qzdoom-gpl/src/v_video.cpp

1679 lines
37 KiB
C++
Raw Normal View History

2016-03-01 15:47:10 +00:00
// Emacs style mode select -*- C++ -*-
//-----------------------------------------------------------------------------
//
// $Id:$
//
// Copyright (C) 1993-1996 by id Software, Inc.
//
// This source is available for distribution and/or modification
// only under the terms of the DOOM Source Code License as
// published by id Software. All rights reserved.
//
// The source is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// FITNESS FOR A PARTICULAR PURPOSE. See the DOOM Source Code License
// for more details.
//
// $Log:$
//
// DESCRIPTION:
// Functions to draw patches (by post) directly to screen->
// Functions to blit a block to the screen->
//
//-----------------------------------------------------------------------------
#include <stdio.h>
#include "i_system.h"
#include "x86.h"
#include "i_video.h"
#include "r_state.h"
#include "doomdef.h"
#include "doomdata.h"
#include "doomstat.h"
#include "c_console.h"
#include "hu_stuff.h"
#include "m_argv.h"
#include "m_bbox.h"
#include "m_swap.h"
#include "i_video.h"
#include "v_video.h"
#include "v_text.h"
#include "w_wad.h"
#include "c_cvars.h"
#include "c_dispatch.h"
#include "cmdlib.h"
#include "gi.h"
#include "templates.h"
#include "sbar.h"
#include "hardware.h"
#include "r_data/r_translate.h"
#include "f_wipe.h"
#include "m_png.h"
#include "colormatcher.h"
#include "v_palette.h"
#include "r_sky.h"
#include "r_utility.h"
#include "r_renderer.h"
#include "menu/menu.h"
#include "r_data/voxels.h"
FRenderer *Renderer;
IMPLEMENT_ABSTRACT_CLASS (DCanvas)
IMPLEMENT_ABSTRACT_CLASS (DFrameBuffer)
#if defined(_DEBUG) && defined(_M_IX86)
#define DBGBREAK { __asm int 3 }
#else
#define DBGBREAK
#endif
class DDummyFrameBuffer : public DFrameBuffer
{
DECLARE_CLASS (DDummyFrameBuffer, DFrameBuffer);
public:
DDummyFrameBuffer (int width, int height)
: DFrameBuffer (0, 0)
{
Width = width;
Height = height;
}
bool Lock(bool buffered) { DBGBREAK; return false; }
void Update() { DBGBREAK; }
PalEntry *GetPalette() { DBGBREAK; return NULL; }
void GetFlashedPalette(PalEntry palette[256]) { DBGBREAK; }
void UpdatePalette() { DBGBREAK; }
bool SetGamma(float gamma) { Gamma = gamma; return true; }
bool SetFlash(PalEntry rgb, int amount) { DBGBREAK; return false; }
void GetFlash(PalEntry &rgb, int &amount) { DBGBREAK; }
int GetPageCount() { DBGBREAK; return 0; }
bool IsFullscreen() { DBGBREAK; return 0; }
#ifdef _WIN32
void PaletteChanged() {}
int QueryNewPalette() { return 0; }
bool Is8BitMode() { return false; }
#endif
float Gamma;
};
IMPLEMENT_ABSTRACT_CLASS (DDummyFrameBuffer)
// SimpleCanvas is not really abstract, but this macro does not
// try to generate a CreateNew() function.
IMPLEMENT_ABSTRACT_CLASS (DSimpleCanvas)
class FPaletteTester : public FTexture
{
public:
FPaletteTester ();
const BYTE *GetColumn(unsigned int column, const Span **spans_out);
const BYTE *GetPixels();
void Unload();
bool CheckModified();
void SetTranslation(int num);
protected:
BYTE Pixels[16*16];
int CurTranslation;
int WantTranslation;
static const Span DummySpan[2];
void MakeTexture();
};
const FTexture::Span FPaletteTester::DummySpan[2] = { { 0, 16 }, { 0, 0 } };
int DisplayWidth, DisplayHeight, DisplayBits;
FFont *SmallFont, *SmallFont2, *BigFont, *ConFont, *IntermissionFont;
extern "C" {
DWORD Col2RGB8[65][256];
DWORD *Col2RGB8_LessPrecision[65];
DWORD Col2RGB8_Inverse[65][256];
ColorTable32k RGB32k;
}
static DWORD Col2RGB8_2[63][256];
// [RH] The framebuffer is no longer a mere byte array.
// There's also only one, not four.
