mirror of
https://github.com/ZDoom/gzdoom.git
synced 2024-11-30 07:41:22 +00:00
3000 lines
101 KiB
C++
3000 lines
101 KiB
C++
//
|
|
// Copyright (C) 2014-2015 LunarG, Inc.
|
|
// Copyright (C) 2015-2018 Google, Inc.
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions
|
|
// are met:
|
|
//
|
|
// Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
//
|
|
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
//
|
|
// Helper for making SPIR-V IR. Generally, this is documented in the header
|
|
// SpvBuilder.h.
|
|
//
|
|
|
|
#include <cassert>
|
|
#include <cstdlib>
|
|
|
|
#include <unordered_set>
|
|
#include <algorithm>
|
|
|
|
#include "SpvBuilder.h"
|
|
|
|
#include "hex_float.h"
|
|
|
|
#ifndef _WIN32
|
|
#include <cstdio>
|
|
#endif
|
|
|
|
namespace spv {
|
|
|
|
Builder::Builder(unsigned int spvVersion, unsigned int magicNumber, SpvBuildLogger* buildLogger) :
|
|
spvVersion(spvVersion),
|
|
source(SourceLanguageUnknown),
|
|
sourceVersion(0),
|
|
sourceFileStringId(NoResult),
|
|
currentLine(0),
|
|
currentFile(nullptr),
|
|
emitOpLines(false),
|
|
addressModel(AddressingModelLogical),
|
|
memoryModel(MemoryModelGLSL450),
|
|
builderNumber(magicNumber),
|
|
buildPoint(0),
|
|
uniqueId(0),
|
|
entryPointFunction(0),
|
|
generatingOpCodeForSpecConst(false),
|
|
logger(buildLogger)
|
|
{
|
|
clearAccessChain();
|
|
}
|
|
|
|
Builder::~Builder()
|
|
{
|
|
}
|
|
|
|
Id Builder::import(const char* name)
|
|
{
|
|
Instruction* import = new Instruction(getUniqueId(), NoType, OpExtInstImport);
|
|
import->addStringOperand(name);
|
|
module.mapInstruction(import);
|
|
|
|
imports.push_back(std::unique_ptr<Instruction>(import));
|
|
return import->getResultId();
|
|
}
|
|
|
|
// Emit instruction for non-filename-based #line directives (ie. no filename
|
|
// seen yet): emit an OpLine if we've been asked to emit OpLines and the line
|
|
// number has changed since the last time, and is a valid line number.
|
|
void Builder::setLine(int lineNum)
|
|
{
|
|
if (lineNum != 0 && lineNum != currentLine) {
|
|
currentLine = lineNum;
|
|
if (emitOpLines)
|
|
addLine(sourceFileStringId, currentLine, 0);
|
|
}
|
|
}
|
|
|
|
// If no filename, do non-filename-based #line emit. Else do filename-based emit.
|
|
// Emit OpLine if we've been asked to emit OpLines and the line number or filename
|
|
// has changed since the last time, and line number is valid.
|
|
void Builder::setLine(int lineNum, const char* filename)
|
|
{
|
|
if (filename == nullptr) {
|
|
setLine(lineNum);
|
|
return;
|
|
}
|
|
if ((lineNum != 0 && lineNum != currentLine) || currentFile == nullptr ||
|
|
strncmp(filename, currentFile, strlen(currentFile) + 1) != 0) {
|
|
currentLine = lineNum;
|
|
currentFile = filename;
|
|
if (emitOpLines) {
|
|
spv::Id strId = getStringId(filename);
|
|
addLine(strId, currentLine, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Builder::addLine(Id fileName, int lineNum, int column)
|
|
{
|
|
Instruction* line = new Instruction(OpLine);
|
|
line->addIdOperand(fileName);
|
|
line->addImmediateOperand(lineNum);
|
|
line->addImmediateOperand(column);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(line));
|
|
}
|
|
|
|
// For creating new groupedTypes (will return old type if the requested one was already made).
