qzdoom-gpl/src/sound/music_fluidsynth_mididevice.cpp

819 lines
22 KiB
C++
Raw Normal View History

/*
** music_fluidsynth_mididevice.cpp
** Provides access to FluidSynth as a generic MIDI device.
**
**---------------------------------------------------------------------------
** Copyright 2010 Randy Heit
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#ifdef HAVE_FLUIDSYNTH
// HEADER FILES ------------------------------------------------------------
#include "i_musicinterns.h"
#include "templates.h"
#include "doomdef.h"
#include "m_swap.h"
#include "w_wad.h"
#include "v_text.h"
// MACROS ------------------------------------------------------------------
// TYPES -------------------------------------------------------------------
// EXTERNAL FUNCTION PROTOTYPES --------------------------------------------
// PUBLIC FUNCTION PROTOTYPES ----------------------------------------------
// PRIVATE FUNCTION PROTOTYPES ---------------------------------------------
// EXTERNAL DATA DECLARATIONS ----------------------------------------------
// PRIVATE DATA DEFINITIONS ------------------------------------------------
// PUBLIC DATA DEFINITIONS -------------------------------------------------
CVAR(String, fluid_patchset, "", CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
CUSTOM_CVAR(Float, fluid_gain, 0.5, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
{
if (self < 0)
self = 0;
else if (self > 10)
self = 10;
else if (currSong != NULL)
currSong->FluidSettingNum("synth.gain", self);
}
CUSTOM_CVAR(Bool, fluid_reverb, true, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
{
if (currSong != NULL)
currSong->FluidSettingStr("synth.reverb.active", self ? "yes" : "no");
}
CUSTOM_CVAR(Bool, fluid_chorus, true, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
{
if (currSong != NULL)
currSong->FluidSettingStr("synth.chorus.active", self ? "yes" : "no");
}
CUSTOM_CVAR(Int, fluid_voices, 128, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
{
if (self < 16)
self = 16;
else if (self > 4096)
self = 4096;
else if (currSong != NULL)
currSong->FluidSettingInt("synth.polyphony", self);
}
CUSTOM_CVAR(Int, fluid_interp, FLUID_INTERP_LINEAR, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
{
// Values are: 0 = FLUID_INTERP_NONE
// 1 = FLUID_INTERP_LINEAR
// 2 = FLUID_INTERP_4THORDER (the FluidSynth default)
// 3 = FLUID_INTERP_7THORDER
if (self < FLUID_INTERP_NONE)
self = FLUID_INTERP_NONE;
else if (self > FLUID_INTERP_HIGHEST)
self = FLUID_INTERP_HIGHEST;
else if (currSong != NULL)
currSong->FluidSettingInt("synth.interpolation", self);
}
// CODE --------------------------------------------------------------------
//==========================================================================
//
// FluidSynthMIDIDevice Constructor
//
//==========================================================================
FluidSynthMIDIDevice::FluidSynthMIDIDevice()
{
Stream = NULL;
Tempo = 0;
Division = 0;
Events = NULL;
Started = false;
FluidSynth = NULL;
FluidSettings = new_fluid_settings();
if (FluidSettings == NULL)
{
printf("Failed to create FluidSettings.\n");
return;
}
fluid_settings_setnum(FluidSettings, "synth.gain", fluid_gain);
fluid_settings_setstr(FluidSettings, "synth.reverb.active", fluid_reverb ? "yes" : "no");
fluid_settings_setstr(FluidSettings, "synth.chorus.active", fluid_chorus ? "yes" : "no");
fluid_settings_setint(FluidSettings, "synth.polyphony", fluid_voices);
FluidSynth = new_fluid_synth(FluidSettings);
if (FluidSynth == NULL)
{
Printf("Failed to create FluidSynth.\n");
return;
}
if (FLUID_FAILED == fluid_synth_set_interp_method(FluidSynth, -1, fluid_interp))
{
Printf("Failed to set interpolation method %d.\n", *fluid_interp);
}
if (0 == LoadPatchSets(fluid_patchset))
{
#ifdef unix
// This is the standard location on Ubuntu.
