterval", spec.damageinterval)
("leakydamage", spec.leakydamage)
("flags", spec.Flags)
.EndObject();
}
return arc;
}
//===========================================================================
//
//
//
//===========================================================================
bool secplane_t::CopyPlaneIfValid (secplane_t *dest, const secplane_t *opp) const
{
bool copy = false;
// If the planes do not have matching slopes, then always copy them
// because clipping would require creating new sectors.
if (Normal() != dest->Normal())
{
copy = true;
}
else if (opp->Normal() != -dest->Normal())
{
if (fD() < dest->fD())
{
copy = true;
}
}
else if (fD() < dest->fD() && fD() > -opp->fD())
{
copy = true;
}
if (copy)
{
*dest = *this;
}
return copy;
}
//==========================================================================
//
// P_AlignFlat
//
//==========================================================================
bool P_AlignFlat (int linenum, int side, int fc)
{
line_t *line = &level.lines[linenum];
sector_t *sec = side ? line->backsector : line->frontsector;
if (!sec)
return false;
DAngle angle = line->Delta().Angle();
DAngle norm = angle - 90;
double dist = -(norm.Cos() * line->v1->fX() + norm.Sin() * line->v1->fY());
if (side)
{
angle += 180.;
dist = -dist;
}
sec->SetBase(fc, dist, -angle);
return true;
}
//==========================================================================
//
// P_BuildPolyBSP
//
//==========================================================================
static FNodeBuilder::FLevel PolyNodeLevel;
static FNodeBuilder PolyNodeBuilder(PolyNodeLevel);
void subsector_t::BuildPolyBSP()
{
assert((BSP == NULL || BSP->bDirty) && "BSP computed more than once");
// Set up level information for the node builder.
PolyNodeLevel.Sides = &level.sides[0];
PolyNodeLevel.NumSides = level.sides.Size();
PolyNodeLevel.Lines = &level.lines[0];
PolyNodeLevel.NumLines = numlines; // is this correct???
// Feed segs to the nodebuilder and build the nodes.
PolyNodeBuilder.Clear();
PolyNodeBuilder.AddSegs(firstline, numlines);
for (FPolyNode *pn = polys; pn != NULL; pn = pn->pnext)
{
PolyNodeBuilder.AddPolySegs(&pn->segs[0], (int)pn->segs.Size());
}
PolyNodeBuilder.BuildMini(false);
if (BSP == NULL)
{
BSP = new FMiniBSP;
}
PolyNodeBuilder.ExtractMini(BSP);
for (unsigned int i = 0; i < BSP->Subsectors.Size(); ++i)
{
BSP->Subsectors[i].sector = sector;
}
}
//==========================================================================
//
//
//
//==========================================================================
CUSTOM_CVAR(Int, r_fakecontrast, true, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
{
if (self < 0) self = 1;
else if (self > 2) self = 2;
}
//==========================================================================