DFrameBuffer *screen;
CVAR (Int, vid_defwidth, 640, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
CVAR (Int, vid_defheight, 480, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
CVAR (Int, vid_defbits, 8, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
CVAR (Bool, vid_fps, false, 0)
CVAR (Bool, ticker, false, 0)
CVAR (Int, vid_showpalette, 0, 0)
CUSTOM_CVAR (Bool, vid_vsync, false, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
{
if (screen != NULL)
{
screen->SetVSync (*self);
}
}
CUSTOM_CVAR (Int, vid_refreshrate, 0, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
{
if (screen != NULL)
{
screen->NewRefreshRate();
}
}
CUSTOM_CVAR (Float, dimamount, -1.f, CVAR_ARCHIVE)
{
if (self < 0.f && self != -1.f)
{
self = -1.f;
}
else if (self > 1.f)
{
self = 1.f;
}
}
CVAR (Color, dimcolor, 0xffd700, CVAR_ARCHIVE)
// [RH] Set true when vid_setmode command has been executed
bool setmodeneeded = false;
// [RH] Resolution to change to when setmodeneeded is true
int NewWidth, NewHeight, NewBits;
//
// V_MarkRect
//
void V_MarkRect (int x, int y, int width, int height)
{
}
DCanvas *DCanvas::CanvasChain = NULL;
//==========================================================================
//
// DCanvas Constructor
//
//==========================================================================
DCanvas::DCanvas (int _width, int _height)
{
// Init member vars
Buffer = NULL;
LockCount = 0;
Width = _width;
Height = _height;
// Add to list of active canvases
Next = CanvasChain;
CanvasChain = this;
}
//==========================================================================
//
// DCanvas Destructor
//
//==========================================================================
DCanvas::~DCanvas ()
{
// Remove from list of active canvases
DCanvas *probe = CanvasChain, **prev;
prev = &CanvasChain;
probe = CanvasChain;
while (probe != NULL)
{
if (probe == this)
{
*prev = probe->Next;
break;
}
prev = &probe->Next;
probe = probe->Next;
}
}
//==========================================================================
//
// DCanvas :: IsValid
//
//==========================================================================
bool DCanvas::IsValid ()
{
// A nun-subclassed DCanvas is never valid
return false;
}
//==========================================================================
//
// DCanvas :: FlatFill
//
// Fill an area with a texture. If local_origin is false, then the origin
// used for the wrapping is (0,0). Otherwise, (left,right) is used.
//
//==========================================================================
void DCanvas::FlatFill (int left, int top, int right, int bottom, FTexture *src, bool local_origin)
{
int w = src->GetWidth();
int h = src->GetHeight();
// Repeatedly draw the texture, left-to-right, top-to-bottom.
for (int y = local_origin ? top : (top / h * h); y < bottom; y += h)
{
for (int x = local_origin ? left : (left / w * w); x < right; x += w)
{
DrawTexture (src, x, y,
DTA_ClipLeft, left,
DTA_ClipRight, right,
DTA_ClipTop, top,
DTA_ClipBottom, bottom,
DTA_TopOffset, 0,
DTA_LeftOffset, 0,
TAG_DONE);
}
}
}
//==========================================================================
//
// DCanvas :: Dim
//
// Applies a colored overlay to the entire screen, with the opacity
// determined by the dimamount cvar.
//
//==========================================================================
void DCanvas::Dim (PalEntry color)
{
PalEntry dimmer;
float amount;
if (dimamount >= 0)
{
dimmer = PalEntry(dimcolor);
amount = dimamount;
}
else
{
dimmer = gameinfo.dimcolor;
amount = gameinfo.dimamount;
}
if (gameinfo.gametype == GAME_Hexen && gamestate == GS_DEMOSCREEN)
{ // On the Hexen title screen, the default dimming is not
// enough to make the menus readable.
amount = MIN<float> (1.f, amount*2.f);
}
// Add the cvar's dimming on top of the color passed to the function
if (color.a != 0)
{
float dim[4] = { color.r/255.f, color.g/255.f, color.b/255.f, color.a/255.f };
V_AddBlend (dimmer.r/255.f, dimmer.g/255.f, dimmer.b/255.f, amount, dim);
dimmer = PalEntry (BYTE(dim[0]*255), BYTE(dim[1]*255), BYTE(dim[2]*255));
amount = dim[3];
}
Dim (dimmer, amount, 0, 0, Width, Height);
}
//==========================================================================
//
// DCanvas :: Dim
//
// Applies a colored overlay to an area of the screen.
//
//==========================================================================
void DCanvas::Dim (PalEntry color, float damount, int x1, int y1, int w, int h)
{
if (damount == 0.f)
return;
DWORD *bg2rgb;
DWORD fg;
int gap;
BYTE *spot;
int x, y;
if (x1 >= Width || y1 >= Height)
{
return;
}
if (x1 + w > Width)
{
w = Width - x1;
}
if (y1 + h > Height)
{
h = Height - y1;
}
if (w <= 0 || h <= 0)
{
return;
}
{
int amount;
amount = (int)(damount * 64);
bg2rgb = Col2RGB8[64-amount];
fg = (((color.r * amount) >> 4) << 20) |
((color.g * amount) >> 4) |
(((color.b * amount) >> 4) << 10);
}
spot = Buffer + x1 + y1*Pitch;
gap = Pitch - w;
for (y = h; y != 0; y--)
{
for (x = w; x != 0; x--)
{
DWORD bg;
bg = bg2rgb[(*spot)&0xff];
bg = (fg+bg) | 0x1f07c1f;
*spot = RGB32k.All[bg&(bg>>15)];
spot++;
}
spot += gap;
}
}
//==========================================================================
//
// DCanvas :: GetScreenshotBuffer
//
// Returns a buffer containing the most recently displayed frame. The
// width and height of this buffer are the same as the canvas.