|
|
Id Builder::makeVoidType()
|
|
{
|
|
Instruction* type;
|
|
if (groupedTypes[OpTypeVoid].size() == 0) {
|
|
type = new Instruction(getUniqueId(), NoType, OpTypeVoid);
|
|
groupedTypes[OpTypeVoid].push_back(type);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
|
|
module.mapInstruction(type);
|
|
} else
|
|
type = groupedTypes[OpTypeVoid].back();
|
|
|
|
return type->getResultId();
|
|
}
|
|
|
|
Id Builder::makeBoolType()
|
|
{
|
|
Instruction* type;
|
|
if (groupedTypes[OpTypeBool].size() == 0) {
|
|
type = new Instruction(getUniqueId(), NoType, OpTypeBool);
|
|
groupedTypes[OpTypeBool].push_back(type);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
|
|
module.mapInstruction(type);
|
|
} else
|
|
type = groupedTypes[OpTypeBool].back();
|
|
|
|
return type->getResultId();
|
|
}
|
|
|
|
Id Builder::makeSamplerType()
|
|
{
|
|
Instruction* type;
|
|
if (groupedTypes[OpTypeSampler].size() == 0) {
|
|
type = new Instruction(getUniqueId(), NoType, OpTypeSampler);
|
|
groupedTypes[OpTypeSampler].push_back(type);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
|
|
module.mapInstruction(type);
|
|
} else
|
|
type = groupedTypes[OpTypeSampler].back();
|
|
|
|
return type->getResultId();
|
|
}
|
|
|
|
Id Builder::makePointer(StorageClass storageClass, Id pointee)
|
|
{
|
|
// try to find it
|
|
Instruction* type;
|
|
for (int t = 0; t < (int)groupedTypes[OpTypePointer].size(); ++t) {
|
|
type = groupedTypes[OpTypePointer][t];
|
|
if (type->getImmediateOperand(0) == (unsigned)storageClass &&
|
|
type->getIdOperand(1) == pointee)
|
|
return type->getResultId();
|
|
}
|
|
|
|
// not found, make it
|
|
type = new Instruction(getUniqueId(), NoType, OpTypePointer);
|
|
type->addImmediateOperand(storageClass);
|
|
type->addIdOperand(pointee);
|
|
groupedTypes[OpTypePointer].push_back(type);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
|
|
module.mapInstruction(type);
|
|
|
|
return type->getResultId();
|
|
}
|
|
|
|
Id Builder::makeForwardPointer(StorageClass storageClass)
|
|
{
|
|
// Caching/uniquifying doesn't work here, because we don't know the
|
|
// pointee type and there can be multiple forward pointers of the same
|
|
// storage type. Somebody higher up in the stack must keep track.
|
|
Instruction* type = new Instruction(getUniqueId(), NoType, OpTypeForwardPointer);
|
|
type->addImmediateOperand(storageClass);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
|
|
module.mapInstruction(type);
|
|
|
|
return type->getResultId();
|
|
}
|
|
|
|
Id Builder::makePointerFromForwardPointer(StorageClass storageClass, Id forwardPointerType, Id pointee)
|
|
{
|
|
// try to find it
|
|
Instruction* type;
|
|
for (int t = 0; t < (int)groupedTypes[OpTypePointer].size(); ++t) {
|
|
type = groupedTypes[OpTypePointer][t];
|
|
if (type->getImmediateOperand(0) == (unsigned)storageClass &&
|
|
type->getIdOperand(1) == pointee)
|
|
return type->getResultId();
|
|
}
|
|
|
|
type = new Instruction(forwardPointerType, NoType, OpTypePointer);
|
|
type->addImmediateOperand(storageClass);
|
|
type->addIdOperand(pointee);
|
|
groupedTypes[OpTypePointer].push_back(type);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
|
|
module.mapInstruction(type);
|
|
|
|
return type->getResultId();
|
|
}
|
|
|
|
Id Builder::makeIntegerType(int width, bool hasSign)
|
|
{
|
|
// try to find it
|
|
Instruction* type;
