gzdoom/src/serializer.cpp

2218 lines
49 KiB
C++

/*
** serializer.cpp
** Savegame wrapper around RapidJSON
**
**---------------------------------------------------------------------------
** Copyright 2016 Christoph Oelckers
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#define RAPIDJSON_48BITPOINTER_OPTIMIZATION 0 // disable this insanity which is bound to make the code break over time.
#define RAPIDJSON_HAS_CXX11_RVALUE_REFS 1
#define RAPIDJSON_HAS_CXX11_RANGE_FOR 1
#define RAPIDJSON_PARSE_DEFAULT_FLAGS kParseFullPrecisionFlag
#include <zlib.h>
#include "rapidjson/rapidjson.h"
#include "rapidjson/writer.h"
#include "rapidjson/prettywriter.h"
#include "rapidjson/document.h"
#include "serializer.h"
#include "r_data/r_interpolate.h"
#include "r_state.h"
#include "p_lnspec.h"
#include "w_wad.h"
#include "p_terrain.h"
#include "p_setup.h"
#include "p_conversation.h"
#include "dsectoreffect.h"
#include "d_player.h"
#include "g_shared/a_sharedglobal.h"
#include "po_man.h"
#include "v_font.h"
#include "doomerrors.h"
#include "v_text.h"
#include "cmdlib.h"
#include "g_levellocals.h"
#include "utf8.h"
char nulspace[1024 * 1024 * 4];
bool save_full = false; // for testing. Should be removed afterward.
//==========================================================================
//
// This will double-encode already existing UTF-8 content.
// The reason for this behavior is to preserve any original data coming through here, no matter what it is.
// If these are script-based strings, exact preservation in the serializer is very important.
//
//==========================================================================
static TArray<char> out;
static const char *StringToUnicode(const char *cc, int size = -1)
{
int ch;
const uint8_t *c = (const uint8_t*)cc;
int count = 0;
int count1 = 0;
out.Clear();
while ((ch = (*c++) & 255))
{
count1++;
if (ch >= 128) count += 2;
else count++;
if (count1 == size && size > 0) break;
}
if (count == count1) return cc; // string is pure ASCII.
// we need to convert
out.Resize(count + 1);
out.Last() = 0;
c = (const uint8_t*)cc;
int i = 0;
while ((ch = (*c++)))
{
utf8_encode(ch, (uint8_t*)&out[i], &count1);
i += count1;
}
return &out[0];
}
static const char *UnicodeToString(const char *cc)
{
out.Resize((unsigned)strlen(cc) + 1);
int ndx = 0;
while (*cc != 0)
{
int size;
int c = utf8_decode((const uint8_t*)cc, &size);
if (c < 0 || c > 255) c = '?'; // This should never happen because all content was encoded with StringToUnicode which only produces code points 0-255.
out[ndx++] = c;
cc += size;
}
out[ndx] = 0;
return &out[0];
}
//==========================================================================
//
//
//
//==========================================================================
struct FJSONObject
{
rapidjson::Value *mObject;
rapidjson::Value::MemberIterator mIterator;
int mIndex;
FJSONObject(rapidjson::Value *v)
{
mObject = v;
if (v->IsObject()) mIterator = v->MemberBegin();
else if (v->IsArray())
{
mIndex = 0;
}
}
};
//==========================================================================
//
// some wrapper stuff to keep the RapidJSON dependencies out of the global headers.
// FSerializer should not expose any of this.
//
//==========================================================================
struct FWriter
{
typedef rapidjson::Writer<rapidjson::StringBuffer, rapidjson::UTF8<> > Writer;
typedef rapidjson::PrettyWriter<rapidjson::StringBuffer, rapidjson::UTF8<> > PrettyWriter;
Writer *mWriter1;
PrettyWriter *mWriter2;
TArray<bool> mInObject;
rapidjson::StringBuffer mOutString;
TArray<DObject *> mDObjects;
TMap<DObject *, int> mObjectMap;
FWriter(bool pretty)
{
if (!pretty)
{
mWriter1 = new Writer(mOutString);
mWriter2 = nullptr;
}
else
{
mWriter1 = nullptr;
mWriter2 = new PrettyWriter(mOutString);
}
}
~FWriter()
{
if (mWriter1) delete mWriter1;
if (mWriter2) delete mWriter2;
}
bool inObject() const
{
return mInObject.Size() > 0 && mInObject.Last();
}
void StartObject()
{
if (mWriter1) mWriter1->StartObject();
else if (mWriter2) mWriter2->StartObject();
}
void EndObject()
{
if (mWriter1) mWriter1->EndObject();
else if (mWriter2) mWriter2->EndObject();
}
void StartArray()
{
if (mWriter1) mWriter1->StartArray();
else if (mWriter2) mWriter2->StartArray();
}
void EndArray()
{
if (mWriter1) mWriter1->EndArray();
else if (mWriter2) mWriter2->EndArray();
}
void Key(const char *k)
{
if (mWriter1) mWriter1->Key(k);
else if (mWriter2) mWriter2->Key(k);
}
void Null()
{
if (mWriter1) mWriter1->Null();
else if (mWriter2) mWriter2->Null();
}
void StringU(const char *k, bool encode)
{
if (encode) k = StringToUnicode(k);
if (mWriter1) mWriter1->String(k);
else if (mWriter2) mWriter2->String(k);
}
void String(const char *k)
{
k = StringToUnicode(k);
if (mWriter1) mWriter1->String(k);
else if (mWriter2) mWriter2->String(k);
}
void String(const char *k, int size)
{
k = StringToUnicode(k, size);
if (mWriter1) mWriter1->String(k);
else if (mWriter2) mWriter2->String(k);
}
void Bool(bool k)
{
if (mWriter1) mWriter1->Bool(k);
else if (mWriter2) mWriter2->Bool(k);
}
void Int(int32_t k)
{
if (mWriter1) mWriter1->Int(k);
else if (mWriter2) mWriter2->Int(k);
}
void Int64(int64_t k)
{
if (mWriter1) mWriter1->Int64(k);
else if (mWriter2) mWriter2->Int64(k);
}
void Uint(uint32_t k)
{
if (mWriter1) mWriter1->Uint(k);
else if (mWriter2) mWriter2->Uint(k);
}
void Uint64(int64_t k)
{
if (mWriter1) mWriter1->Uint64(k);
else if (mWriter2) mWriter2->Uint64(k);
}
void Double(double k)
{
if (mWriter1)
{
mWriter1->Double(k);
}
else if (mWriter2)
{
mWriter2->Double(k);
}
}
};
//==========================================================================
//
//
//
//==========================================================================
struct FReader
{
TArray<FJSONObject> mObjects;
rapidjson::Document mDoc;
TArray<DObject *> mDObjects;
rapidjson::Value *mKeyValue = nullptr;
int mPlayers[MAXPLAYERS];
bool mObjectsRead = false;
FReader(const char *buffer, size_t length)
{
rapidjson::Document doc;
mDoc.Parse(buffer, length);
mObjects.Push(FJSONObject(&mDoc));
memset(mPlayers, -1, sizeof(mPlayers));
}
rapidjson::Value *FindKey(const char *key)
{
FJSONObject &obj = mObjects.Last();
if (obj.mObject->IsObject())
{
if (key == nullptr)
{
// we are performing an iteration of the object through GetKey.
