qzdoom-gpl/src/sound/music_midi_midiout.cpp

738 lines
15 KiB
C++
Raw Normal View History

#ifdef _WIN32
#include "i_musicinterns.h"
#include "templates.h"
#include "doomdef.h"
#include "m_swap.h"
EXTERN_CVAR (Float, snd_midivolume)
struct MIDISong2::TrackInfo
{
const BYTE *TrackBegin;
size_t TrackP;
size_t MaxTrackP;
DWORD Delay;
bool Finished;
BYTE RunningStatus;
SBYTE LoopCount;
bool Designated;
bool EProgramChange;
bool EVolume;
WORD Designation;
size_t LoopBegin;
DWORD LoopDelay;
bool LoopFinished;
DWORD ReadVarLen ();
};
extern DWORD midivolume;
extern UINT mididevice;
static BYTE EventLengths[7] = { 2, 2, 2, 2, 1, 1, 2 };
static BYTE CommonLengths[15] = { 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
MIDISong2::MIDISong2 (FILE *file, int len)
: MidiOut (0), PlayerThread (0),
PauseEvent (0), ExitEvent (0), VolumeChangeEvent (0),
MusHeader (0)
{
int p;
int i;
MusHeader = new BYTE[len];
if (fread (MusHeader, 1, len, file) != (size_t)len)
return;
// Do some validation of the MIDI file
if (MusHeader[4] != 0 || MusHeader[5] != 0 || MusHeader[6] != 0 || MusHeader[7] != 6)
return;
if (MusHeader[8] != 0 || MusHeader[9] > 2)
return;
Format = MusHeader[9];
if (Format == 0)
{
NumTracks = 1;
}
else
{
NumTracks = MusHeader[10] * 256 + MusHeader[11];
}
// The timers only have millisecond accuracy, not microsecond.
Division = (MusHeader[12] * 256 + MusHeader[13]) * 1000;
Tracks = new TrackInfo[NumTracks];
// Gather information about each track
for (i = 0, p = 14; i < NumTracks && p < len + 8; ++i)
{
DWORD chunkLen =
(MusHeader[p+4]<<24) |
(MusHeader[p+5]<<16) |
(MusHeader[p+6]<<8) |
(MusHeader[p+7]);
if (chunkLen + p + 8 > (DWORD)len)
{ // Track too long, so truncate it
chunkLen = len - p - 8;
}
if (MusHeader[p+0] == 'M' &&
MusHeader[p+1] == 'T' &&
MusHeader[p+2] == 'r' &&
MusHeader[p+3] == 'k')
{
Tracks[i].TrackBegin = MusHeader + p + 8;
Tracks[i].TrackP = 0;
Tracks[i].MaxTrackP = chunkLen;
}
p += chunkLen + 8;
}
// In case there were fewer actual chunks in the file than the
// header specified, update NumTracks with the current value of i
NumTracks = i;
if (NumTracks == 0)
{ // No tracks, so nothing to play
return;
}
ExitEvent = CreateEvent (NULL, FALSE, FALSE, NULL);
if (ExitEvent == NULL)
{
Printf (PRINT_BOLD, "Could not create exit event for MIDI playback\n");
return;
}
VolumeChangeEvent = CreateEvent (NULL, FALSE, FALSE, NULL);
if (VolumeChangeEvent == NULL)
{
Printf (PRINT_BOLD, "Could not create volume event for MIDI playback\n");
return;
}
PauseEvent = CreateEvent (NULL, FALSE, FALSE, NULL);
if (PauseEvent == NULL)
{
Printf (PRINT_BOLD, "Could not create pause event for MIDI playback\n");
}
}
MIDISong2::~MIDISong2 ()
{
Stop ();
if (PauseEvent != NULL)
{
CloseHandle (PauseEvent);
}
if (ExitEvent != NULL)
{
CloseHandle (ExitEvent);
}
if (VolumeChangeEvent != NULL)
{
CloseHandle (VolumeChangeEvent);
}
if (Tracks != NULL)
{
delete[] Tracks;
}
}
bool MIDISong2::IsMIDI () const
{
return true;
}
bool MIDISong2::IsValid () const
{
return PauseEvent != 0;
}
void MIDISong2::Play (bool looping)
{
MIDIOUTCAPS caps;
DWORD tid;
m_Status = STATE_Stopped;
m_Looping = looping;
// Find out if this an FM synth or not for EMIDI
DesignationMask = 0xFF0F;
if (MMSYSERR_NOERROR == midiOutGetDevCaps (mididevice, &caps, sizeof(caps)))
{
if (caps.wTechnology == MOD_FMSYNTH)
{
DesignationMask = 0x00F0;
}
else if (caps.wTechnology == MOD_MIDIPORT)
{
DesignationMask = 0x0001;
}
}
if (MMSYSERR_NOERROR != midiOutOpen (&MidiOut, mididevice, 0, 0, CALLBACK_NULL))
{
Printf (PRINT_BOLD, "Could not open MIDI out device\n");
return;
}
// Try two different methods for setting the stream to full volume.