|
|
for (int t = 0; t < (int)groupedTypes[OpTypeInt].size(); ++t) {
|
|
type = groupedTypes[OpTypeInt][t];
|
|
if (type->getImmediateOperand(0) == (unsigned)width &&
|
|
type->getImmediateOperand(1) == (hasSign ? 1u : 0u))
|
|
return type->getResultId();
|
|
}
|
|
|
|
// not found, make it
|
|
type = new Instruction(getUniqueId(), NoType, OpTypeInt);
|
|
type->addImmediateOperand(width);
|
|
type->addImmediateOperand(hasSign ? 1 : 0);
|
|
groupedTypes[OpTypeInt].push_back(type);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
|
|
module.mapInstruction(type);
|
|
|
|
// deal with capabilities
|
|
switch (width) {
|
|
case 8:
|
|
case 16:
|
|
// these are currently handled by storage-type declarations and post processing
|
|
break;
|
|
case 64:
|
|
addCapability(CapabilityInt64);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return type->getResultId();
|
|
}
|
|
|
|
Id Builder::makeFloatType(int width)
|
|
{
|
|
// try to find it
|
|
Instruction* type;
|
|
for (int t = 0; t < (int)groupedTypes[OpTypeFloat].size(); ++t) {
|
|
type = groupedTypes[OpTypeFloat][t];
|
|
if (type->getImmediateOperand(0) == (unsigned)width)
|
|
return type->getResultId();
|
|
}
|
|
|
|
// not found, make it
|
|
type = new Instruction(getUniqueId(), NoType, OpTypeFloat);
|
|
type->addImmediateOperand(width);
|
|
groupedTypes[OpTypeFloat].push_back(type);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
|
|
module.mapInstruction(type);
|
|
|
|
// deal with capabilities
|
|
switch (width) {
|
|
case 16:
|
|
// currently handled by storage-type declarations and post processing
|
|
break;
|
|
case 64:
|
|
addCapability(CapabilityFloat64);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return type->getResultId();
|
|
}
|
|
|
|
// Make a struct without checking for duplication.
|
|
// See makeStructResultType() for non-decorated structs
|
|
// needed as the result of some instructions, which does
|
|
// check for duplicates.
|
|
Id Builder::makeStructType(const std::vector<Id>& members, const char* name)
|
|
{
|
|
// Don't look for previous one, because in the general case,
|
|
// structs can be duplicated except for decorations.
|
|
|
|
// not found, make it
|
|
Instruction* type = new Instruction(getUniqueId(), NoType, OpTypeStruct);
|
|
for (int op = 0; op < (int)members.size(); ++op)
|
|
type->addIdOperand(members[op]);
|
|
groupedTypes[OpTypeStruct].push_back(type);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
|
|
module.mapInstruction(type);
|
|
addName(type->getResultId(), name);
|
|
|
|
return type->getResultId();
|
|
}
|
|
|
|
// Make a struct for the simple results of several instructions,
|
|
// checking for duplication.
|
|
Id Builder::makeStructResultType(Id type0, Id type1)
|
|
{
|
|
// try to find it
|
|
Instruction* type;
|
|
for (int t = 0; t < (int)groupedTypes[OpTypeStruct].size(); ++t) {
|
|
type = groupedTypes[OpTypeStruct][t];
|
|
if (type->getNumOperands() != 2)
|
|
continue;
|
|
if (type->getIdOperand(0) != type0 ||
|
|
type->getIdOperand(1) != type1)
|
|
continue;
|
|
return type->getResultId();
|
|
}
|
|
|
|
// not found, make it
|
|
std::vector<spv::Id> members;
|
|
members.push_back(type0);
|
|
members.push_back(type1);
|
|
|
|
return makeStructType(members, "ResType");
|
|
}
|
|
|
|
Id Builder::makeVectorType(Id component, int size)
|
|
{
|
|
// try to find it
|
|
Instruction* type;