if (0 == LoadPatchSets("/usr/share/sounds/sf2/FluidR3_GS.sf2:/usr/share/sounds/sf2/FluidR3_GM.sf2"))
{
#endif
#ifdef _WIN32
// On Windows, look for the 4 megabyte patch set installed by Creative's drivers as a default.
char sysdir[MAX_PATH+sizeof("\\CT4MGM.SF2")];
UINT filepart;
if (0 != (filepart = GetSystemDirectoryA(sysdir, MAX_PATH)))
{
strcat(sysdir, "\\CT4MGM.SF2");
if (0 == LoadPatchSets(sysdir))
{
// Try again with CT2MGM.SF2
sysdir[filepart + 3] = '2';
if (0 == LoadPatchSets(sysdir))
{
#endif
Printf("Failed to load any MIDI patches.\n");
delete_fluid_synth(FluidSynth);
FluidSynth = NULL;
#ifdef _WIN32
}
}
}
#endif
#ifdef unix
}
#endif
}
}
//==========================================================================
//
// FluidSynthMIDIDevice Destructor
//
//==========================================================================
FluidSynthMIDIDevice::~FluidSynthMIDIDevice()
{
Close();
if (FluidSynth != NULL)
{
delete_fluid_synth(FluidSynth);
}
if (FluidSettings != NULL)
{
delete_fluid_settings(FluidSettings);
}
}
//==========================================================================
//
// FluidSynthMIDIDevice :: Open
//
// Returns 0 on success.
//
//==========================================================================
int FluidSynthMIDIDevice::Open(void (*callback)(unsigned int, void *, DWORD, DWORD), void *userdata)
{
if (FluidSynth == NULL)
{
return 2;
}
Stream = GSnd->CreateStream(FillStream, int(44100 / 4) * 4,
SoundStream::Float, 44100, this);
if (Stream == NULL)
{
return 2;
}
fluid_synth_system_reset(FluidSynth);
Callback = callback;
CallbackData = userdata;
Tempo = 500000;
Division = 100;
CalcTickRate();
return 0;
}
//==========================================================================
//
// FluidSynthMIDIDevice :: Close
//
//==========================================================================
void FluidSynthMIDIDevice::Close()
{
if (Stream != NULL)
{
delete Stream;
Stream = NULL;
}
Started = false;
}
//==========================================================================
//
// FluidSynthMIDIDevice :: IsOpen
//
//==========================================================================
bool FluidSynthMIDIDevice::IsOpen() const
{
return Stream != NULL;
}
//==========================================================================
//
// FluidSynthMIDIDevice :: GetTechnology
//
//==========================================================================
int FluidSynthMIDIDevice::GetTechnology() const
{
return MOD_SWSYNTH;
}
//==========================================================================
//
// FluidSynthMIDIDevice :: SetTempo
//
//==========================================================================
int FluidSynthMIDIDevice::SetTempo(int tempo)
{
Tempo = tempo;
CalcTickRate();
return 0;
}
//==========================================================================
//
// FluidSynthMIDIDevice :: SetTimeDiv
//
//==========================================================================
int FluidSynthMIDIDevice::SetTimeDiv(int timediv)
{
Division = timediv;
CalcTickRate();
return 0;
}
//==========================================================================
//
// FluidSynthMIDIDevice :: CalcTickRate
//
// Tempo is the number of microseconds per quarter note.
// Division is the number of ticks per quarter note.
//
//==========================================================================
void FluidSynthMIDIDevice::CalcTickRate()
{
SamplesPerTick = 44100 / (1000000.0 / Tempo) / Division;
}
//==========================================================================
//
// FluidSynthMIDIDevice :: Resume
//
//==========================================================================
int FluidSynthMIDIDevice::Resume()
{
if (!Started)
{
if (Stream->Play(true, 1))
{
Started = true;
return 0;
}
return 1;
}
return 0;
}
//==========================================================================
//
// FluidSynthMIDIDevice :: Stop
//
//==========================================================================
void FluidSynthMIDIDevice::Stop()
{
if (Started)
{
Stream->Stop();
Started = false;
}
}
//==========================================================================
//
// FluidSynthMIDIDevice :: StreamOutSync
//
// This version is called from the main game thread and needs to
// synchronize with the player thread.