//
//==========================================================================
void DCanvas::GetScreenshotBuffer(const BYTE *&buffer, int &pitch, ESSType &color_type)
{
Lock(true);
buffer = GetBuffer();
pitch = GetPitch();
color_type = SS_PAL;
}
//==========================================================================
//
// DCanvas :: ReleaseScreenshotBuffer
//
// Releases the buffer obtained through GetScreenshotBuffer. These calls
// must not be nested.
//
//==========================================================================
void DCanvas::ReleaseScreenshotBuffer()
{
Unlock();
}
//==========================================================================
//
// V_GetColorFromString
//
// Passed a string of the form "#RGB", "#RRGGBB", "R G B", or "RR GG BB",
// returns a number representing that color. If palette is non-NULL, the
// index of the best match in the palette is returned, otherwise the
// RRGGBB value is returned directly.
//
//==========================================================================
int V_GetColorFromString (const DWORD *palette, const char *cstr)
{
int c[3], i, p;
char val[3];
val[2] = '\0';
// Check for HTML-style #RRGGBB or #RGB color string
if (cstr[0] == '#')
{
size_t len = strlen (cstr);
if (len == 7)
{
// Extract each eight-bit component into c[].
for (i = 0; i < 3; ++i)
{
val[0] = cstr[1 + i*2];
val[1] = cstr[2 + i*2];
c[i] = ParseHex (val);
}
}
else if (len == 4)
{
// Extract each four-bit component into c[], expanding to eight bits.
for (i = 0; i < 3; ++i)
{
val[1] = val[0] = cstr[1 + i];
c[i] = ParseHex (val);
}
}
else
{
// Bad HTML-style; pretend it's black.
c[2] = c[1] = c[0] = 0;
}
}
else
{
if (strlen(cstr) == 6)
{
char *p;
int color = strtol(cstr, &p, 16);
if (*p == 0)
{
// RRGGBB string
c[0] = (color & 0xff0000) >> 16;
c[1] = (color & 0xff00) >> 8;
c[2] = (color & 0xff);
}
else goto normal;
}
else
{
normal:
// Treat it as a space-delimited hexadecimal string
for (i = 0; i < 3; ++i)
{
// Skip leading whitespace
while (*cstr <= ' ' && *cstr != '\0')
{
cstr++;
}
// Extract a component and convert it to eight-bit
for (p = 0; *cstr > ' '; ++p, ++cstr)
{
if (p < 2)
{
val[p] = *cstr;
}
}
if (p == 0)
{
c[i] = 0;
}
else
{
if (p == 1)
{
val[1] = val[0];
}
c[i] = ParseHex (val);
}
}
}
}
if (palette)
return ColorMatcher.Pick (c[0], c[1], c[2]);
else
return MAKERGB(c[0], c[1], c[2]);
}
//==========================================================================
//
// V_GetColorStringByName
//
// Searches for the given color name in x11r6rgb.txt and returns an
// HTML-ish "#RRGGBB" string for it if found or the empty string if not.
//
//==========================================================================
FString V_GetColorStringByName (const char *name)
{
FMemLump rgbNames;
char *rgbEnd;
char *rgb, *endp;
int rgblump;
int c[3], step;
size_t namelen;
if (Wads.GetNumLumps()==0) return FString();
rgblump = Wads.CheckNumForName ("X11R6RGB");
if (rgblump == -1)
{
Printf ("X11R6RGB lump not found\n");
return FString();
}
rgbNames = Wads.ReadLump (rgblump);
rgb = (char *)rgbNames.GetMem();
rgbEnd = rgb + Wads.LumpLength (rgblump);
step = 0;
namelen = strlen (name);
while (rgb < rgbEnd)
{
// Skip white space
if (*rgb <= ' ')
{
do
{
rgb++;
} while (rgb < rgbEnd && *rgb <= ' ');
}
else if (step == 0 && *rgb == '!')
{ // skip comment lines
do
{
rgb++;
} while (rgb < rgbEnd && *rgb != '\n');
}
else if (step < 3)
{ // collect RGB values
c[step++] = strtoul (rgb, &endp, 10);
if (endp == rgb)
{
break;
}
rgb = endp;
}
else
{ // Check color name
endp = rgb;
// Find the end of the line
while (endp < rgbEnd && *endp != '\n')
endp++;
// Back up over any whitespace
while (endp > rgb && *endp <= ' ')
endp--;
if (endp == rgb)
{
break;
}
size_t checklen = ++endp - rgb;
if (checklen == namelen && strnicmp (rgb, name, checklen) == 0)
{
FString descr;
descr.Format ("#%02x%02x%02x", c[0], c[1], c[2]);
return descr;
}
rgb = endp;
step = 0;
}
}
if (rgb < rgbEnd)
{
Printf ("X11R6RGB lump is corrupt\n");
}
return FString();
}
//==========================================================================
//
// V_GetColor
//
// Works like V_GetColorFromString(), but also understands X11 color names.