auto p = mKeyValue;
mKeyValue = nullptr;
return p;
}
else
{
// Find the given key by name;
auto it = obj.mObject->FindMember(key);
if (it == obj.mObject->MemberEnd()) return nullptr;
return &it->value;
}
}
else if (obj.mObject->IsArray() && (unsigned)obj.mIndex < obj.mObject->Size())
{
return &(*obj.mObject)[obj.mIndex++];
}
return nullptr;
}
};
//==========================================================================
//
//
//
//==========================================================================
bool FSerializer::OpenWriter(bool pretty)
{
if (w != nullptr || r != nullptr) return false;
mErrors = 0;
w = new FWriter(pretty);
BeginObject(nullptr);
return true;
}
//==========================================================================
//
//
//
//==========================================================================
bool FSerializer::OpenReader(const char *buffer, size_t length)
{
if (w != nullptr || r != nullptr) return false;
mErrors = 0;
r = new FReader(buffer, length);
return true;
}
//==========================================================================
//
//
//
//==========================================================================
bool FSerializer::OpenReader(FCompressedBuffer *input)
{
if (input->mSize <= 0 || input->mBuffer == nullptr) return false;
if (w != nullptr || r != nullptr) return false;
mErrors = 0;
if (input->mMethod == METHOD_STORED)
{
r = new FReader((char*)input->mBuffer, input->mSize);
}
else
{
TArray<char> unpacked(input->mSize);
input->Decompress(unpacked.Data());
r = new FReader(unpacked.Data(), input->mSize);
}
return true;
}
//==========================================================================
//
//
//
//==========================================================================
void FSerializer::Close()
{
if (w == nullptr && r == nullptr) return; // double close? This should skip the I_Error at the bottom.
if (w != nullptr)
{
delete w;
w = nullptr;
}
if (r != nullptr)
{
// we must explicitly delete all thinkers in the array which did not get linked into the thinker lists.
// Otherwise these objects may survive a level deletion and point to incorrect data.
for (auto obj : r->mDObjects)
{
auto think = dyn_cast<DThinker>(obj);
if (think != nullptr)
{
if (think->NextThinker == nullptr || think->PrevThinker == nullptr)
{
think->Destroy();
}
}
}
delete r;
r = nullptr;
}
if (mErrors > 0)
{
I_Error("%d errors parsing JSON", mErrors);
}
}
//==========================================================================
//
//
//
//==========================================================================
unsigned FSerializer::ArraySize()
{
if (r != nullptr && r->mObjects.Last().mObject->IsArray())
{
return r->mObjects.Last().mObject->Size();
}
else
{
return 0;
}
}
//==========================================================================
//
//
//
//==========================================================================
bool FSerializer::canSkip() const
{
return isWriting() && w->inObject();
}
//==========================================================================
//
//
//
//==========================================================================
void FSerializer::WriteKey(const char *key)
{
if (isWriting() && w->inObject())
{
assert(key != nullptr);
if (key == nullptr)
{
I_Error("missing element name");
}
w->Key(key);
}
}
//==========================================================================
//
//
//
//==========================================================================
bool FSerializer::BeginObject(const char *name)
{
if (isWriting())
{
WriteKey(name);
w->StartObject();
w->mInObject.Push(true);
}
else
{
auto val = r->FindKey(name);
if (val != nullptr)
{
assert(val->IsObject());
if (val->IsObject())
{
r->mObjects.Push(FJSONObject(val));
}
else
{
Printf(TEXTCOLOR_RED "Object expected for '%s'\n", name);
mErrors++;
return false;
}
}
else
{
return false;
}
}
return true;
}
//==========================================================================
//
//
//
//==========================================================================
void FSerializer::EndObject()
{
if (isWriting())
{
if (w->inObject())
{
w->EndObject();
w->mInObject.Pop();
}
else
{
assert(false && "EndObject call not inside an object");
I_Error("EndObject call not inside an object");
}
}
else
{
r->mObjects.Pop();
}
}
//==========================================================================
//
//
//
//==========================================================================
bool FSerializer::BeginArray(const char *name)
{
if (isWriting())
{
WriteKey(name);
w->StartArray();
w->mInObject.Push(false);
}
else
{
auto val = r->FindKey(name);
if (val != nullptr)
{
assert(val->IsArray());
if (val->IsArray())
{
r->mObjects.Push(FJSONObject(val));
}
else
{
Printf(TEXTCOLOR_RED "Array expected for '%s'\n", name);
mErrors++;
return false;
}
}
else
{
return false;
}
}
return true;
}
//==========================================================================
//
//
//
//==========================================================================
void FSerializer::EndArray()
{
if (isWriting())
{
if (!w->inObject())
{
w->EndArray();
w->mInObject.Pop();
}
else
{
assert(false && "EndArray call not inside an array");
I_Error("EndArray call not inside an array");
}
}
else
{
r->mObjects.Pop();
}
}
//==========================================================================
//
// Special handler for args (because ACS specials' arg0 needs special treatment.)