//
//==========================================================================
int FluidSynthMIDIDevice::StreamOutSync(MIDIHDR *header)
{
CritSec.Enter();
StreamOut(header);
CritSec.Leave();
return 0;
}
//==========================================================================
//
// FluidSynthMIDIDevice :: StreamOut
//
// This version is called from the player thread so does not need to
// arbitrate for access to the Events pointer.
//
//==========================================================================
int FluidSynthMIDIDevice::StreamOut(MIDIHDR *header)
{
header->lpNext = NULL;
if (Events == NULL)
{
Events = header;
NextTickIn = SamplesPerTick * *(DWORD *)header->lpData;
Position = 0;
}
else
{
MIDIHDR **p;
for (p = &Events; *p != NULL; p = &(*p)->lpNext)
{ }
*p = header;
}
return 0;
}
//==========================================================================
//
// FluidSynthMIDIDevice :: PrepareHeader
//
//==========================================================================
int FluidSynthMIDIDevice::PrepareHeader(MIDIHDR *header)
{
return 0;
}
//==========================================================================
//
// FluidSynthMIDIDevice :: UnprepareHeader
//
//==========================================================================
int FluidSynthMIDIDevice::UnprepareHeader(MIDIHDR *header)
{
return 0;
}
//==========================================================================
//
// FluidSynthMIDIDevice :: FakeVolume
//
// Since the FluidSynth output is rendered as a normal stream, its volume is
// controlled through the GSnd interface, not here.
//
//==========================================================================
bool FluidSynthMIDIDevice::FakeVolume()
{
return false;
}
//==========================================================================
//
// FluidSynthMIDIDevice :: NeedThreadedCallabck
//
// FluidSynth can service the callback directly rather than using a separate
// thread.
//
//==========================================================================
bool FluidSynthMIDIDevice::NeedThreadedCallback()
{
return false;
}
//==========================================================================
//
// FluidSynthMIDIDevice :: Pause
//
//==========================================================================
bool FluidSynthMIDIDevice::Pause(bool paused)
{
if (Stream != NULL)
{
return Stream->SetPaused(paused);
}
return true;
}
//==========================================================================
//
// FluidSynthMIDIDevice :: PrecacheInstruments
//
// Each entry is packed as follows:
// Bits 0- 6: Instrument number
// Bits 7-13: Bank number
// Bit 14: Select drum set if 1, tone bank if 0
//
//==========================================================================
void FluidSynthMIDIDevice::PrecacheInstruments(const WORD *instruments, int count)
{
#if 0
for (int i = 0; i < count; ++i)
{
Renderer->MarkInstrument((instruments[i] >> 7) & 127, instruments[i] >> 14, instruments[i] & 127);
}
Renderer->load_missing_instruments();
#endif
}
//==========================================================================
//
// FluidSynthMIDIDevice :: HandleEvent
//
// Translates a MIDI event into FluidSynth calls.