//
//==========================================================================
int V_GetColor (const DWORD *palette, const char *str)
{
FString string = V_GetColorStringByName (str);
int res;
if (!string.IsEmpty())
{
res = V_GetColorFromString (palette, string);
}
else
{
res = V_GetColorFromString (palette, str);
}
return res;
}
//==========================================================================
//
// BuildTransTable
//
// Build the tables necessary for blending
//
//==========================================================================
static void BuildTransTable (const PalEntry *palette)
{
int r, g, b;
// create the RGB555 lookup table
for (r = 0; r < 32; r++)
for (g = 0; g < 32; g++)
for (b = 0; b < 32; b++)
RGB32k.RGB[r][g][b] = ColorMatcher.Pick ((r<<3)|(r>>2), (g<<3)|(g>>2), (b<<3)|(b>>2));
int x, y;
// create the swizzled palette
for (x = 0; x < 65; x++)
for (y = 0; y < 256; y++)
Col2RGB8[x][y] = (((palette[y].r*x)>>4)<<20) |
((palette[y].g*x)>>4) |
(((palette[y].b*x)>>4)<<10);
// create the swizzled palette with the lsb of red and blue forced to 0
// (for green, a 1 is okay since it never gets added into)
for (x = 1; x < 64; x++)
{
Col2RGB8_LessPrecision[x] = Col2RGB8_2[x-1];
for (y = 0; y < 256; y++)
{
Col2RGB8_2[x-1][y] = Col2RGB8[x][y] & 0x3feffbff;
}
}
Col2RGB8_LessPrecision[0] = Col2RGB8[0];
Col2RGB8_LessPrecision[64] = Col2RGB8[64];
// create the inverse swizzled palette
for (x = 0; x < 65; x++)
for (y = 0; y < 256; y++)
{
Col2RGB8_Inverse[x][y] = (((((255-palette[y].r)*x)>>4)<<20) |
(((255-palette[y].g)*x)>>4) |
((((255-palette[y].b)*x)>>4)<<10)) & 0x3feffbff;
}
}
//==========================================================================
//
// DCanvas :: CalcGamma
//
//==========================================================================
void DCanvas::CalcGamma (float gamma, BYTE gammalookup[256])
{
// I found this formula on the web at
// <http://panda.mostang.com/sane/sane-gamma.html>,
// but that page no longer exits.
double invgamma = 1.f / gamma;
int i;
for (i = 0; i < 256; i++)
{
gammalookup[i] = (BYTE)(255.0 * pow (i / 255.0, invgamma));
}
}
//==========================================================================
//
// DSimpleCanvas Constructor
//
// A simple canvas just holds a buffer in main memory.
//
//==========================================================================
DSimpleCanvas::DSimpleCanvas (int width, int height)
: DCanvas (width, height)
{
// Making the pitch a power of 2 is very bad for performance
// Try to maximize the number of cache lines that can be filled
// for each column drawing operation by making the pitch slightly
// longer than the width. The values used here are all based on
// empirical evidence.
if (width <= 640)
{
// For low resolutions, just keep the pitch the same as the width.
// Some speedup can be seen using the technique below, but the speedup
// is so marginal that I don't consider it worthwhile.
Pitch = width;
}
else
{
// If we couldn't figure out the CPU's L1 cache line size, assume
// it's 32 bytes wide.
if (CPU.DataL1LineSize == 0)
{
CPU.DataL1LineSize = 32;
}
// The Athlon and P3 have very different caches, apparently.
// I am going to generalize the Athlon's performance to all AMD
// processors and the P3's to all non-AMD processors. I don't know
// how smart that is, but I don't have a vast plethora of
// processors to test with.
if (CPU.bIsAMD)
{
Pitch = width + CPU.DataL1LineSize;
}
else
{
Pitch = width + MAX(0, CPU.DataL1LineSize - 8);
}
}
MemBuffer = new BYTE[Pitch * height];
memset (MemBuffer, 0, Pitch * height);
}
//==========================================================================
//
// DSimpleCanvas Destructor
//
//==========================================================================
DSimpleCanvas::~DSimpleCanvas ()
{
if (MemBuffer != NULL)
{
delete[] MemBuffer;
MemBuffer = NULL;
}
}
//==========================================================================
//
// DSimpleCanvas :: IsValid
//
//==========================================================================
bool DSimpleCanvas::IsValid ()
{
return (MemBuffer != NULL);
}
//==========================================================================
//
// DSimpleCanvas :: Lock
//
//==========================================================================
bool DSimpleCanvas::Lock (bool)
{
if (LockCount == 0)
{
Buffer = MemBuffer;
}
LockCount++;
return false; // System surfaces are never lost
}
//==========================================================================
//
// DSimpleCanvas :: Unlock
//
//==========================================================================
void DSimpleCanvas::Unlock ()
{
if (--LockCount <= 0)
{
LockCount = 0;
Buffer = NULL; // Enforce buffer access only between Lock/Unlock
}
}
//==========================================================================
//
// DFrameBuffer Constructor
//
// A frame buffer canvas is the most common and represents the image that
// gets drawn to the screen.
//
//==========================================================================
DFrameBuffer::DFrameBuffer (int width, int height)
: DSimpleCanvas (width, height)
{
LastMS = LastSec = FrameCount = LastCount = LastTic = 0;
Accel2D = false;
}
//==========================================================================
//
// DFrameBuffer :: DrawRateStuff
//
// Draws the fps counter, dot ticker, and palette debug.