|
|
for (int t = 0; t < (int)groupedTypes[OpTypeVector].size(); ++t) {
|
|
type = groupedTypes[OpTypeVector][t];
|
|
if (type->getIdOperand(0) == component &&
|
|
type->getImmediateOperand(1) == (unsigned)size)
|
|
return type->getResultId();
|
|
}
|
|
|
|
// not found, make it
|
|
type = new Instruction(getUniqueId(), NoType, OpTypeVector);
|
|
type->addIdOperand(component);
|
|
type->addImmediateOperand(size);
|
|
groupedTypes[OpTypeVector].push_back(type);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
|
|
module.mapInstruction(type);
|
|
|
|
return type->getResultId();
|
|
}
|
|
|
|
Id Builder::makeMatrixType(Id component, int cols, int rows)
|
|
{
|
|
assert(cols <= maxMatrixSize && rows <= maxMatrixSize);
|
|
|
|
Id column = makeVectorType(component, rows);
|
|
|
|
// try to find it
|
|
Instruction* type;
|
|
for (int t = 0; t < (int)groupedTypes[OpTypeMatrix].size(); ++t) {
|
|
type = groupedTypes[OpTypeMatrix][t];
|
|
if (type->getIdOperand(0) == column &&
|
|
type->getImmediateOperand(1) == (unsigned)cols)
|
|
return type->getResultId();
|
|
}
|
|
|
|
// not found, make it
|
|
type = new Instruction(getUniqueId(), NoType, OpTypeMatrix);
|
|
type->addIdOperand(column);
|
|
type->addImmediateOperand(cols);
|
|
groupedTypes[OpTypeMatrix].push_back(type);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
|
|
module.mapInstruction(type);
|
|
|
|
return type->getResultId();
|
|
}
|
|
|
|
// TODO: performance: track arrays per stride
|
|
// If a stride is supplied (non-zero) make an array.
|
|
// If no stride (0), reuse previous array types.
|
|
// 'size' is an Id of a constant or specialization constant of the array size
|
|
Id Builder::makeArrayType(Id element, Id sizeId, int stride)
|
|
{
|
|
Instruction* type;
|
|
if (stride == 0) {
|
|
// try to find existing type
|
|
for (int t = 0; t < (int)groupedTypes[OpTypeArray].size(); ++t) {
|
|
type = groupedTypes[OpTypeArray][t];
|
|
if (type->getIdOperand(0) == element &&
|
|
type->getIdOperand(1) == sizeId)
|
|
return type->getResultId();
|
|
}
|
|
}
|
|
|
|
// not found, make it
|
|
type = new Instruction(getUniqueId(), NoType, OpTypeArray);
|
|
type->addIdOperand(element);
|
|
type->addIdOperand(sizeId);
|
|
groupedTypes[OpTypeArray].push_back(type);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
|
|
module.mapInstruction(type);
|
|
|
|
return type->getResultId();
|
|
}
|
|
|
|
Id Builder::makeRuntimeArray(Id element)
|
|
{
|
|
Instruction* type = new Instruction(getUniqueId(), NoType, OpTypeRuntimeArray);
|
|
type->addIdOperand(element);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
|
|
module.mapInstruction(type);
|
|
|
|
return type->getResultId();
|
|
}
|
|
|
|
Id Builder::makeFunctionType(Id returnType, const std::vector<Id>& paramTypes)
|
|
{
|
|
// try to find it
|
|
Instruction* type;
|
|
for (int t = 0; t < (int)groupedTypes[OpTypeFunction].size(); ++t) {
|
|
type = groupedTypes[OpTypeFunction][t];
|
|
if (type->getIdOperand(0) != returnType || (int)paramTypes.size() != type->getNumOperands() - 1)
|
|
continue;
|
|
bool mismatch = false;
|
|
for (int p = 0; p < (int)paramTypes.size(); ++p) {
|
|
if (paramTypes[p] != type->getIdOperand(p + 1)) {
|
|
mismatch = true;
|
|
break;
|
|
}
|
|
}
|
|
if (! mismatch)
|
|
return type->getResultId();
|
|
}
|
|
|
|
// not found, make it
|
|
type = new Instruction(getUniqueId(), NoType, OpTypeFunction);
