gzdoom/src/math/sin.c
2016-03-11 15:45:47 +01:00

387 lines
7.9 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* sin.c
*
* Circular sine
*
*
*
* SYNOPSIS:
*
* double x, y, sin();
*
* y = sin( x );
*
*
*
* DESCRIPTION:
*
* Range reduction is into intervals of pi/4. The reduction
* error is nearly eliminated by contriving an extended precision
* modular arithmetic.
*
* Two polynomial approximating functions are employed.
* Between 0 and pi/4 the sine is approximated by
* x + x**3 P(x**2).
* Between pi/4 and pi/2 the cosine is represented as
* 1 - x**2 Q(x**2).
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* DEC 0, 10 150000 3.0e-17 7.8e-18
* IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17
*
* ERROR MESSAGES:
*
* message condition value returned
* sin total loss x > 1.073741824e9 0.0
*
* Partial loss of accuracy begins to occur at x = 2**30
* = 1.074e9. The loss is not gradual, but jumps suddenly to
* about 1 part in 10e7. Results may be meaningless for
* x > 2**49 = 5.6e14. The routine as implemented flags a
* TLOSS error for x > 2**30 and returns 0.0.
*/
/* cos.c
*
* Circular cosine
*
*
*
* SYNOPSIS:
*
* double x, y, cos();
*
* y = cos( x );
*
*
*
* DESCRIPTION:
*
* Range reduction is into intervals of pi/4. The reduction
* error is nearly eliminated by contriving an extended precision
* modular arithmetic.
*
* Two polynomial approximating functions are employed.
* Between 0 and pi/4 the cosine is approximated by
* 1 - x**2 Q(x**2).
* Between pi/4 and pi/2 the sine is represented as
* x + x**3 P(x**2).
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17
* DEC 0,+1.07e9 17000 3.0e-17 7.2e-18
*/
/* sin.c */
/*
Cephes Math Library Release 2.8: June, 2000
Copyright 1985, 1995, 2000 by Stephen L. Moshier
*/
#include "mconf.h"
#ifdef UNK
static double sincof[] = {
1.58962301576546568060E-10,
-2.50507477628578072866E-8,
2.75573136213857245213E-6,
-1.98412698295895385996E-4,
8.33333333332211858878E-3,
-1.66666666666666307295E-1,
};
static double coscof[6] = {
-1.13585365213876817300E-11,
2.08757008419747316778E-9,
-2.75573141792967388112E-7,
2.48015872888517045348E-5,
-1.38888888888730564116E-3,
4.16666666666665929218E-2,
};
static double DP1 = 7.85398125648498535156E-1;
static double DP2 = 3.77489470793079817668E-8;
static double DP3 = 2.69515142907905952645E-15;
/* static double lossth = 1.073741824e9; */
#endif
#ifdef DEC
static unsigned short sincof[] = {
0030056,0143750,0177214,0163153,
0131727,0027455,0044510,0175352,
0033470,0167432,0131752,0042414,
0135120,0006400,0146776,0174027,
0036410,0104210,0104207,0137202,
0137452,0125252,0125252,0125103,
};
static unsigned short coscof[24] = {
0127107,0151115,0002060,0152325,
0031017,0072353,0155161,0174053,
0132623,0171173,0172542,0057056,
0034320,0006400,0147102,0023652,
0135666,0005540,0133012,0076213,
0037052,0125252,0125252,0125126,
};
/* 7.853981629014015197753906250000E-1 */
static unsigned short P1[] = {0040111,0007732,0120000,0000000,};
/* 4.960467869796758577649598009884E-10 */
static unsigned short P2[] = {0030410,0055060,0100000,0000000,};
/* 2.860594363054915898381331279295E-18 */
static unsigned short P3[] = {0021523,0011431,0105056,0001560,};
#define DP1 *(double *)P1
#define DP2 *(double *)P2
#define DP3 *(double *)P3
#endif
#ifdef IBMPC
static unsigned short sincof[] = {
0x9ccd,0x1fd1,0xd8fd,0x3de5,
0x1f5d,0xa929,0xe5e5,0xbe5a,
0x48a1,0x567d,0x1de3,0x3ec7,
0xdf03,0x19bf,0x01a0,0xbf2a,
0xf7d0,0x1110,0x1111,0x3f81,
0x5548,0x5555,0x5555,0xbfc5,
};
static unsigned short coscof[24] = {
0x1a9b,0xa086,0xfa49,0xbda8,
0x3f05,0x7b4e,0xee9d,0x3e21,
0x4bc6,0x7eac,0x7e4f,0xbe92,
0x44f5,0x19c8,0x01a0,0x3efa,
0x4f91,0x16c1,0xc16c,0xbf56,
0x554b,0x5555,0x5555,0x3fa5,
};
/*
7.85398125648498535156E-1,
3.77489470793079817668E-8,
2.69515142907905952645E-15,
*/
static unsigned short P1[] = {0x0000,0x4000,0x21fb,0x3fe9};