//
//==========================================================================
void DFrameBuffer::DrawRateStuff ()
{
// Draws frame time and cumulative fps
if (vid_fps)
{
DWORD ms = I_FPSTime();
DWORD howlong = ms - LastMS;
if ((signed)howlong >= 0)
{
char fpsbuff[40];
int chars;
int rate_x;
chars = mysnprintf (fpsbuff, countof(fpsbuff), "%2u ms (%3u fps)", howlong, LastCount);
rate_x = Width - ConFont->StringWidth(&fpsbuff[0]);
Clear (rate_x, 0, Width, ConFont->GetHeight(), GPalette.BlackIndex, 0);
DrawText (ConFont, CR_WHITE, rate_x, 0, (char *)&fpsbuff[0], TAG_DONE);
DWORD thisSec = ms/1000;
if (LastSec < thisSec)
{
LastCount = FrameCount / (thisSec - LastSec);
LastSec = thisSec;
FrameCount = 0;
}
FrameCount++;
}
LastMS = ms;
}
// draws little dots on the bottom of the screen
if (ticker)
{
int i = I_GetTime(false);
int tics = i - LastTic;
BYTE *buffer = GetBuffer();
LastTic = i;
if (tics > 20) tics = 20;
// Buffer can be NULL if we're doing hardware accelerated 2D
if (buffer != NULL)
{
buffer += (GetHeight()-1) * GetPitch();
for (i = 0; i < tics*2; i += 2) buffer[i] = 0xff;
for ( ; i < 20*2; i += 2) buffer[i] = 0x00;
}
else
{
for (i = 0; i < tics*2; i += 2) Clear(i, Height-1, i+1, Height, 255, 0);
for ( ; i < 20*2; i += 2) Clear(i, Height-1, i+1, Height, 0, 0);
}
}
// draws the palette for debugging
if (vid_showpalette)
{
// This used to just write the palette to the display buffer.
// With hardware-accelerated 2D, that doesn't work anymore.
// Drawing it as a texture does and continues to show how
// well the PalTex shader is working.
static FPaletteTester palette;
int size = screen->GetHeight() < 800 ? 16 * 7 : 16 * 7 * 2;
2016-03-01 15:47:10 +00:00
palette.SetTranslation(vid_showpalette);
DrawTexture(&palette, 0, 0,
DTA_DestWidth, size,
DTA_DestHeight, size,
2016-03-01 15:47:10 +00:00
DTA_Masked, false,
TAG_DONE);
}
}
//==========================================================================
//
// FPaleteTester Constructor
//
// This is just a 16x16 image with every possible color value.
//
//==========================================================================
FPaletteTester::FPaletteTester()
{
Width = 16;
Height = 16;
WidthBits = 4;
HeightBits = 4;
WidthMask = 15;
CurTranslation = 0;
WantTranslation = 1;
MakeTexture();
}
//==========================================================================
//
// FPaletteTester :: CheckModified
//
//==========================================================================
bool FPaletteTester::CheckModified()
{
return CurTranslation != WantTranslation;
}
//==========================================================================
//
// FPaletteTester :: SetTranslation
//
//==========================================================================
void FPaletteTester::SetTranslation(int num)
{
if (num >= 1 && num <= 9)
{
WantTranslation = num;
}
}
//==========================================================================
//
// FPaletteTester :: Unload
//
//==========================================================================
void FPaletteTester::Unload()
{
}
//==========================================================================
//
// FPaletteTester :: GetColumn
//
//==========================================================================
const BYTE *FPaletteTester::GetColumn (unsigned int column, const Span **spans_out)
{
if (CurTranslation != WantTranslation)
{
MakeTexture();
}
column &= 15;
if (spans_out != NULL)
{
*spans_out = DummySpan;
}
return Pixels + column*16;
}
//==========================================================================
//
// FPaletteTester :: GetPixels
//
//==========================================================================
const BYTE *FPaletteTester::GetPixels ()
{
if (CurTranslation != WantTranslation)
{
MakeTexture();
}
return Pixels;
}
//==========================================================================
//
// FPaletteTester :: MakeTexture
//
//==========================================================================
void FPaletteTester::MakeTexture()
{
int i, j, k, t;
BYTE *p;
t = WantTranslation;
p = Pixels;
k = 0;
for (i = 0; i < 16; ++i)
{
for (j = 0; j < 16; ++j)
{
*p++ = (t > 1) ? translationtables[TRANSLATION_Standard][t - 2]->Remap[k] : k;
k += 16;
}
k -= 255;
}
CurTranslation = t;
}
//==========================================================================
//
// DFrameBuffer :: CopyFromBuff
//
// Copies pixels from main memory to video memory. This is only used by
// DDrawFB.