|
|
type->addIdOperand(returnType);
|
|
for (int p = 0; p < (int)paramTypes.size(); ++p)
|
|
type->addIdOperand(paramTypes[p]);
|
|
groupedTypes[OpTypeFunction].push_back(type);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
|
|
module.mapInstruction(type);
|
|
|
|
return type->getResultId();
|
|
}
|
|
|
|
Id Builder::makeImageType(Id sampledType, Dim dim, bool depth, bool arrayed, bool ms, unsigned sampled, ImageFormat format)
|
|
{
|
|
assert(sampled == 1 || sampled == 2);
|
|
|
|
// try to find it
|
|
Instruction* type;
|
|
for (int t = 0; t < (int)groupedTypes[OpTypeImage].size(); ++t) {
|
|
type = groupedTypes[OpTypeImage][t];
|
|
if (type->getIdOperand(0) == sampledType &&
|
|
type->getImmediateOperand(1) == (unsigned int)dim &&
|
|
type->getImmediateOperand(2) == ( depth ? 1u : 0u) &&
|
|
type->getImmediateOperand(3) == (arrayed ? 1u : 0u) &&
|
|
type->getImmediateOperand(4) == ( ms ? 1u : 0u) &&
|
|
type->getImmediateOperand(5) == sampled &&
|
|
type->getImmediateOperand(6) == (unsigned int)format)
|
|
return type->getResultId();
|
|
}
|
|
|
|
// not found, make it
|
|
type = new Instruction(getUniqueId(), NoType, OpTypeImage);
|
|
type->addIdOperand(sampledType);
|
|
type->addImmediateOperand( dim);
|
|
type->addImmediateOperand( depth ? 1 : 0);
|
|
type->addImmediateOperand(arrayed ? 1 : 0);
|
|
type->addImmediateOperand( ms ? 1 : 0);
|
|
type->addImmediateOperand(sampled);
|
|
type->addImmediateOperand((unsigned int)format);
|
|
|
|
groupedTypes[OpTypeImage].push_back(type);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
|
|
module.mapInstruction(type);
|
|
|
|
// deal with capabilities
|
|
switch (dim) {
|
|
case DimBuffer:
|
|
if (sampled == 1)
|
|
addCapability(CapabilitySampledBuffer);
|
|
else
|
|
addCapability(CapabilityImageBuffer);
|
|
break;
|
|
case Dim1D:
|
|
if (sampled == 1)
|
|
addCapability(CapabilitySampled1D);
|
|
else
|
|
addCapability(CapabilityImage1D);
|
|
break;
|
|
case DimCube:
|
|
if (arrayed) {
|
|
if (sampled == 1)
|
|
addCapability(CapabilitySampledCubeArray);
|
|
else
|
|
addCapability(CapabilityImageCubeArray);
|
|
}
|
|
break;
|
|
case DimRect:
|
|
if (sampled == 1)
|
|
addCapability(CapabilitySampledRect);
|
|
else
|
|
addCapability(CapabilityImageRect);
|
|
break;
|
|
case DimSubpassData:
|
|
addCapability(CapabilityInputAttachment);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (ms) {
|
|
if (sampled == 2) {
|
|
// Images used with subpass data are not storage
|
|
// images, so don't require the capability for them.
|
|
if (dim != Dim::DimSubpassData)
|
|
addCapability(CapabilityStorageImageMultisample);
|
|
if (arrayed)
|
|
addCapability(CapabilityImageMSArray);
|
|
}
|
|
}
|
|
|
|
return type->getResultId();
|
|
}
|
|
|
|
Id Builder::makeSampledImageType(Id imageType)
|
|
{
|
|
// try to find it
|
|
Instruction* type;
|
|
for (int t = 0; t < (int)groupedTypes[OpTypeSampledImage].size(); ++t) {
|
|
type = groupedTypes[OpTypeSampledImage][t];
|
|
if (type->getIdOperand(0) == imageType)
|
|
return type->getResultId();
|
|
}
|
|
|
|
// not found, make it
|
|
type = new Instruction(getUniqueId(), NoType, OpTypeSampledImage);
|
|
type->addIdOperand(imageType);
|
|
|
|
groupedTypes[OpTypeSampledImage].push_back(type);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
|
|
module.mapInstruction(type);
|
|
|
|