//
//
//
//==========================================================================
int side_t::GetLightLevel (bool foggy, int baselight, bool is3dlight, int *pfakecontrast) const
{
if (!is3dlight && (Flags & WALLF_ABSLIGHTING))
{
baselight = Light;
}
if (pfakecontrast != NULL)
{
*pfakecontrast = 0;
}
if (!foggy || level.flags3 & LEVEL3_FORCEFAKECONTRAST) // Don't do relative lighting in foggy sectors
{
if (!(Flags & WALLF_NOFAKECONTRAST) && r_fakecontrast != 0)
{
DVector2 delta = linedef->Delta();
int rel;
if (((level.flags2 & LEVEL2_SMOOTHLIGHTING) || (Flags & WALLF_SMOOTHLIGHTING) || r_fakecontrast == 2) &&
delta.X != 0)
{
rel = xs_RoundToInt // OMG LEE KILLOUGH LIVES! :/
(
level.WallHorizLight
+ fabs(atan(delta.Y / delta.X) / 1.57079)
* (level.WallVertLight - level.WallHorizLight)
);
}
else
{
rel = delta.X == 0 ? level.WallVertLight :
delta.Y == 0 ? level.WallHorizLight : 0;
}
if (pfakecontrast != NULL)
{
*pfakecontrast = rel;
}
else
{
baselight += rel;
}
}
}
if (!is3dlight && !(Flags & WALLF_ABSLIGHTING) && (!foggy || (Flags & WALLF_LIGHT_FOG)))
{
baselight += this->Light;
}
return baselight;
}
DEFINE_ACTION_FUNCTION(_Secplane, isSlope)
{
PARAM_SELF_STRUCT_PROLOGUE(secplane_t);
ACTION_RETURN_BOOL(!self->normal.XY().isZero());
}
DEFINE_ACTION_FUNCTION(_Secplane, PointOnSide)
{
PARAM_SELF_STRUCT_PROLOGUE(secplane_t);
PARAM_FLOAT(x);
PARAM_FLOAT(y);
PARAM_FLOAT(z);
ACTION_RETURN_INT(self->PointOnSide(DVector3(x, y, z)));
}
DEFINE_ACTION_FUNCTION(_Secplane, ZatPoint)
{
PARAM_SELF_STRUCT_PROLOGUE(secplane_t);
PARAM_FLOAT(x);
PARAM_FLOAT(y);
ACTION_RETURN_FLOAT(self->ZatPoint(x, y));
}
DEFINE_ACTION_FUNCTION(_Secplane, ZatPointDist)
{
PARAM_SELF_STRUCT_PROLOGUE(secplane_t);
PARAM_FLOAT(x);
PARAM_FLOAT(y);
PARAM_FLOAT(d);
ACTION_RETURN_FLOAT((d + self->normal.X*x + self->normal.Y*y) * self->negiC);
}
DEFINE_ACTION_FUNCTION(_Secplane, isEqual)
{
PARAM_SELF_STRUCT_PROLOGUE(secplane_t);
PARAM_POINTER(other, secplane_t);
ACTION_RETURN_BOOL(*self == *other);
}
DEFINE_ACTION_FUNCTION(_Secplane, ChangeHeight)
{
PARAM_SELF_STRUCT_PROLOGUE(secplane_t);
PARAM_FLOAT(hdiff);
self->ChangeHeight(hdiff);
return 0;
}
DEFINE_ACTION_FUNCTION(_Secplane, GetChangedHeight)
{
PARAM_SELF_STRUCT_PROLOGUE(secplane_t);
PARAM_FLOAT(hdiff);
ACTION_RETURN_FLOAT(self->GetChangedHeight(hdiff));
}
DEFINE_ACTION_FUNCTION(_Secplane, HeightDiff)
{
PARAM_SELF_STRUCT_PROLOGUE(secplane_t);
PARAM_FLOAT(oldd);
if (numparam == 2)
{
ACTION_RETURN_FLOAT(self->HeightDiff(oldd));
}
else
{
PARAM_FLOAT(newd);
ACTION_RETURN_FLOAT(self->HeightDiff(oldd, newd));
}
}
DEFINE_ACTION_FUNCTION(_Secplane, PointToDist)
{
PARAM_SELF_STRUCT_PROLOGUE(secplane_t);
PARAM_FLOAT(x);
PARAM_FLOAT(y);
PARAM_FLOAT(z);
ACTION_RETURN_FLOAT(self->PointToDist(DVector2(x, y), z));
}