//
//==========================================================================
void DFrameBuffer::CopyFromBuff (BYTE *src, int srcPitch, int width, int height, BYTE *dest)
{
if (Pitch == width && Pitch == Width && srcPitch == width)
{
memcpy (dest, src, Width * Height);
}
else
{
for (int y = 0; y < height; y++)
{
memcpy (dest, src, width);
dest += Pitch;
src += srcPitch;
}
}
}
//==========================================================================
//
// DFrameBuffer :: SetVSync
//
// Turns vertical sync on and off, if supported.
//
//==========================================================================
void DFrameBuffer::SetVSync (bool vsync)
{
}
//==========================================================================
//
// DFrameBuffer :: NewRefreshRate
//
// Sets the fullscreen display to the new refresh rate in vid_refreshrate,
// if possible.
//
//==========================================================================
void DFrameBuffer::NewRefreshRate ()
{
}
//==========================================================================
//
// DFrameBuffer :: SetBlendingRect
//
// Defines the area of the screen containing the 3D view.
//
//==========================================================================
void DFrameBuffer::SetBlendingRect (int x1, int y1, int x2, int y2)
{
}
//==========================================================================
//
// DFrameBuffer :: Begin2D
//
// Signal that 3D rendering is complete, and the rest of the operations on
// the canvas until Unlock() will be 2D ones.
//
//==========================================================================
bool DFrameBuffer::Begin2D (bool copy3d)
{
return false;
}
//==========================================================================
//
// DFrameBuffer :: DrawBlendingRect
//
// In hardware 2D modes, the blending rect needs to be drawn separately
// from transferring the 3D scene to video memory, because the weapon
// sprite is drawn on top of that.
//
//==========================================================================
void DFrameBuffer::DrawBlendingRect()
{
}
//==========================================================================
//
// DFrameBuffer :: CreateTexture
//
// Creates a native texture for a game texture, if supported.
//
//==========================================================================
FNativeTexture *DFrameBuffer::CreateTexture(FTexture *gametex, bool wrapping)
{
return NULL;
}
//==========================================================================
//
// DFrameBuffer :: CreatePalette
//
// Creates a native palette from a remap table, if supported.
//
//==========================================================================
FNativePalette *DFrameBuffer::CreatePalette(FRemapTable *remap)
{
return NULL;
}
//==========================================================================
//
// DFrameBuffer :: WipeStartScreen
//
// Grabs a copy of the screen currently displayed to serve as the initial
// frame of a screen wipe. Also determines which screenwipe will be
// performed.
//
//==========================================================================
bool DFrameBuffer::WipeStartScreen(int type)
{
return wipe_StartScreen(type);
}
//==========================================================================
//
// DFrameBuffer :: WipeEndScreen
//
// Grabs a copy of the most-recently drawn, but not yet displayed, screen
// to serve as the final frame of a screen wipe.
//
//==========================================================================
void DFrameBuffer::WipeEndScreen()
{
wipe_EndScreen();
Unlock();
}
//==========================================================================
//
// DFrameBuffer :: WipeDo
//
// Draws one frame of a screenwipe. Should be called no more than 35
// times per second. If called less than that, ticks indicates how many
// ticks have passed since the last call.
//
//==========================================================================
bool DFrameBuffer::WipeDo(int ticks)
{
Lock(true);
return wipe_ScreenWipe(ticks);
}
//==========================================================================
//
// DFrameBuffer :: WipeCleanup
//
//==========================================================================
void DFrameBuffer::WipeCleanup()
{
wipe_Cleanup();
}
//==========================================================================
//
// DFrameBuffer :: GameRestart
//
//==========================================================================
void DFrameBuffer::GameRestart()
{
}
//===========================================================================
//
//
//
//===========================================================================
FNativePalette::~FNativePalette()
{
}
FNativeTexture::~FNativeTexture()
{
}
bool FNativeTexture::CheckWrapping(bool wrapping)
{
return true;
}
CCMD(clean)
{
Printf ("CleanXfac: %d\nCleanYfac: %d\n", CleanXfac, CleanYfac);
}
//
// V_SetResolution
//
bool V_DoModeSetup (int width, int height, int bits)
{
DFrameBuffer *buff = I_SetMode (width, height, screen);
int cx1, cx2;
if (buff == NULL)
{
return false;
}
screen = buff;
GC::WriteBarrier(screen);
screen->SetGamma (Gamma);
// Load fonts now so they can be packed into textures straight away,
// if D3DFB is being used for the display.
FFont::StaticPreloadFonts();
V_CalcCleanFacs(320, 200, width, height, &CleanXfac, &CleanYfac, &cx1, &cx2);
CleanWidth = width / CleanXfac;
CleanHeight = height / CleanYfac;
assert(CleanWidth >= 320);
assert(CleanHeight >= 200);
if (width < 800 || width >= 960)
{
if (cx1 < cx2)
{
// Special case in which we don't need to scale down.
CleanXfac_1 =
CleanYfac_1 = cx1;
}
else
{
CleanXfac_1 = MAX(CleanXfac - 1, 1);
CleanYfac_1 = MAX(CleanYfac - 1, 1);
// On larger screens this is not enough so make sure it's at most 3/4 of the screen's width
while (CleanXfac_1 * 320 > screen->GetWidth()*3/4 && CleanXfac_1 > 2)
{
CleanXfac_1--;
CleanYfac_1--;
}
}
CleanWidth_1 = width / CleanXfac_1;
CleanHeight_1 = height / CleanYfac_1;
}
else // if the width is between 800 and 960 the ratio between the screensize and CleanXFac-1 becomes too large.