return type->getResultId();
|
|
}
|
|
|
|
#ifdef NV_EXTENSIONS
|
|
Id Builder::makeAccelerationStructureNVType()
|
|
{
|
|
Instruction *type;
|
|
if (groupedTypes[OpTypeAccelerationStructureNV].size() == 0) {
|
|
type = new Instruction(getUniqueId(), NoType, OpTypeAccelerationStructureNV);
|
|
groupedTypes[OpTypeAccelerationStructureNV].push_back(type);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(type));
|
|
module.mapInstruction(type);
|
|
} else {
|
|
type = groupedTypes[OpTypeAccelerationStructureNV].back();
|
|
}
|
|
|
|
return type->getResultId();
|
|
}
|
|
#endif
|
|
Id Builder::getDerefTypeId(Id resultId) const
|
|
{
|
|
Id typeId = getTypeId(resultId);
|
|
assert(isPointerType(typeId));
|
|
|
|
return module.getInstruction(typeId)->getIdOperand(1);
|
|
}
|
|
|
|
Op Builder::getMostBasicTypeClass(Id typeId) const
|
|
{
|
|
Instruction* instr = module.getInstruction(typeId);
|
|
|
|
Op typeClass = instr->getOpCode();
|
|
switch (typeClass)
|
|
{
|
|
case OpTypeVector:
|
|
case OpTypeMatrix:
|
|
case OpTypeArray:
|
|
case OpTypeRuntimeArray:
|
|
return getMostBasicTypeClass(instr->getIdOperand(0));
|
|
case OpTypePointer:
|
|
return getMostBasicTypeClass(instr->getIdOperand(1));
|
|
default:
|
|
return typeClass;
|
|
}
|
|
}
|
|
|
|
int Builder::getNumTypeConstituents(Id typeId) const
|
|
{
|
|
Instruction* instr = module.getInstruction(typeId);
|
|
|
|
switch (instr->getOpCode())
|
|
{
|
|
case OpTypeBool:
|
|
case OpTypeInt:
|
|
case OpTypeFloat:
|
|
case OpTypePointer:
|
|
return 1;
|
|
case OpTypeVector:
|
|
case OpTypeMatrix:
|
|
return instr->getImmediateOperand(1);
|
|
case OpTypeArray:
|
|
{
|
|
Id lengthId = instr->getIdOperand(1);
|
|
return module.getInstruction(lengthId)->getImmediateOperand(0);
|
|
}
|
|
case OpTypeStruct:
|
|
return instr->getNumOperands();
|
|
default:
|
|
assert(0);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
// Return the lowest-level type of scalar that an homogeneous composite is made out of.
|
|
// Typically, this is just to find out if something is made out of ints or floats.
|
|
// However, it includes returning a structure, if say, it is an array of structure.
|
|
Id Builder::getScalarTypeId(Id typeId) const
|
|
{
|
|
Instruction* instr = module.getInstruction(typeId);
|
|
|
|
Op typeClass = instr->getOpCode();
|
|
switch (typeClass)
|
|
{
|
|
case OpTypeVoid:
|
|
case OpTypeBool:
|
|
case OpTypeInt:
|
|
case OpTypeFloat:
|
|
case OpTypeStruct:
|
|
return instr->getResultId();
|
|
case OpTypeVector:
|
|
case OpTypeMatrix:
|
|
case OpTypeArray:
|
|
case OpTypeRuntimeArray:
|
|
case OpTypePointer:
|
|
return getScalarTypeId(getContainedTypeId(typeId));
|
|
default:
|
|
assert(0);
|
|
return NoResult;
|
|
}
|
|
}
|
|
|
|
// Return the type of 'member' of a composite.
|
|
Id Builder::getContainedTypeId(Id typeId, int member) const
|
|
{
|
|
Instruction* instr = module.getInstruction(typeId);
|
|
|
|
Op typeClass = instr->getOpCode();
|
|
switch (typeClass)
|
|
{
|
|
case OpTypeVector:
|
|
case OpTypeMatrix:
|
|
case OpTypeArray:
|
|
case OpTypeRuntimeArray:
|
|
return instr->getIdOperand(0);
|
|
case OpTypePointer:
|
|
return instr->getIdOperand(1);
|
|
case OpTypeStruct:
|
|
return instr->getIdOperand(member);
|
|
default:
|
|
assert(0);
|
|
return NoResult;
|
|
}
|
|
}
|
|
|
|
// Return the immediately contained type of a given composite type.