// Unfortunately, this isn't as reliable as it once was, which is a pity.
// The real volume selection is done by setting the volume controller for
// each channel. Because every General MIDI-compliant device must support
// this controller, it is the most reliable means of setting the volume.
VolumeWorks = (MMSYSERR_NOERROR == midiOutGetVolume (MidiOut, &SavedVolume));
if (VolumeWorks)
{
VolumeWorks &= (MMSYSERR_NOERROR == midiOutSetVolume (MidiOut, 0xffffffff));
}
else
{
// Send the standard SysEx message for full master volume
BYTE volmess[] = { 0xf0, 0x7f, 0x7f, 0x04, 0x01, 0x7f, 0x7f, 0xf7 };
MIDIHDR hdr = { (LPSTR)volmess, sizeof(volmess), };
if (MMSYSERR_NOERROR == midiOutPrepareHeader (MidiOut, &hdr, sizeof(hdr)))
{
midiOutLongMsg (MidiOut, &hdr, sizeof(hdr));
while (MIDIERR_STILLPLAYING == midiOutUnprepareHeader (MidiOut, &hdr, sizeof(hdr)))
{
Sleep (10);
}
}
}
snd_midivolume.Callback(); // set volume to current music's properties
PlayerThread = CreateThread (NULL, 0, PlayerProc, this, 0, &tid);
if (PlayerThread == NULL)
{
if (VolumeWorks)
{
midiOutSetVolume (MidiOut, SavedVolume);
}
midiOutClose (MidiOut);
MidiOut = NULL;
}
m_Status = STATE_Playing;
}
void MIDISong2::Pause ()
{
if (m_Status == STATE_Playing)
{
SetEvent (PauseEvent);
m_Status = STATE_Paused;
}
}
void MIDISong2::Resume ()
{
if (m_Status == STATE_Paused)
{
SetEvent (PauseEvent);
m_Status = STATE_Playing;
}
}
void MIDISong2::Stop ()
{
if (PlayerThread)
{
SetEvent (ExitEvent);
WaitForSingleObject (PlayerThread, INFINITE);
CloseHandle (PlayerThread);
PlayerThread = NULL;
}
if (MidiOut)
{
midiOutReset (MidiOut);
if (VolumeWorks)
{
midiOutSetVolume (MidiOut, SavedVolume);
}
midiOutClose (MidiOut);
MidiOut = NULL;
}
}
bool MIDISong2::IsPlaying ()
{
return m_Status != STATE_Stopped;
}
void MIDISong2::SetVolume (float volume)
{
SetEvent (VolumeChangeEvent);
}
DWORD WINAPI MIDISong2::PlayerProc (LPVOID lpParameter)
{
MIDISong2 *song = (MIDISong2 *)lpParameter;
HANDLE events[2] = { song->ExitEvent, song->PauseEvent };
bool waited = false;
int i;
DWORD wait;
SetThreadPriority (GetCurrentThread (), THREAD_PRIORITY_TIME_CRITICAL);
for (i = 0; i < 16; ++i)
{
// The ASS uses a default volume of 90, but all the other
// sources I can find say it's 100. Ideally, any song that
// cares about its volume is going to initialize it to
// whatever it wants and override this default.