{
CleanXfac_1 = CleanXfac;
CleanYfac_1 = CleanYfac;
CleanWidth_1 = CleanWidth;
CleanHeight_1 = CleanHeight;
}
DisplayWidth = width;
DisplayHeight = height;
DisplayBits = bits;
R_OldBlend = ~0;
Renderer->OnModeSet();
M_RefreshModesList ();
return true;
}
void V_CalcCleanFacs (int designwidth, int designheight, int realwidth, int realheight, int *cleanx, int *cleany, int *_cx1, int *_cx2)
{
int ratio;
int cwidth;
int cheight;
int cx1, cy1, cx2, cy2;
ratio = CheckRatio(realwidth, realheight);
if (Is54Aspect(ratio))
2016-03-01 15:47:10 +00:00
{
cwidth = realwidth;
cheight = realheight * BaseRatioSizes[ratio][3] / 48;
}
else
{
cwidth = realwidth * BaseRatioSizes[ratio][3] / 48;
cheight = realheight;
}
// Use whichever pair of cwidth/cheight or width/height that produces less difference
// between CleanXfac and CleanYfac.
cx1 = MAX(cwidth / designwidth, 1);
cy1 = MAX(cheight / designheight, 1);
cx2 = MAX(realwidth / designwidth, 1);
cy2 = MAX(realheight / designheight, 1);
if (abs(cx1 - cy1) <= abs(cx2 - cy2))
{ // e.g. 640x360 looks better with this.
*cleanx = cx1;
*cleany = cy1;
}
else
{ // e.g. 720x480 looks better with this.
*cleanx = cx2;
*cleany = cy2;
}
if (*cleanx < *cleany)
*cleany = *cleanx;
else
*cleanx = *cleany;
if (_cx1 != NULL) *_cx1 = cx1;
if (_cx2 != NULL) *_cx2 = cx2;
}
bool IVideo::SetResolution (int width, int height, int bits)
{
int oldwidth, oldheight;
int oldbits;
if (screen)
{
oldwidth = SCREENWIDTH;
oldheight = SCREENHEIGHT;
oldbits = DisplayBits;
}
else
{ // Harmless if screen wasn't allocated
oldwidth = width;
oldheight = height;
oldbits = bits;
}
I_ClosestResolution (&width, &height, bits);
if (!I_CheckResolution (width, height, bits))
{ // Try specified resolution
if (!I_CheckResolution (oldwidth, oldheight, oldbits))
{ // Try previous resolution (if any)
return false;
}
else
{
width = oldwidth;
height = oldheight;
bits = oldbits;
}
}
return V_DoModeSetup (width, height, bits);
}
CCMD (vid_setmode)
{
bool goodmode = false;
int width = 0, height = SCREENHEIGHT;
int bits = DisplayBits;
if (argv.argc() > 1)
{
width = atoi (argv[1]);
if (argv.argc() > 2)
{
height = atoi (argv[2]);
if (argv.argc() > 3)
{
bits = atoi (argv[3]);
}
}
}
if (width && I_CheckResolution (width, height, bits))
{
goodmode = true;
}
if (goodmode)
{
// The actual change of resolution will take place
// near the beginning of D_Display().
if (gamestate != GS_STARTUP)
{
setmodeneeded = true;
NewWidth = width;
NewHeight = height;
NewBits = bits;
}
}
else if (width)
{
Printf ("Unknown resolution %d x %d x %d\n", width, height, bits);
}
else
{
Printf ("Usage: vid_setmode <width> <height> <mode>\n");
}
}
//
// V_Init
//
void V_Init (bool restart)
{
const char *i;
int width, height, bits;
atterm (V_Shutdown);
// [RH] Initialize palette management
InitPalette ();
if (!restart)
{
width = height = bits = 0;
if ( (i = Args->CheckValue ("-width")) )
width = atoi (i);
if ( (i = Args->CheckValue ("-height")) )
height = atoi (i);
if ( (i = Args->CheckValue ("-bits")) )
bits = atoi (i);
if (width == 0)
{
if (height == 0)
{
width = vid_defwidth;
height = vid_defheight;
}
else
{
width = (height * 8) / 6;
}
}
else if (height == 0)
{
height = (width * 6) / 8;
}
if (bits == 0)
{
bits = vid_defbits;
}
screen = new DDummyFrameBuffer (width, height);
}
// Update screen palette when restarting
else
{
PalEntry *palette = screen->GetPalette ();
for (int i = 0; i < 256; ++i)
*palette++ = GPalette.BaseColors[i];
screen->UpdatePalette();
}
BuildTransTable (GPalette.BaseColors);
}
void V_Init2()
{
assert (screen->IsKindOf(RUNTIME_CLASS(DDummyFrameBuffer)));
int width = screen->GetWidth();
int height = screen->GetHeight();
float gamma = static_cast<DDummyFrameBuffer *>(screen)->Gamma;
{