//
//==========================================================================
void FluidSynthMIDIDevice::HandleEvent(int status, int parm1, int parm2)
{
int command = status & 0xF0;
int channel = status & 0x0F;
switch (command)
{
case MIDI_NOTEOFF:
fluid_synth_noteoff(FluidSynth, channel, parm1);
break;
case MIDI_NOTEON:
fluid_synth_noteon(FluidSynth, channel, parm1, parm2);
break;
case MIDI_POLYPRESS:
break;
case MIDI_CTRLCHANGE:
fluid_synth_cc(FluidSynth, channel, parm1, parm2);
break;
case MIDI_PRGMCHANGE:
fluid_synth_program_change(FluidSynth, channel, parm1);
break;
case MIDI_CHANPRESS:
fluid_synth_channel_pressure(FluidSynth, channel, parm1);
break;
case MIDI_PITCHBEND:
fluid_synth_pitch_bend(FluidSynth, channel, (parm1 & 0x7f) | ((parm2 & 0x7f) << 7));
break;
}
}
//==========================================================================
//
// FluidSynthMIDIDevice :: PlayTick
//
// event[0] = delta time
// event[1] = unused
// event[2] = event
//
//==========================================================================
int FluidSynthMIDIDevice::PlayTick()
{
DWORD delay = 0;
while (delay == 0 && Events != NULL)
{
DWORD *event = (DWORD *)(Events->lpData + Position);
if (MEVT_EVENTTYPE(event[2]) == MEVT_TEMPO)
{
SetTempo(MEVT_EVENTPARM(event[2]));
}
else if (MEVT_EVENTTYPE(event[2]) == MEVT_LONGMSG)
{
#if 0
Renderer->HandleLongMessage((BYTE *)&event[3], MEVT_EVENTPARM(event[2]));
#endif
}
else if (MEVT_EVENTTYPE(event[2]) == 0)
{ // Short MIDI event
int status = event[2] & 0xff;
int parm1 = (event[2] >> 8) & 0x7f;
int parm2 = (event[2] >> 16) & 0x7f;
HandleEvent(status, parm1, parm2);
}
// Advance to next event.
if (event[2] < 0x80000000)
{ // Short message
Position += 12;
}
else
{ // Long message
Position += 12 + ((MEVT_EVENTPARM(event[2]) + 3) & ~3);
}
// Did we use up this buffer?
if (Position >= Events->dwBytesRecorded)
{
Events = Events->lpNext;
Position = 0;
if (Callback != NULL)
{
Callback(MOM_DONE, CallbackData, 0, 0);
}
}
if (Events == NULL)
{ // No more events. Just return something to keep the song playing
// while we wait for more to be submitted.
return int(Division);
}
delay = *(DWORD *)(Events->lpData + Position);
}
return delay;
}
//==========================================================================
//
// FluidSynthtMIDIDevice :: ServiceStream
//
//==========================================================================
bool FluidSynthMIDIDevice::ServiceStream (void *buff, int numbytes)
{
float *samples = (float *)buff;
float *samples1;
int numsamples = numbytes / sizeof(float) / 2;
bool prev_ended = false;
bool res = true;
samples1 = samples;
memset(buff, 0, numbytes);
CritSec.Enter();
while (Events != NULL && numsamples > 0)
{
double ticky = NextTickIn;
int tick_in = int(NextTickIn);
int samplesleft = MIN(numsamples, tick_in);
if (samplesleft > 0)
{
fluid_synth_write_float(FluidSynth, samplesleft,
samples1, 0, 2,
samples1, 1, 2);
assert(NextTickIn == ticky);
NextTickIn -= samplesleft;
assert(NextTickIn >= 0);
numsamples -= samplesleft;
samples1 += samplesleft * 2;
}
if (NextTickIn < 1)
{
int next = PlayTick();
assert(next >= 0);
if (next == 0)
{ // end of song
if (numsamples > 0)
{
fluid_synth_write_float(FluidSynth, numsamples,
samples1, 0, 2,
samples1, 1, 2);
}
res = false;
break;
}
else
{
NextTickIn += SamplesPerTick * next;
assert(NextTickIn >= 0);
}
}
}
if (Events == NULL)
{
res = false;
}
CritSec.Leave();
return res;
}
//==========================================================================
//
// FluidSynthMIDIDevice :: LoadPatchSets
//
// Loads a delimiter-separated list of patch sets. This delimiter matches
// that of the PATH environment variable. On Windows, it is ';'. On other
// systems, it is ':'. Returns the number of patch sets loaded.