//
//==========================================================================
FSerializer &FSerializer::Args(const char *key, int *args, int *defargs, int special)
{
if (isWriting())
{
if (w->inObject() && defargs != nullptr && !memcmp(args, defargs, 5 * sizeof(int)))
{
return *this;
}
WriteKey(key);
w->StartArray();
for (int i = 0; i < 5; i++)
{
if (i == 0 && args[i] < 0 && P_IsACSSpecial(special))
{
w->String(FName(ENamedName(-args[i])).GetChars());
}
else
{
w->Int(args[i]);
}
}
w->EndArray();
}
else
{
auto val = r->FindKey(key);
if (val != nullptr)
{
if (val->IsArray())
{
unsigned int cnt = MIN<unsigned>(val->Size(), 5);
for (unsigned int i = 0; i < cnt; i++)
{
const rapidjson::Value &aval = (*val)[i];
if (aval.IsInt())
{
args[i] = aval.GetInt();
}
else if (i == 0 && aval.IsString())
{
args[i] = -FName(UnicodeToString(aval.GetString()));
}
else
{
assert(false && "Integer expected");
Printf(TEXTCOLOR_RED "Integer expected for '%s[%d]'\n", key, i);
mErrors++;
}
}
}
else
{
assert(false && "array expected");
Printf(TEXTCOLOR_RED "array expected for '%s'\n", key);
mErrors++;
}
}
}
return *this;
}
//==========================================================================
//
// Special handler for script numbers
//
//==========================================================================
FSerializer &FSerializer::ScriptNum(const char *key, int &num)
{
if (isWriting())
{
WriteKey(key);
if (num < 0)
{
w->String(FName(ENamedName(-num)).GetChars());
}
else
{
w->Int(num);
}
}
else
{
auto val = r->FindKey(key);
if (val != nullptr)
{
if (val->IsInt())
{
num = val->GetInt();
}
else if (val->IsString())
{
num = -FName(UnicodeToString(val->GetString()));
}
else
{
assert(false && "Integer expected");
Printf(TEXTCOLOR_RED "Integer expected for '%s'\n", key);
mErrors++;
}
}
}
return *this;
}
//==========================================================================
//
//
//
//==========================================================================
FSerializer &FSerializer::Terrain(const char *key, int &terrain, int *def)
{
if (isWriting() && def != nullptr && terrain == *def)
{
return *this;
}
FName terr = P_GetTerrainName(terrain);
Serialize(*this, key, terr, nullptr);
if (isReading())
{
terrain = P_FindTerrain(terr);
}
return *this;
}
//==========================================================================
//
//
//
//==========================================================================
FSerializer &FSerializer::Sprite(const char *key, int32_t &spritenum, int32_t *def)
{
if (isWriting())
{
if (w->inObject() && def != nullptr && *def == spritenum) return *this;
WriteKey(key);
w->String(sprites[spritenum].name, 4);
}
else
{
auto val = r->FindKey(key);
if (val != nullptr)
{
if (val->IsString())
{
uint32_t name = *reinterpret_cast<const uint32_t*>(UnicodeToString(val->GetString()));
for (auto hint = NumStdSprites; hint-- != 0; )
{
if (sprites[hint].dwName == name)
{
spritenum = hint;
break;
}
}
}
}
}
return *this;
}
//==========================================================================
//
//
//
//==========================================================================
FSerializer &FSerializer::StringPtr(const char *key, const char *&charptr)
{
if (isWriting())
{
WriteKey(key);
if (charptr != nullptr)
w->String(charptr);
else
w->Null();
}
else
{
auto val = r->FindKey(key);
if (val != nullptr)
{
if (val->IsString())
{
charptr = UnicodeToString(val->GetString());
}
else
{
charptr = nullptr;
}
}
}
return *this;
}
//==========================================================================
//
// Adds a string literal. This won't get double encoded, like a serialized string.
//
//==========================================================================
FSerializer &FSerializer::AddString(const char *key, const char *charptr)
{
if (isWriting())
{
WriteKey(key);
w->StringU(MakeUTF8(charptr), false);
}
return *this;
}
//==========================================================================
//
// Reads back a string without any processing.
//
//==========================================================================
const char *FSerializer::GetString(const char *key)
{
auto val = r->FindKey(key);
if (val != nullptr)
{
if (val->IsString())
{
return val->GetString();
}
else
{
}
}
return nullptr;
}
//==========================================================================
//
//
//
//==========================================================================
unsigned FSerializer::GetSize(const char *group)
{
if (isWriting()) return -1; // we do not know this when writing.
const rapidjson::Value *val = r->FindKey(group);
if (!val) return 0;
if (!val->IsArray()) return -1;
return val->Size();
}
//==========================================================================
//
// gets the key pointed to by the iterator, caches its value
// and returns the key string.
