mirror of
https://github.com/ZDoom/qzdoom-gpl.git
synced 2025-01-07 08:50:43 +00:00
149 lines
2.8 KiB
C
149 lines
2.8 KiB
C
|
/* sinh.c
|
|||
|
*
|
|||
|
* Hyperbolic sine
|
|||
|
*
|
|||
|
*
|
|||
|
*
|
|||
|
* SYNOPSIS:
|
|||
|
*
|
|||
|
* double x, y, sinh();
|
|||
|
*
|
|||
|
* y = sinh( x );
|
|||
|
*
|
|||
|
*
|
|||
|
*
|
|||
|
* DESCRIPTION:
|
|||
|
*
|
|||
|
* Returns hyperbolic sine of argument in the range MINLOG to
|
|||
|
* MAXLOG.
|
|||
|
*
|
|||
|
* The range is partitioned into two segments. If |x| <= 1, a
|
|||
|
* rational function of the form x + x**3 P(x)/Q(x) is employed.
|
|||
|
* Otherwise the calculation is sinh(x) = ( exp(x) - exp(-x) )/2.
|
|||
|
*
|
|||
|
*
|
|||
|
*
|
|||
|
* ACCURACY:
|
|||
|
*
|
|||
|
* Relative error:
|
|||
|
* arithmetic domain # trials peak rms
|
|||
|
* DEC +- 88 50000 4.0e-17 7.7e-18
|
|||
|
* IEEE +-MAXLOG 30000 2.6e-16 5.7e-17
|
|||
|
*
|
|||
|
*/
|
|||
|
|
|||
|
/*
|
|||
|
Cephes Math Library Release 2.8: June, 2000
|
|||
|
Copyright 1984, 1995, 2000 by Stephen L. Moshier
|
|||
|
*/
|
|||
|
|
|||
|
#include "mconf.h"
|
|||
|
|
|||
|
#ifdef UNK
|
|||
|
static double P[] = {
|
|||
|
-7.89474443963537015605E-1,
|
|||
|
-1.63725857525983828727E2,
|
|||
|
-1.15614435765005216044E4,
|
|||
|
-3.51754964808151394800E5
|
|||
|
};
|
|||
|
static double Q[] = {
|
|||
|
/* 1.00000000000000000000E0,*/
|
|||
|
-2.77711081420602794433E2,
|
|||
|
3.61578279834431989373E4,
|
|||
|
-2.11052978884890840399E6
|
|||
|
};
|
|||
|
#endif
|
|||
|
|
|||
|
#ifdef DEC
|
|||
|
static unsigned short P[] = {
|
|||
|
0140112,0015377,0042731,0163255,
|
|||
|
0142043,0134721,0146177,0123761,
|
|||
|
0143464,0122706,0034353,0006017,
|
|||
|
0144653,0140536,0157665,0054045
|
|||
|
};
|
|||
|
static unsigned short Q[] = {
|
|||
|
/*0040200,0000000,0000000,0000000,*/
|
|||
|
0142212,0155404,0133513,0022040,
|
|||
|
0044015,0036723,0173271,0011053,
|
|||
|
0145400,0150407,0023710,0001034
|
|||
|
};
|
|||
|
#endif
|
|||
|
|
|||
|
#ifdef IBMPC
|
|||
|
static unsigned short P[] = {
|
|||
|
0x3cd6,0xe8bb,0x435f,0xbfe9,
|
|||
|
0xf4fe,0x398f,0x773a,0xc064,
|
|||
|
0x6182,0xc71d,0x94b8,0xc0c6,
|
|||
|
0xab05,0xdbf6,0x782b,0xc115
|
|||
|
};
|
|||
|
static unsigned short Q[] = {
|
|||
|
/*0x0000,0x0000,0x0000,0x3ff0,*/
|
|||
|
0x6484,0x96e9,0x5b60,0xc071,
|
|||
|
0x2245,0x7ed7,0xa7ba,0x40e1,
|
|||
|
0x0044,0xe4f9,0x1a20,0xc140
|
|||
|
};
|
|||
|
#endif
|
|||
|
|
|||
|
#ifdef MIEEE
|
|||
|
static unsigned short P[] = {
|
|||
|
0xbfe9,0x435f,0xe8bb,0x3cd6,
|
|||
|
0xc064,0x773a,0x398f,0xf4fe,
|
|||
|
0xc0c6,0x94b8,0xc71d,0x6182,
|
|||
|
0xc115,0x782b,0xdbf6,0xab05
|
|||
|
};
|
|||
|
static unsigned short Q[] = {
|
|||
|
0xc071,0x5b60,0x96e9,0x6484,
|
|||
|
0x40e1,0xa7ba,0x7ed7,0x2245,
|
|||
|
0xc140,0x1a20,0xe4f9,0x0044
|
|||
|
};
|
|||
|
#endif
|
|||
|
|
|||
|
#ifdef ANSIPROT
|
|||
|
extern double fabs ( double );
|
|||
|
extern double c_exp ( double );
|
|||
|
extern double polevl ( double, void *, int );
|
|||
|
extern double p1evl ( double, void *, int );
|
|||
|
#else
|
|||
|
double fabs(), c_exp(), polevl(), p1evl();
|
|||
|
#endif
|
|||
|
extern double INFINITY, MINLOG, MAXLOG, LOGE2;
|
|||
|
|
|||
|
double c_sinh(x)
|
|||
|
double x;
|
|||
|
{
|
|||
|
double a;
|
|||
|
|
|||
|
#ifdef MINUSZERO
|
|||
|
if( x == 0.0 )
|
|||
|
return(x);
|
|||
|
#endif
|
|||
|
a = fabs(x);
|
|||
|
if( (x > (MAXLOG + LOGE2)) || (x > -(MINLOG-LOGE2) ) )
|
|||
|
{
|
|||
|
mtherr( "sinh", DOMAIN );
|
|||
|
if( x > 0 )
|
|||
|
return( INFINITY );
|
|||
|
else
|
|||
|
return( -INFINITY );
|
|||
|
}
|
|||
|
if( a > 1.0 )
|
|||
|
{
|
|||
|
if( a >= (MAXLOG - LOGE2) )
|
|||
|
{
|
|||
|
a = c_exp(0.5*a);
|
|||
|
a = (0.5 * a) * a;
|
|||
|
if( x < 0 )
|
|||
|
a = -a;
|
|||
|
return(a);
|
|||
|
}
|
|||
|
a = c_exp(a);
|
|||
|
a = 0.5*a - (0.5/a);
|
|||
|
if( x < 0 )
|
|||
|
a = -a;
|
|||
|
return(a);
|
|||
|
}
|
|||
|
|
|||
|
a *= a;
|
|||
|
return( x + x * a * (polevl(a,P,3)/p1evl(a,Q,3)) );
|
|||
|
}
|