DFrameBuffer *s = screen;
screen = NULL;
s->ObjectFlags |= OF_YesReallyDelete;
delete s;
}
I_InitGraphics();
I_ClosestResolution (&width, &height, 8);
if (!Video->SetResolution (width, height, 8))
I_FatalError ("Could not set resolution to %d x %d x %d", width, height, 8);
else
Printf ("Resolution: %d x %d\n", SCREENWIDTH, SCREENHEIGHT);
screen->SetGamma (gamma);
Renderer->RemapVoxels();
FBaseCVar::ResetColors ();
C_NewModeAdjust();
M_InitVideoModesMenu();
V_SetBorderNeedRefresh();
setsizeneeded = true;
}
void V_Shutdown()
{
if (screen)
{
DFrameBuffer *s = screen;
screen = NULL;
s->ObjectFlags |= OF_YesReallyDelete;
delete s;
}
V_ClearFonts();
}
EXTERN_CVAR (Bool, vid_tft)
CUSTOM_CVAR (Bool, vid_nowidescreen, false, CVAR_GLOBALCONFIG|CVAR_ARCHIVE)
{
setsizeneeded = true;
if (StatusBar != NULL)
{
StatusBar->ScreenSizeChanged();
}
}
CUSTOM_CVAR (Int, vid_aspect, 0, CVAR_GLOBALCONFIG|CVAR_ARCHIVE)
{
setsizeneeded = true;
if (StatusBar != NULL)
{
StatusBar->ScreenSizeChanged();
}
}
// Tries to guess the physical dimensions of the screen based on the
// screen's pixel dimensions. Can return:
// 0: 4:3
// 1: 16:9
// 2: 16:10
// 3: 17:10
// 4: 5:4
// 5: 17:10 (redundant)
// 6: 21:9
2016-03-01 15:47:10 +00:00
int CheckRatio (int width, int height, int *trueratio)
{
int fakeratio = -1;
int ratio;
if ((vid_aspect >= 1) && (vid_aspect <= 6))
2016-03-01 15:47:10 +00:00
{
// [SP] User wants to force aspect ratio; let them.
fakeratio = int(vid_aspect);
if (fakeratio == 3)
{
fakeratio = 0;
}
else if (fakeratio == 5)
{
fakeratio = 3;
}
2016-03-01 15:47:10 +00:00
}
if (vid_nowidescreen)
{
if (!vid_tft)
{
fakeratio = 0;
}
else
{
fakeratio = (height * 5/4 == width) ? 4 : 0;
}
}
// If the size is approximately 16:9, consider it so.
if (abs (height * 16/9 - width) < 10)
{
ratio = 1;
}
// Consider 17:10 as well.
else if (abs (height * 17/10 - width) < 10)
{
ratio = 3;
}
// 16:10 has more variance in the pixel dimensions. Grr.
else if (abs (height * 16/10 - width) < 60)
{
// 320x200 and 640x400 are always 4:3, not 16:10
if ((width == 320 && height == 200) || (width == 640 && height == 400))
{
ratio = 0;
}
else
{
ratio = 2;
}
}
// Unless vid_tft is set, 1280x1024 is 4:3, not 5:4.
else if (height * 5/4 == width && vid_tft)
{
ratio = 4;
}
// test for 21:9 (actually 64:27, 21:9 is a semi-accurate ratio used in marketing)
else if (abs (height * 64/27 - width) < 30)
{
ratio = 6;
}
2016-03-01 15:47:10 +00:00
// Assume anything else is 4:3. (Which is probably wrong these days...)
else
{
ratio = 0;
}
if (trueratio != NULL)
{
*trueratio = ratio;
}
return (fakeratio >= 0) ? fakeratio : ratio;
}
// First column: Base width
// Second column: Base height (used for wall visibility multiplier)
// Third column: Psprite offset (needed for "tallscreen" modes)
// Fourth column: Width or height multiplier
// For widescreen aspect ratio x:y ...
// base_width = 240 * x / y
// multiplier = 320 / base_width
// base_height = 200 * multiplier
const int BaseRatioSizes[7][4] =
2016-03-01 15:47:10 +00:00
{
{ 960, 600, 0, 48 }, // 4:3 320, 200, multiplied by three
{ 1280, 450, 0, 48*3/4 }, // 16:9 426.6667, 150, multiplied by three
{ 1152, 500, 0, 48*5/6 }, // 16:10 386, 166.6667, multiplied by three
{ 1224, 471, 0, 48*40/51 }, // 17:10 408, 156.8627, multiplied by three
{ 960, 640, (int)(6.5*FRACUNIT), 48*15/16 }, // 5:4 320, 213.3333, multiplied by three
2016-03-04 00:00:06 +00:00
{ 1224, 471, 0, 48*40/51 }, // 17:10 408, 156.8627, multiplied by three (REDUNDANT)
{ 1707, 338, 0, 48*9/16 } // 21:9 568.8889, 337.5, multiplied by three
2016-03-01 15:47:10 +00:00
};
void IVideo::DumpAdapters ()
{
Printf("Multi-monitor support unavailable.\n");
}
CCMD(vid_listadapters)
{
if (Video != NULL)
Video->DumpAdapters();
}