//
//==========================================================================
const char *FSerializer::GetKey()
{
if (isWriting()) return nullptr; // we do not know this when writing.
if (!r->mObjects.Last().mObject->IsObject()) return nullptr; // non-objects do not have keys.
auto &it = r->mObjects.Last().mIterator;
if (it == r->mObjects.Last().mObject->MemberEnd()) return nullptr;
r->mKeyValue = &it->value;
return (it++)->name.GetString();
}
//==========================================================================
//
// Writes out all collected objects
//
//==========================================================================
void FSerializer::WriteObjects()
{
if (isWriting() && w->mDObjects.Size())
{
BeginArray("objects");
// we cannot use the C++11 shorthand syntax here because the array may grow while being processed.
for (unsigned i = 0; i < w->mDObjects.Size(); i++)
{
auto obj = w->mDObjects[i];
BeginObject(nullptr);
w->Key("classtype");
w->String(obj->GetClass()->TypeName.GetChars());
obj->SerializeUserVars(*this);
obj->Serialize(*this);
obj->CheckIfSerialized();
EndObject();
}
EndArray();
}
}
//==========================================================================
//
// Writes out all collected objects
//
//==========================================================================
void FSerializer::ReadObjects(bool hubtravel)
{
bool founderrors = false;
if (isReading() && BeginArray("objects"))
{
// Do not link any thinker that's being created here. This will be done by deserializing the thinker list later.
try
{
r->mDObjects.Resize(ArraySize());
for (auto &p : r->mDObjects)
{
p = nullptr;
}
// First iteration: create all the objects but do nothing with them yet.
for (unsigned i = 0; i < r->mDObjects.Size(); i++)
{
if (BeginObject(nullptr))
{
FString clsname; // do not deserialize the class type directly so that we can print appropriate errors.
int pindex = -1;
Serialize(*this, "classtype", clsname, nullptr);
PClass *cls = PClass::FindClass(clsname);
if (cls == nullptr)
{
Printf(TEXTCOLOR_RED "Unknown object class '%s' in savegame\n", clsname.GetChars());
founderrors = true;
r->mDObjects[i] = RUNTIME_CLASS(AActor)->CreateNew(); // make sure we got at least a valid pointer for the duration of the loading process.
r->mDObjects[i]->Destroy(); // but we do not want to keep this around, so destroy it right away.
}
else
{
r->mDObjects[i] = cls->CreateNew();
}
EndObject();
}
}
// Now that everything has been created and we can retrieve the pointers we can deserialize it.
r->mObjectsRead = true;
if (!founderrors)
{
// Reset to start;
r->mObjects.Last().mIndex = 0;
for (unsigned i = 0; i < r->mDObjects.Size(); i++)
{
auto obj = r->mDObjects[i];
if (BeginObject(nullptr))
{
if (obj != nullptr)
{
int pindex = -1;
try
{
obj->SerializeUserVars(*this);
obj->Serialize(*this);
}
catch (CRecoverableError &err)
{
// In case something in here throws an error, let's continue and deal with it later.
Printf(TEXTCOLOR_RED "'%s'\n while restoring %s\n", err.GetMessage(), obj ? obj->GetClass()->TypeName.GetChars() : "invalid object");
mErrors++;
}
}
EndObject();
}
}
}
EndArray();
assert(!founderrors);
if (founderrors)
{
Printf(TEXTCOLOR_RED "Failed to restore all objects in savegame\n");
mErrors++;
}
}
catch(...)
{
// nuke all objects we created here.
for (auto obj : r->mDObjects)
{
if (obj != nullptr && !(obj->ObjectFlags & OF_EuthanizeMe)) obj->Destroy();
}
r->mDObjects.Clear();
// make sure this flag gets unset, even if something in here throws an error.
throw;
}
}
}
//==========================================================================
//
//
//
//==========================================================================
const char *FSerializer::GetOutput(unsigned *len)
{
if (isReading()) return nullptr;
WriteObjects();
EndObject();
if (len != nullptr)
{
*len = (unsigned)w->mOutString.GetSize();
}
return w->mOutString.GetString();
}
//==========================================================================
//
//
//
//==========================================================================
FCompressedBuffer FSerializer::GetCompressedOutput()
{
if (isReading()) return{ 0,0,0,0,0,nullptr };
FCompressedBuffer buff;
WriteObjects();
EndObject();
buff.mSize = (unsigned)w->mOutString.GetSize();
buff.mZipFlags = 0;
buff.mCRC32 = crc32(0, (const Bytef*)w->mOutString.GetString(), buff.mSize);
uint8_t *compressbuf = new uint8_t[buff.mSize+1];
z_stream stream;
int err;
stream.next_in = (Bytef *)w->mOutString.GetString();
stream.avail_in = buff.mSize;
stream.next_out = (Bytef*)compressbuf;
stream.avail_out = buff.mSize;
stream.zalloc = (alloc_func)0;
stream.zfree = (free_func)0;
stream.opaque = (voidpf)0;
// create output in zip-compatible form as required by FCompressedBuffer
err = deflateInit2(&stream, 8, Z_DEFLATED, -15, 9, Z_DEFAULT_STRATEGY);
if (err != Z_OK)
{
goto error;
}
err = deflate(&stream, Z_FINISH);
if (err != Z_STREAM_END)
{
deflateEnd(&stream);
goto error;
}
buff.mCompressedSize = stream.total_out;
err = deflateEnd(&stream);
if (err == Z_OK)
{
buff.mBuffer = new char[buff.mCompressedSize];
buff.mMethod = METHOD_DEFLATE;
memcpy(buff.mBuffer, compressbuf, buff.mCompressedSize);
delete[] compressbuf;
return buff;
}
error:
memcpy(compressbuf, w->mOutString.GetString(), buff.mSize + 1);
buff.mCompressedSize = buff.mSize;