song->ChannelVolumes[i] = 100;
}
song->OutputVolume (midivolume & 0xffff);
song->Tempo = 500000;
do
{
for (i = 0; i < song->NumTracks; ++i)
{
song->Tracks[i].TrackP = 0;
song->Tracks[i].Finished = false;
song->Tracks[i].RunningStatus = 0;
song->Tracks[i].Designated = false;
song->Tracks[i].Designation = 0;
song->Tracks[i].LoopCount = -1;
song->Tracks[i].EProgramChange = false;
song->Tracks[i].EVolume = false;
}
song->ProcessInitialMetaEvents ();
for (i = 0; i < song->NumTracks; ++i)
{
song->Tracks[i].Delay = song->Tracks[i].ReadVarLen ();
}
song->TrackDue = song->Tracks;
song->TrackDue = song->FindNextDue ();
while (0 != (wait = song->SendCommands ()))
{
waited = true;
// Wait for the exit or pause event or the next note
switch (WaitForMultipleObjects (2, events, FALSE, wait * song->Tempo / song->Division))
{
case WAIT_OBJECT_0:
song->m_Status = STATE_Stopped;
return 0;
case WAIT_OBJECT_0+1:
// Go paused
song->OutputVolume (0);
// Wait for the exit or pause event
if (WAIT_OBJECT_0 == WaitForMultipleObjects (2, events, FALSE, INFINITE))
{
song->m_Status = STATE_Stopped;
return 0;
}
song->OutputVolume (midivolume & 0xffff);
}
for (i = 0; i < song->NumTracks; ++i)
{
if (!song->Tracks[i].Finished)
{
song->Tracks[i].Delay -= wait;
}
}
song->TrackDue = song->FindNextDue ();
// Check if the volume needs changing
if (WAIT_OBJECT_0 == WaitForSingleObject (song->VolumeChangeEvent, 0))
{
song->OutputVolume (midivolume & 0xffff);
}
}
}
while (waited && song->m_Looping);
song->m_Status = STATE_Stopped;
return 0;
}
void MIDISong2::OutputVolume (DWORD volume)
{
for (int i = 0; i < 16; ++i)
{
BYTE courseVol = (BYTE)(((ChannelVolumes[i]+1) * volume) >> 16);
midiOutShortMsg (MidiOut, i | MIDI_CTRLCHANGE | (7<<8) | (courseVol<<16));
}
}
DWORD MIDISong2::SendCommands ()
{
while (TrackDue && TrackDue->Delay == 0)
{
SendCommand (TrackDue);
TrackDue = FindNextDue ();
}
return TrackDue ? TrackDue->Delay : 0;
}
#define CHECK_FINISHED \
if (track->TrackP >= track->MaxTrackP) \
{ \
track->Finished = true; \
return; \
}
void MIDISong2::SendCommand (TrackInfo *track)
{
DWORD len;
BYTE event, data1 = 0, data2 = 0;
int i;
CHECK_FINISHED
event = track->TrackBegin[track->TrackP++];
CHECK_FINISHED
if (event != 0xF0 && event != 0xFF && event != 0xF7)
{
// Normal short message
if ((event & 0xF0) == 0xF0)
{
if (CommonLengths[event & 15] > 0)
{
data1 = track->TrackBegin[track->TrackP++];
if (CommonLengths[event & 15] > 1)
{
data2 = track->TrackBegin[track->TrackP++];
}
}
}
else if ((event & 0x80) == 0)
{
data1 = event;
event = track->RunningStatus;
}
else
{
track->RunningStatus = event;
data1 = track->TrackBegin[track->TrackP++];
}
CHECK_FINISHED
if (EventLengths[(event&0x70)>>4] == 2)
{
data2 = track->TrackBegin[track->TrackP++];
}
switch (event & 0x70)
{
case 0x40:
if (track->EProgramChange)
{
event = 0xFF;
}
break;
case 0x30:
switch (data1)
{
case 7:
if (track->EVolume)
{
event = 0xFF;
}
else
{
// Some devices don't support master volume
// (e.g. the Audigy's software MIDI synth--but not its two hardware ones),
// so assume none of them do and scale channel volumes manually.
ChannelVolumes[event & 15] = data2;
data2 = (BYTE)(((data2 + 1) * (midivolume & 0xffff)) >> 16);
}
break;
case 39:
// Skip fine volume adjustment because I am lazy.
// (And it doesn't seem to be used much anyway.)
event = 0xFF;
break;
case 110: // EMIDI Track Designation
// Instruments 4, 5, 6, and 7 are all FM syth.
// The rest are all wavetable.