//
//==========================================================================
int FluidSynthMIDIDevice::LoadPatchSets(const char *patches)
{
int count;
char *wpatches = strdup(patches);
char *tok;
#ifdef _WIN32
const char *const delim = ";";
#else
const char *const delim = ":";
#endif
if (wpatches == NULL)
{
return 0;
}
tok = strtok(wpatches, delim);
count = 0;
while (tok != NULL)
{
if (FLUID_FAILED != fluid_synth_sfload(FluidSynth, tok, count == 0))
{
DPrintf("Loaded patch set %s.\n", tok);
count++;
}
else
{
DPrintf("Failed to load patch set %s.\n", tok);
}
tok = strtok(NULL, delim);
}
free(wpatches);
return count;
}
//==========================================================================
//
// FluidSynthMIDIDevice :: FluidSettingInt
//
// Changes an integer setting.
//
//==========================================================================
void FluidSynthMIDIDevice::FluidSettingInt(const char *setting, int value)
{
if (strcmp(setting, "synth.interpolation") == 0)
{
if (FluidSynth != NULL)
{
if (FLUID_OK != fluid_synth_set_interp_method(FluidSynth, -1, value))
{
Printf("Setting interpolation method %d failed.\n", value);
}
}
}
else if (FluidSynth != NULL && strcmp(setting, "synth.polyphony") == 0)
{
if (FLUID_OK != fluid_synth_set_polyphony(FluidSynth, value))
{
Printf("Setting polyphony to %d failed.\n", value);
}
}
else if (FluidSettings != NULL)
{
if (!fluid_settings_setint(FluidSettings, setting, value))
{
Printf("Faild to set %s to %d.\n", setting, value);
}
}
}
//==========================================================================
//
// FluidSynthMIDIDevice :: FluidSettingNum
//
// Changes a numeric setting.
//
//==========================================================================
void FluidSynthMIDIDevice::FluidSettingNum(const char *setting, double value)
{
if (FluidSettings != NULL)
{
if (!fluid_settings_setnum(FluidSettings, setting, value))
{
Printf("Failed to set %s to %g.\n", setting, value);
}
}
}
//==========================================================================
//
// FluidSynthMIDIDevice :: FluidSettingStr
//
// Changes a string setting.
//
//==========================================================================
void FluidSynthMIDIDevice::FluidSettingStr(const char *setting, const char *value)
{
if (FluidSettings != NULL)
{
if (!fluid_settings_setstr(FluidSettings, setting, value))
{
Printf("Failed to set %s to %s.\n", setting, value);
}
}
}
//==========================================================================
//
// FluidSynthMIDIDevice :: FillStream static
//
//==========================================================================
bool FluidSynthMIDIDevice::FillStream(SoundStream *stream, void *buff, int len, void *userdata)
{
FluidSynthMIDIDevice *device = (FluidSynthMIDIDevice *)userdata;
return device->ServiceStream(buff, len);
}
//==========================================================================
//
// FluidSynthMIDIDevice :: GetStats
//
//==========================================================================
FString FluidSynthMIDIDevice::GetStats()
{
if (FluidSynth == NULL || FluidSettings == NULL)
{
return "FluidSynth is invalid";
}
FString out;
CritSec.Enter();
int polyphony = fluid_synth_get_polyphony(FluidSynth);
int voices = fluid_synth_get_active_voice_count(FluidSynth);
double load = fluid_synth_get_cpu_load(FluidSynth);
char *chorus, *reverb;
int maxpoly;
fluid_settings_getstr(FluidSettings, "synth.chorus.active", &chorus);
fluid_settings_getstr(FluidSettings, "synth.reverb.active", &reverb);
fluid_settings_getint(FluidSettings, "synth.polyphony", &maxpoly);
CritSec.Leave();
out.Format("Voices: "TEXTCOLOR_YELLOW"%3d"TEXTCOLOR_NORMAL"/"TEXTCOLOR_ORANGE"%3d"TEXTCOLOR_NORMAL"("TEXTCOLOR_RED"%3d"TEXTCOLOR_NORMAL")"
TEXTCOLOR_YELLOW"%6.2f"TEXTCOLOR_NORMAL"%% CPU "
"Reverb: "TEXTCOLOR_YELLOW"%3s"TEXTCOLOR_NORMAL
" Chorus: "TEXTCOLOR_YELLOW"%3s",
voices, polyphony, maxpoly, load, reverb, chorus);
return out;
}
#endif