buff.mMethod = METHOD_STORED;
return buff;
}
//==========================================================================
//
//
//
//==========================================================================
FSerializer &Serialize(FSerializer &arc, const char *key, bool &value, bool *defval)
{
if (arc.isWriting())
{
if (!arc.w->inObject() || defval == nullptr || value != *defval)
{
arc.WriteKey(key);
arc.w->Bool(value);
}
}
else
{
auto val = arc.r->FindKey(key);
if (val != nullptr)
{
assert(val->IsBool());
if (val->IsBool())
{
value = val->GetBool();
}
else
{
Printf(TEXTCOLOR_RED "boolean type expected for '%s'\n", key);
arc.mErrors++;
}
}
}
return arc;
}
//==========================================================================
//
//
//
//==========================================================================
FSerializer &Serialize(FSerializer &arc, const char *key, int64_t &value, int64_t *defval)
{
if (arc.isWriting())
{
if (!arc.w->inObject() || defval == nullptr || value != *defval)
{
arc.WriteKey(key);
arc.w->Int64(value);
}
}
else
{
auto val = arc.r->FindKey(key);
if (val != nullptr)
{
assert(val->IsInt64());
if (val->IsInt64())
{
value = val->GetInt64();
}
else
{
Printf(TEXTCOLOR_RED "integer type expected for '%s'\n", key);
arc.mErrors++;
}
}
}
return arc;
}
//==========================================================================
//
//
//
//==========================================================================
FSerializer &Serialize(FSerializer &arc, const char *key, uint64_t &value, uint64_t *defval)
{
if (arc.isWriting())
{
if (!arc.w->inObject() || defval == nullptr || value != *defval)
{
arc.WriteKey(key);
arc.w->Uint64(value);
}
}
else
{
auto val = arc.r->FindKey(key);
if (val != nullptr)
{
assert(val->IsUint64());
if (val->IsUint64())
{
value = val->GetUint64();
}
else
{
Printf(TEXTCOLOR_RED "integer type expected for '%s'\n", key);
arc.mErrors++;
}
}
}
return arc;
}
//==========================================================================
//
//
//
//==========================================================================
FSerializer &Serialize(FSerializer &arc, const char *key, int32_t &value, int32_t *defval)
{
if (arc.isWriting())
{
if (!arc.w->inObject() || defval == nullptr || value != *defval)
{
arc.WriteKey(key);
arc.w->Int(value);
}
}
else
{
auto val = arc.r->FindKey(key);
if (val != nullptr)
{
assert(val->IsInt());
if (val->IsInt())
{
value = val->GetInt();
}
else
{
Printf(TEXTCOLOR_RED "integer type expected for '%s'\n", key);
arc.mErrors++;
}
}
}
return arc;
}
//==========================================================================
//
//
//
//==========================================================================
FSerializer &Serialize(FSerializer &arc, const char *key, uint32_t &value, uint32_t *defval)
{
if (arc.isWriting())
{
if (!arc.w->inObject() || defval == nullptr || value != *defval)
{
arc.WriteKey(key);
arc.w->Uint(value);
}
}
else
{
auto val = arc.r->FindKey(key);
if (val != nullptr)
{
assert(val->IsUint());
if (val->IsUint())
{
value = val->GetUint();
}
else
{
Printf(TEXTCOLOR_RED "integer type expected for '%s'\n", key);
arc.mErrors++;
}
}
}
return arc;
}
//==========================================================================
//
//
//
//==========================================================================
FSerializer &Serialize(FSerializer &arc, const char *key, int8_t &value, int8_t *defval)
{
int32_t vv = value;
int32_t vvd = defval? *defval : value-1;
Serialize(arc, key, vv, &vvd);
value = (int8_t)vv;
return arc;
}
FSerializer &Serialize(FSerializer &arc, const char *key, uint8_t &value, uint8_t *defval)
{
uint32_t vv = value;
uint32_t vvd = defval ? *defval : value - 1;
Serialize(arc, key, vv, &vvd);
value = (uint8_t)vv;
return arc;
}
FSerializer &Serialize(FSerializer &arc, const char *key, int16_t &value, int16_t *defval)
{
int32_t vv = value;
int32_t vvd = defval ? *defval : value - 1;
Serialize(arc, key, vv, &vvd);
value = (int16_t)vv;
return arc;
}
FSerializer &Serialize(FSerializer &arc, const char *key, uint16_t &value, uint16_t *defval)
{
uint32_t vv = value;
uint32_t vvd = defval ? *defval : value - 1;
Serialize(arc, key, vv, &vvd);
value = (uint16_t)vv;
return arc;
}
//==========================================================================
//
//
//
//==========================================================================
FSerializer &Serialize(FSerializer &arc, const char *key, double &value, double *defval)
{
if (arc.isWriting())
{
if (!arc.w->inObject() || defval == nullptr || value != *defval)
{
arc.WriteKey(key);
arc.w->Double(value);
}
}
else
{
auto val = arc.r->FindKey(key);
if (val != nullptr)
{
assert(val->IsDouble());
if (val->IsDouble())
{
value = val->GetDouble();
}
else
{
Printf(TEXTCOLOR_RED "float type expected for '%s'\n", key);
arc.mErrors++;
}
}
}
return arc;
}
//==========================================================================
//
//
//
//==========================================================================
FSerializer &Serialize(FSerializer &arc, const char *key, float &value, float *defval)
{
double vv = value;
double vvd = defval ? *defval : value - 1;
Serialize(arc, key, vv, &vvd);
value = (float)vv;
return arc;
}
//==========================================================================