static unsigned short P2[] = {0x0000,0x0000,0x442d,0x3e64};
static unsigned short P3[] = {0x5170,0x98cc,0x4698,0x3ce8};
#define DP1 *(double *)P1
#define DP2 *(double *)P2
#define DP3 *(double *)P3
#endif
#ifdef MIEEE
static unsigned short sincof[] = {
0x3de5,0xd8fd,0x1fd1,0x9ccd,
0xbe5a,0xe5e5,0xa929,0x1f5d,
0x3ec7,0x1de3,0x567d,0x48a1,
0xbf2a,0x01a0,0x19bf,0xdf03,
0x3f81,0x1111,0x1110,0xf7d0,
0xbfc5,0x5555,0x5555,0x5548,
};
static unsigned short coscof[24] = {
0xbda8,0xfa49,0xa086,0x1a9b,
0x3e21,0xee9d,0x7b4e,0x3f05,
0xbe92,0x7e4f,0x7eac,0x4bc6,
0x3efa,0x01a0,0x19c8,0x44f5,
0xbf56,0xc16c,0x16c1,0x4f91,
0x3fa5,0x5555,0x5555,0x554b,
};
static unsigned short P1[] = {0x3fe9,0x21fb,0x4000,0x0000};
static unsigned short P2[] = {0x3e64,0x442d,0x0000,0x0000};
static unsigned short P3[] = {0x3ce8,0x4698,0x98cc,0x5170};
#define DP1 *(double *)P1
#define DP2 *(double *)P2
#define DP3 *(double *)P3
#endif
#ifdef ANSIPROT
extern double polevl ( double, void *, int );
extern double p1evl ( double, void *, int );
extern double floor ( double );
extern double ldexp ( double, int );
extern int isnan ( double );
extern int isfinite ( double );
#else
double polevl(), floor(), ldexp();
int isnan(), isfinite();
#endif
extern double PIO4;
static double lossth = 1.073741824e9;
#ifdef NANS
extern double NAN;
#endif
#ifdef INFINITIES
extern double INFINITY;
#endif
double c_sin(x)
double x;
{
double y, z, zz;
int j, sign;
#ifdef MINUSZERO
if( x == 0.0 )
return(x);
#endif
#ifdef NANS
if( isnan(x) )
return(x);
if( !isfinite(x) )
{
mtherr( "sin", DOMAIN );
return(NAN);
}
#endif
/* make argument positive but save the sign */
sign = 1;
if( x < 0 )
{
x = -x;
sign = -1;
}
if( x > lossth )
{
mtherr( "sin", TLOSS );
return(0.0);
}
y = floor( x/PIO4 ); /* integer part of x/PIO4 */
/* strip high bits of integer part to prevent integer overflow */
z = ldexp( y, -4 );
z = floor(z); /* integer part of y/8 */
z = y - ldexp( z, 4 ); /* y - 16 * (y/16) */
j = (int)z; /* convert to integer for tests on the phase angle */
/* map zeros to origin */
if( j & 1 )
{
j += 1;
y += 1.0;
}
j = j & 07; /* octant modulo 360 degrees */
/* reflect in x axis */
if( j > 3)
{
sign = -sign;
j -= 4;
}
/* Extended precision modular arithmetic */
z = ((x - y * DP1) - y * DP2) - y * DP3;
zz = z * z;
if( (j==1) || (j==2) )
{
y = 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 );
}
else
{
/* y = z + z * (zz * polevl( zz, sincof, 5 ));*/
y = z + z * z * z * polevl( zz, sincof, 5 );
}
if(sign < 0)
y = -y;
return(y);
}
double c_cos(x)
double x;
{
double y, z, zz;
int i;
int j, sign;
#ifdef NANS
if( isnan(x) )
return(x);
if( !isfinite(x) )
{
mtherr( "cos", DOMAIN );
return(NAN);
}
#endif
/* make argument positive */
sign = 1;
if( x < 0 )
x = -x;
if( x > lossth )
{
mtherr( "cos", TLOSS );
return(0.0);
}
y = floor( x/PIO4 );
z = ldexp( y, -4 );
z = floor(z); /* integer part of y/8 */
z = y - ldexp( z, 4 ); /* y - 16 * (y/16) */
/* integer and fractional part modulo one octant */
i = (int)z;
if( i & 1 ) /* map zeros to origin */
{
i += 1;
y += 1.0;
}
j = i & 07;
if( j > 3)
{
j -=4;
sign = -sign;
}
if( j > 1 )
sign = -sign;
/* Extended precision modular arithmetic */
z = ((x - y * DP1) - y * DP2) - y * DP3;
zz = z * z;
if( (j==1) || (j==2) )
{
/* y = z + z * (zz * polevl( zz, sincof, 5 ));*/
y = z + z * z * z * polevl( zz, sincof, 5 );
}
else
{
y = 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 );
}
if(sign < 0)
y = -y;
return(y);
}
/* Degrees, minutes, seconds to radians: */
/* 1 arc second, in radians = 4.8481368110953599358991410e-5 */
#ifdef DEC
static unsigned short P648[] = {034513,054170,0176773,0116043,};
#define P64800 *(double *)P648
#else
static double P64800 = 4.8481368110953599358991410e-5;
#endif
double radian(d,m,s)
double d,m,s;
{
return( ((d*60.0 + m)*60.0 + s)*P64800 );
}