DEFINE_FIELD_X(Sector, sector_t, floorplane)
DEFINE_FIELD_X(Sector, sector_t, ceilingplane)
DEFINE_FIELD_X(Sector, sector_t, ColorMap)
DEFINE_FIELD_X(Sector, sector_t, SoundTarget)
DEFINE_FIELD_X(Sector, sector_t, special)
DEFINE_FIELD_X(Sector, sector_t, lightlevel)
DEFINE_FIELD_X(Sector, sector_t, seqType)
DEFINE_FIELD_X(Sector, sector_t, sky)
DEFINE_FIELD_X(Sector, sector_t, SeqName)
DEFINE_FIELD_X(Sector, sector_t, centerspot)
DEFINE_FIELD_X(Sector, sector_t, validcount)
DEFINE_FIELD_X(Sector, sector_t, thinglist)
DEFINE_FIELD_X(Sector, sector_t, friction)
DEFINE_FIELD_X(Sector, sector_t, movefactor)
DEFINE_FIELD_X(Sector, sector_t, terrainnum)
DEFINE_FIELD_X(Sector, sector_t, floordata)
DEFINE_FIELD_X(Sector, sector_t, ceilingdata)
DEFINE_FIELD_X(Sector, sector_t, lightingdata)
DEFINE_FIELD_X(Sector, sector_t, interpolations)
DEFINE_FIELD_X(Sector, sector_t, soundtraversed)
DEFINE_FIELD_X(Sector, sector_t, stairlock)
DEFINE_FIELD_X(Sector, sector_t, prevsec)
DEFINE_FIELD_X(Sector, sector_t, nextsec)
DEFINE_FIELD_X(Sector, sector_t, Lines)
DEFINE_FIELD_X(Sector, sector_t, heightsec)
DEFINE_FIELD_X(Sector, sector_t, bottommap)
DEFINE_FIELD_X(Sector, sector_t, midmap)
DEFINE_FIELD_X(Sector, sector_t, topmap)
DEFINE_FIELD_X(Sector, sector_t, touching_thinglist)
DEFINE_FIELD_X(Sector, sector_t, sectorportal_thinglist)
DEFINE_FIELD_X(Sector, sector_t, gravity)
DEFINE_FIELD_X(Sector, sector_t, damagetype)
DEFINE_FIELD_X(Sector, sector_t, damageamount)
DEFINE_FIELD_X(Sector, sector_t, damageinterval)
DEFINE_FIELD_X(Sector, sector_t, leakydamage)
DEFINE_FIELD_X(Sector, sector_t, ZoneNumber)
DEFINE_FIELD_X(Sector, sector_t, MoreFlags)
DEFINE_FIELD_X(Sector, sector_t, Flags)
DEFINE_FIELD_X(Sector, sector_t, SecActTarget)
DEFINE_FIELD_X(Sector, sector_t, Portals)
DEFINE_FIELD_X(Sector, sector_t, PortalGroup)
DEFINE_FIELD_X(Sector, sector_t, sectornum)
DEFINE_FIELD_X(Line, line_t, v1)
DEFINE_FIELD_X(Line, line_t, v2)
DEFINE_FIELD_X(Line, line_t, delta)
DEFINE_FIELD_X(Line, line_t, flags)
DEFINE_FIELD_X(Line, line_t, activation)
DEFINE_FIELD_X(Line, line_t, special)
DEFINE_FIELD_X(Line, line_t, args)
DEFINE_FIELD_X(Line, line_t, alpha)
DEFINE_FIELD_X(Line, line_t, sidedef)
DEFINE_FIELD_X(Line, line_t, bbox)
DEFINE_FIELD_X(Line, line_t, frontsector)
DEFINE_FIELD_X(Line, line_t, backsector)
DEFINE_FIELD_X(Line, line_t, validcount)
DEFINE_FIELD_X(Line, line_t, locknumber)
DEFINE_FIELD_X(Line, line_t, portalindex)
DEFINE_FIELD_X(Line, line_t, portaltransferred)
DEFINE_FIELD_X(Side, side_t, sector)
DEFINE_FIELD_X(Side, side_t, linedef)
DEFINE_FIELD_X(Side, side_t, Light)
DEFINE_FIELD_X(Side, side_t, Flags)
DEFINE_FIELD_X(Secplane, secplane_t, normal)
DEFINE_FIELD_X(Secplane, secplane_t, D)
DEFINE_FIELD_X(Secplane, secplane_t, negiC)
DEFINE_FIELD_X(Vertex, vertex_t, p)