//
//
//
//==========================================================================
template<class T>
FSerializer &SerializePointer(FSerializer &arc, const char *key, T *&value, T **defval, T *base)
{
assert(base != nullptr);
if (arc.isReading() || !arc.w->inObject() || defval == nullptr || value != *defval)
{
int64_t vv = value == nullptr ? -1 : value - base;
Serialize(arc, key, vv, nullptr);
value = vv < 0 ? nullptr : base + vv;
}
return arc;
}
template<> FSerializer &Serialize(FSerializer &arc, const char *key, FPolyObj *&value, FPolyObj **defval)
{
if (arc.Level == nullptr) I_Error("Trying to serialize polyobject without a valid level");
return SerializePointer(arc, key, value, defval, arc.Level->Polyobjects.Data());
}
template<> FSerializer &Serialize(FSerializer &arc, const char *key, const FPolyObj *&value, const FPolyObj **defval)
{
if (arc.Level == nullptr) I_Error("Trying to serialize polyobject without a valid level");
return SerializePointer<const FPolyObj>(arc, key, value, defval, arc.Level->Polyobjects.Data());
}
template<> FSerializer &Serialize(FSerializer &arc, const char *key, side_t *&value, side_t **defval)
{
if (arc.Level == nullptr) I_Error("Trying to serialize SIDEDEF without a valid level");
return SerializePointer(arc, key, value, defval, &arc.Level->sides[0]);
}
template<> FSerializer &Serialize(FSerializer &arc, const char *key, sector_t *&value, sector_t **defval)
{
if (arc.Level == nullptr) I_Error("Trying to serialize sector without a valid level");
return SerializePointer(arc, key, value, defval, &arc.Level->sectors[0]);
}
template<> FSerializer &Serialize(FSerializer &arc, const char *key, const sector_t *&value, const sector_t **defval)
{
if (arc.Level == nullptr) I_Error("Trying to serialize sector without a valid level");
return SerializePointer<const sector_t>(arc, key, value, defval, &arc.Level->sectors[0]);
}
template<> FSerializer &Serialize(FSerializer &arc, const char *key, player_t *&value, player_t **defval)
{
return SerializePointer(arc, key, value, defval, players);
}
template<> FSerializer &Serialize(FSerializer &arc, const char *key, line_t *&value, line_t **defval)
{
if (arc.Level == nullptr) I_Error("Trying to serialize linedef without a valid level");
return SerializePointer(arc, key, value, defval, &arc.Level->lines[0]);
}
template<> FSerializer &Serialize(FSerializer &arc, const char *key, vertex_t *&value, vertex_t **defval)
{
if (arc.Level == nullptr) I_Error("Trying to serialize verte without a valid level");
return SerializePointer(arc, key, value, defval, &arc.Level->vertexes[0]);
}
//==========================================================================
//
//
//
//==========================================================================
FSerializer &Serialize(FSerializer &arc, const char *key, FTextureID &value, FTextureID *defval)
{
if (arc.isWriting())
{
if (!arc.w->inObject() || defval == nullptr || value != *defval)
{
if (!value.Exists())
{
arc.WriteKey(key);
arc.w->Null();
return arc;
}
if (value.isNull())
{
// save 'no texture' in a more space saving way
arc.WriteKey(key);
arc.w->Int(0);
return arc;
}
FTextureID chk = value;
if (chk.GetIndex() >= TexMan.NumTextures()) chk.SetNull();
FTexture *pic = TexMan.GetTexture(chk);
const char *name;
if (Wads.GetLinkedTexture(pic->SourceLump) == pic)
{
name = Wads.GetLumpFullName(pic->SourceLump);
}
else
{
name = pic->Name;
}
arc.WriteKey(key);
arc.w->StartArray();
arc.w->String(name);
arc.w->Int(static_cast<int>(pic->UseType));
arc.w->EndArray();
}
}
else
{
auto val = arc.r->FindKey(key);
if (val != nullptr)
{
if (val->IsArray())
{
const rapidjson::Value &nameval = (*val)[0];
const rapidjson::Value &typeval = (*val)[1];
assert(nameval.IsString() && typeval.IsInt());
if (nameval.IsString() && typeval.IsInt())
{
value = TexMan.GetTextureID(UnicodeToString(nameval.GetString()), static_cast<ETextureType>(typeval.GetInt()));
}
else
{
Printf(TEXTCOLOR_RED "object does not represent a texture for '%s'\n", key);
value.SetNull();
arc.mErrors++;
}
}
else if (val->IsNull())
{
value.SetInvalid();
}
else if (val->IsInt() && val->GetInt() == 0)
{
value.SetNull();
}
else
{
assert(false && "not a texture");
Printf(TEXTCOLOR_RED "object does not represent a texture for '%s'\n", key);
value.SetNull();
arc.mErrors++;
}
}
}
return arc;
}
//==========================================================================
//
// This never uses defval and instead uses 'null' as default
// because object pointers cannot be safely defaulted to anything else.
//
//==========================================================================
FSerializer &Serialize(FSerializer &arc, const char *key, DObject *&value, DObject ** /*defval*/, bool *retcode)
{
if (retcode) *retcode = true;
if (arc.isWriting())
{
if (value != nullptr && !(value->ObjectFlags & (OF_EuthanizeMe | OF_Transient)))
{
int ndx;
if (value == WP_NOCHANGE)
{
ndx = -1;
}
else
{
int *pndx = arc.w->mObjectMap.CheckKey(value);
if (pndx != nullptr)
{
ndx = *pndx;
}
else
{
ndx = arc.w->mDObjects.Push(value);
arc.w->mObjectMap[value] = ndx;
}
}
Serialize(arc, key, ndx, nullptr);
}
else if (!arc.w->inObject())
{
arc.w->Null();
}
}
else
{
if (!arc.r->mObjectsRead)
{
// If you want to read objects, you MUST call ReadObjects first, even if there's only nullptr's.