if (data2 == 127)
{
track->Designation = ~0;
}
else
{
if (data2 <= 9)
{
track->Designation |= 1 << data2;
}
}
track->Designated = true;
event = 0xFF;
break;
case 111: // EMIDI Track Exclusion
if (track->Designated)
{
track->Designation &= ~(1 << data2);
}
event = 0xFF;
break;
case 112: // EMIDI Program Change
track->EProgramChange = true;
event = 0xC0 | (event & 0x0F);
data1 = data2;
data2 = 0;
break;
case 113: // EMIDI Volume
track->EVolume = true;
data1 = 7;
ChannelVolumes[event & 15] = data2;
data2 = (BYTE)(((data2 + 1) * (midivolume & 0xffff)) >> 16);
break;
case 116: // EMIDI Loop Begin
track->LoopBegin = track->TrackP;
track->LoopDelay = 0;
track->LoopCount = data2;
track->LoopFinished = track->Finished;
event = 0xFF;
break;
case 117: // EMIDI Loop End
if (track->LoopCount >= 0 && data2 == 127)
{
if (track->LoopCount == 0 && !m_Looping)
{
track->Finished = true;
}
else
{
if (track->LoopCount > 0 && --track->LoopCount == 0)
{
track->LoopCount = -1;
}
track->TrackP = track->LoopBegin;
track->Delay = track->LoopDelay;
track->Finished = track->LoopFinished;
}
}
event = 0xFF;
break;
case 118: // EMIDI Global Loop Begin
for (i = 0; i < NumTracks; ++i)
{
Tracks[i].LoopBegin = Tracks[i].TrackP;
Tracks[i].LoopDelay = Tracks[i].Delay;
Tracks[i].LoopCount = data2;
Tracks[i].LoopFinished = Tracks[i].Finished;
}
event = 0xFF;
break;
case 119: // EMIDI Global Loop End
if (data2 == 127)
{
for (i = 0; i < NumTracks; ++i)
{
if (Tracks[i].LoopCount >= 0)
{
if (Tracks[i].LoopCount == 0 && !m_Looping)
{
Tracks[i].Finished = true;
}
else
{
if (Tracks[i].LoopCount > 0 && --Tracks[i].LoopCount == 0)
{
Tracks[i].LoopCount = -1;
}
Tracks[i].TrackP = Tracks[i].LoopBegin;
Tracks[i].Delay = Tracks[i].LoopDelay;
Tracks[i].Finished = Tracks[i].LoopFinished;
}
}
}
}
event = 0xFF;
break;
}
}
if (event != 0xFF && (!track->Designated || (track->Designation & DesignationMask)))
{
if (MMSYSERR_NOERROR != midiOutShortMsg (MidiOut, event | (data1<<8) | (data2<<16)))
{
track->Finished = true;
return;
}
}
}
else
{
// Skip SysEx events just because I don't want to bother with
// preparing headers and sending them out. The old MIDI player
// ignores them too, so this won't break anything that played
// before.
if (event == 0xF0 || event == 0xF7)
{
len = track->ReadVarLen ();
track->TrackP += len;
}
else if (event == 0xFF)
{
// It's a meta-event
event = track->TrackBegin[track->TrackP++];
CHECK_FINISHED
len = track->ReadVarLen ();
CHECK_FINISHED
if (track->TrackP + len <= track->MaxTrackP)
{
switch (event)
{
case 0x2F:
track->Finished = true;
break;
case 0x51:
Tempo =
(track->TrackBegin[track->TrackP+0]<<16) |
(track->TrackBegin[track->TrackP+1]<<8) |
(track->TrackBegin[track->TrackP+2]);
break;
}
track->TrackP += len;
if (track->TrackP == track->MaxTrackP)
{
track->Finished = true;
}
}
else
{
track->Finished = true;
}
}
}
if (!track->Finished)
{
track->Delay = track->ReadVarLen ();
}
}
#undef CHECK_FINISHED
void MIDISong2::ProcessInitialMetaEvents ()
{
TrackInfo *track;
int i;
BYTE event;
DWORD len;
for (i = 0; i < NumTracks; ++i)
{
track = &Tracks[i];
while (!track->Finished &&
track->TrackP < track->MaxTrackP - 4 &&
track->TrackBegin[track->TrackP] == 0 &&
track->TrackBegin[track->TrackP+1] == 0xFF)
{
event = track->TrackBegin[track->TrackP+2];
track->TrackP += 3;
len = track->ReadVarLen ();
if (track->TrackP + len <= track->MaxTrackP)
{
switch (event)
{
case 0x2F:
track->Finished = true;
break;
case 0x51:
Tempo =
(track->TrackBegin[track->TrackP+0]<<16) |
(track->TrackBegin[track->TrackP+1]<<8) |
(track->TrackBegin[track->TrackP+2]);
break;
}
}
track->TrackP += len;
}
if (track->TrackP >= track->MaxTrackP - 4)
{
track->Finished = true;
}
}
}
DWORD MIDISong2::TrackInfo::ReadVarLen ()
{
DWORD time = 0, t = 0x80;
while ((t & 0x80) && TrackP < MaxTrackP)
{
t = TrackBegin[TrackP++];
time = (time << 7) | (t & 127);
}
return time;
}
MIDISong2::TrackInfo *MIDISong2::FindNextDue ()
{
TrackInfo *track;
DWORD best;
int i;
if (!TrackDue->Finished && TrackDue->Delay == 0)
{
return TrackDue;
}
switch (Format)
{
case 0:
return Tracks[0].Finished ? NULL : Tracks;
case 1:
track = NULL;
best = 0xFFFFFFFF;
for (i = 0; i < NumTracks; ++i)
{
if (!Tracks[i].Finished)
{
if (Tracks[i].Delay < best)
{
best = Tracks[i].Delay;
track = &Tracks[i];
}
}
}
return track;
case 2:
track = TrackDue;
if (track->Finished)
{
track++;
}
return track < &Tracks[NumTracks] ? track : NULL;
}
return NULL;
}
#endif