assert(false && "Attempt to read object reference without calling ReadObjects first");
I_Error("Attempt to read object reference without calling ReadObjects first");
}
auto val = arc.r->FindKey(key);
if (val != nullptr)
{
if (val->IsNull())
{
value = nullptr;
return arc;
}
else if (val->IsInt())
{
int index = val->GetInt();
if (index == -1)
{
value = WP_NOCHANGE;
}
else
{
assert(index >= 0 && index < (int)arc.r->mDObjects.Size());
if (index >= 0 && index < (int)arc.r->mDObjects.Size())
{
value = arc.r->mDObjects[index];
}
else
{
assert(false && "invalid object reference");
Printf(TEXTCOLOR_RED "Invalid object reference for '%s'\n", key);
value = nullptr;
arc.mErrors++;
if (retcode) *retcode = false;
}
}
return arc;
}
}
if (!retcode)
{
value = nullptr;
}
else
{
*retcode = false;
}
}
return arc;
}
//==========================================================================
//
//
//
//==========================================================================
FSerializer &Serialize(FSerializer &arc, const char *key, FName &value, FName *defval)
{
if (arc.isWriting())
{
if (!arc.w->inObject() || defval == nullptr || value != *defval)
{
arc.WriteKey(key);
arc.w->String(value.GetChars());
}
}
else
{
auto val = arc.r->FindKey(key);
if (val != nullptr)
{
assert(val->IsString());
if (val->IsString())
{
value = UnicodeToString(val->GetString());
}
else
{
Printf(TEXTCOLOR_RED "String expected for '%s'\n", key);
arc.mErrors++;
value = NAME_None;
}
}
}
return arc;
}
//==========================================================================
//
//
//
//==========================================================================
FSerializer &Serialize(FSerializer &arc, const char *key, FSoundID &sid, FSoundID *def)
{
if (arc.isWriting())
{
if (!arc.w->inObject() || def == nullptr || sid != *def)
{
arc.WriteKey(key);
const char *sn = (const char*)sid;
if (sn != nullptr) arc.w->String(sn);
else arc.w->Null();
}
}
else
{
auto val = arc.r->FindKey(key);
if (val != nullptr)
{
assert(val->IsString() || val->IsNull());
if (val->IsString())
{
sid = UnicodeToString(val->GetString());
}
else if (val->IsNull())
{
sid = 0;
}
else
{
Printf(TEXTCOLOR_RED "string type expected for '%s'\n", key);
sid = 0;
arc.mErrors++;
}
}
}
return arc;
}
//==========================================================================
//
//
//
//==========================================================================
template<> FSerializer &Serialize(FSerializer &arc, const char *key, PClassActor *&clst, PClassActor **def)
{
if (arc.isWriting())
{
if (!arc.w->inObject() || def == nullptr || clst != *def)
{
arc.WriteKey(key);
if (clst == nullptr)
{
arc.w->Null();
}
else
{
arc.w->String(clst->TypeName.GetChars());
}
}
}
else
{
auto val = arc.r->FindKey(key);
if (val != nullptr)
{
assert(val->IsString() || val->IsNull());
if (val->IsString())
{
clst = PClass::FindActor(UnicodeToString(val->GetString()));
}
else if (val->IsNull())
{
clst = nullptr;
}
else
{
Printf(TEXTCOLOR_RED "string type expected for '%s'\n", key);
clst = nullptr;
arc.mErrors++;
}
}
}
return arc;
}
//==========================================================================
//
// almost, but not quite the same as the above.
//
//==========================================================================
template<> FSerializer &Serialize(FSerializer &arc, const char *key, PClass *&clst, PClass **def)
{
if (arc.isWriting())
{
if (!arc.w->inObject() || def == nullptr || clst != *def)
{
arc.WriteKey(key);
if (clst == nullptr)
{
arc.w->Null();
}
else
{
arc.w->String(clst->TypeName.GetChars());
}
}
}
else
{
auto val = arc.r->FindKey(key);
if (val != nullptr)
{
if (val->IsString())
{
clst = PClass::FindClass(UnicodeToString(val->GetString()));
}
else if (val->IsNull())
{
clst = nullptr;
}
else
{
Printf(TEXTCOLOR_RED "string type expected for '%s'\n", key);
clst = nullptr;
arc.mErrors++;
}
}
}
return arc;
}
//==========================================================================
//
//
//
//==========================================================================
FSerializer &Serialize(FSerializer &arc, const char *key, FState *&state, FState **def, bool *retcode)
{
if (retcode) *retcode = false;
if (arc.isWriting())
{
if (!arc.w->inObject() || def == nullptr || state != *def)
{
if (retcode) *retcode = true;
arc.WriteKey(key);
if (state == nullptr)
{
arc.w->Null();
}
else
{
PClassActor *info = FState::StaticFindStateOwner(state);
if (info != NULL)
{
arc.w->StartArray();
arc.w->String(info->TypeName.GetChars());
arc.w->Uint((uint32_t)(state - info->GetStates()));
arc.w->EndArray();
}
else
{
arc.w->Null();
}
}
}
}
else
{
auto val = arc.r->FindKey(key);
if (val != nullptr)
{
if (val->IsNull())
{
if (retcode) *retcode = true;
state = nullptr;
}
else if (val->IsArray())
{
if (retcode) *retcode = true;
const rapidjson::Value &cls = (*val)[0];
const rapidjson::Value &ndx = (*val)[1];
state = nullptr;
assert(cls.IsString() && ndx.IsUint());
if (cls.IsString() && ndx.IsUint())
{
PClassActor *clas = PClass::FindActor(UnicodeToString(cls.GetString()));
if (clas && ndx.GetUint() < (unsigned)clas->GetStateCount())
{
state = clas->GetStates() + ndx.GetUint();
}
else
{
// this can actually happen by changing the DECORATE so treat it as a warning, not an error.
state = nullptr;
Printf(TEXTCOLOR_ORANGE "Invalid state '%s+%d' for '%s'\n", cls.GetString(), ndx.GetInt(), key);
}
}
else
{
assert(false && "not a state");
Printf(TEXTCOLOR_RED "data does not represent a state for '%s'\n", key);
arc.mErrors++;
}
}
else if (!retcode)
{
assert(false && "not an array");
Printf(TEXTCOLOR_RED "array type expected for '%s'\n", key);
arc.mErrors++;
}
}
}
return arc;
}
//==========================================================================
//
//
//
//==========================================================================
template<> FSerializer &Serialize(FSerializer &arc, const char *key, FStrifeDialogueNode *&node, FStrifeDialogueNode **def)
{
if (arc.isWriting())
{
if (!arc.w->inObject() || def == nullptr || node != *def)
{
arc.WriteKey(key);
if (node == nullptr)
{
arc.w->Null();
}
else
{
arc.w->Uint(node->ThisNodeNum);
}
}
}
else
{
auto val = arc.r->FindKey(key);
if (val != nullptr)
{
assert(val->IsUint() || val->IsNull());
if (val->IsNull())
{
node = nullptr;
}
else if (val->IsUint())
{
if (val->GetUint() >= arc.Level->StrifeDialogues.Size())
{
node = nullptr;
}
else
{
node = arc.Level->StrifeDialogues[val->GetUint()];
}
}
else
{
Printf(TEXTCOLOR_RED "integer expected for '%s'\n", key);
arc.mErrors++;
node = nullptr;
}
}
}
return arc;
}
//==========================================================================
//
//
//
//==========================================================================
template<> FSerializer &Serialize(FSerializer &arc, const char *key, FString *&pstr, FString **def)
{
if (arc.isWriting())
{
if (!arc.w->inObject() || def == nullptr || pstr != *def)
{
arc.WriteKey(key);
if (pstr == nullptr)
{
arc.w->Null();
}
else
{
arc.w->String(pstr->GetChars());
}
}
}
else
{
auto val = arc.r->FindKey(key);
if (val != nullptr)
{
assert(val->IsNull() || val->IsString());
if (val->IsNull())
{
pstr = nullptr;
}
else if (val->IsString())
{
pstr = AActor::mStringPropertyData.Alloc(UnicodeToString(val->GetString()));
}
else
{
Printf(TEXTCOLOR_RED "string expected for '%s'\n", key);
pstr = nullptr;
arc.mErrors++;
}
}
}
return arc;
}
//==========================================================================
//
//
//
//==========================================================================
FSerializer &Serialize(FSerializer &arc, const char *key, FString &pstr, FString *def)
{
if (arc.isWriting())
{
if (!arc.w->inObject() || def == nullptr || pstr.Compare(*def) != 0)
{
arc.WriteKey(key);
arc.w->String(pstr.GetChars());
}
}
else
{
auto val = arc.r->FindKey(key);
if (val != nullptr)
{
assert(val->IsNull() || val->IsString());
if (val->IsNull())
{
pstr = "";
}
else if (val->IsString())
{
pstr = UnicodeToString(val->GetString());
}
else
{
Printf(TEXTCOLOR_RED "string expected for '%s'\n", key);
pstr = "";
arc.mErrors++;
}
}
}
return arc;
}
//==========================================================================
//
//
//
//==========================================================================
template<> FSerializer &Serialize(FSerializer &arc, const char *key, char *&pstr, char **def)
{
if (arc.isWriting())
{
if (!arc.w->inObject() || def == nullptr || strcmp(pstr, *def))
{
arc.WriteKey(key);
if (pstr == nullptr)
{
arc.w->Null();
}
else
{
arc.w->String(pstr);
}
}
}
else
{
auto val = arc.r->FindKey(key);
if (val != nullptr)
{
assert(val->IsNull() || val->IsString());
if (val->IsNull())
{
pstr = nullptr;
}
else if (val->IsString())
{
pstr = copystring(UnicodeToString(val->GetString()));
}
else
{
Printf(TEXTCOLOR_RED "string expected for '%s'\n", key);
pstr = nullptr;
arc.mErrors++;
}
}
}
return arc;
}
//==========================================================================
//
// This is a bit of a cheat because it never actually writes out the pointer.
// The rules for levels are that they must be self-contained.
// No level and no pbject that is part of a level may reference a different one.
//
// When writing, this merely checks if the rules are obeyed and if not errors out.
// When reading, it assumes that the object was properly written and restores
// the reference from the owning level
//
// The only exception are null pointers which are allowed
//
//==========================================================================
template<> FSerializer &Serialize(FSerializer &arc, const char *key, FLevelLocals *&lev, FLevelLocals **def)
{
if (arc.isWriting())
{
if (!arc.w->inObject() || lev == nullptr)
{
arc.WriteKey(key);
if (lev == nullptr)
{
arc.w->Null();
}
else
{
// This MUST be the currently serialized level, anything else will error out here as a sanity check.
if (arc.Level == nullptr || lev != arc.Level)
{
I_Error("Attempt to serialize invalid level reference");
}
if (!arc.w->inObject())
{
arc.w->Bool(true); // In the unlikely case this is used in an array, write a filler.
}
}
}
}
else
{
auto val = arc.r->FindKey(key);
if (val != nullptr)
{
assert(val->IsNull() || val->IsBool());
if (val->IsNull())
{
lev = nullptr;
}
else
{
lev = arc.Level;
}
}
else lev = arc.Level;
}
return arc;
}
//==========================================================================
//
//
//
//==========================================================================
template<> FSerializer &Serialize(FSerializer &arc, const char *key, FFont *&font, FFont **def)
{
if (arc.isWriting())
{
FName n = font? font->GetName() : NAME_None;
return arc(key, n);
}
else
{
FName n = NAME_None;
arc(key, n);
font = n == NAME_None? nullptr : V_GetFont(n);
return arc;
}
}
//==========================================================================
//
// Handler to retrieve a numeric value of any kind.
//
//==========================================================================
FSerializer &Serialize(FSerializer &arc, const char *key, NumericValue &value, NumericValue *defval)
{
if (arc.isWriting())
{
if (!arc.w->inObject() || defval == nullptr || value != *defval)
{
arc.WriteKey(key);
switch (value.type)
{
case NumericValue::NM_signed:
arc.w->Int64(value.signedval);
break;
case NumericValue::NM_unsigned:
arc.w->Uint64(value.unsignedval);
break;
case NumericValue::NM_float:
arc.w->Double(value.floatval);
break;
default:
arc.w->Null();
break;
}
}
}
else
{
auto val = arc.r->FindKey(key);
value.signedval = 0;
value.type = NumericValue::NM_invalid;
if (val != nullptr)
{
if (val->IsUint64())
{
value.unsignedval = val->GetUint64();
value.type = NumericValue::NM_unsigned;
}
else if (val->IsInt64())
{
value.signedval = val->GetInt64();
value.type = NumericValue::NM_signed;
}
else if (val->IsDouble())
{
value.floatval = val->GetDouble();
value.type = NumericValue::NM_float;
}
}
}
return arc;
}