|
|
Id Builder::getContainedTypeId(Id typeId) const
|
|
{
|
|
return getContainedTypeId(typeId, 0);
|
|
}
|
|
|
|
// Returns true if 'typeId' is or contains a scalar type declared with 'typeOp'
|
|
// of width 'width'. The 'width' is only consumed for int and float types.
|
|
// Returns false otherwise.
|
|
bool Builder::containsType(Id typeId, spv::Op typeOp, unsigned int width) const
|
|
{
|
|
const Instruction& instr = *module.getInstruction(typeId);
|
|
|
|
Op typeClass = instr.getOpCode();
|
|
switch (typeClass)
|
|
{
|
|
case OpTypeInt:
|
|
case OpTypeFloat:
|
|
return typeClass == typeOp && instr.getImmediateOperand(0) == width;
|
|
case OpTypeStruct:
|
|
for (int m = 0; m < instr.getNumOperands(); ++m) {
|
|
if (containsType(instr.getIdOperand(m), typeOp, width))
|
|
return true;
|
|
}
|
|
return false;
|
|
case OpTypePointer:
|
|
return false;
|
|
case OpTypeVector:
|
|
case OpTypeMatrix:
|
|
case OpTypeArray:
|
|
case OpTypeRuntimeArray:
|
|
return containsType(getContainedTypeId(typeId), typeOp, width);
|
|
default:
|
|
return typeClass == typeOp;
|
|
}
|
|
}
|
|
|
|
// return true if the type is a pointer to PhysicalStorageBufferEXT or an
|
|
// array of such pointers. These require restrict/aliased decorations.
|
|
bool Builder::containsPhysicalStorageBufferOrArray(Id typeId) const
|
|
{
|
|
const Instruction& instr = *module.getInstruction(typeId);
|
|
|
|
Op typeClass = instr.getOpCode();
|
|
switch (typeClass)
|
|
{
|
|
case OpTypePointer:
|
|
return getTypeStorageClass(typeId) == StorageClassPhysicalStorageBufferEXT;
|
|
case OpTypeArray:
|
|
return containsPhysicalStorageBufferOrArray(getContainedTypeId(typeId));
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// See if a scalar constant of this type has already been created, so it
|
|
// can be reused rather than duplicated. (Required by the specification).
|
|
Id Builder::findScalarConstant(Op typeClass, Op opcode, Id typeId, unsigned value)
|
|
{
|
|
Instruction* constant;
|
|
for (int i = 0; i < (int)groupedConstants[typeClass].size(); ++i) {
|
|
constant = groupedConstants[typeClass][i];
|
|
if (constant->getOpCode() == opcode &&
|
|
constant->getTypeId() == typeId &&
|
|
constant->getImmediateOperand(0) == value)
|
|
return constant->getResultId();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Version of findScalarConstant (see above) for scalars that take two operands (e.g. a 'double' or 'int64').
|
|
Id Builder::findScalarConstant(Op typeClass, Op opcode, Id typeId, unsigned v1, unsigned v2)
|
|
{
|
|
Instruction* constant;
|
|
for (int i = 0; i < (int)groupedConstants[typeClass].size(); ++i) {
|
|
constant = groupedConstants[typeClass][i];
|
|
if (constant->getOpCode() == opcode &&
|
|
constant->getTypeId() == typeId &&
|
|
constant->getImmediateOperand(0) == v1 &&
|
|
constant->getImmediateOperand(1) == v2)
|
|
return constant->getResultId();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Return true if consuming 'opcode' means consuming a constant.
|
|
// "constant" here means after final transform to executable code,
|
|
// the value consumed will be a constant, so includes specialization.
|
|
bool Builder::isConstantOpCode(Op opcode) const
|
|
{
|
|
switch (opcode) {
|
|
case OpUndef:
|
|
case OpConstantTrue:
|
|
case OpConstantFalse:
|
|
case OpConstant:
|
|
case OpConstantComposite:
|
|
case OpConstantSampler:
|
|
case OpConstantNull:
|
|
case OpSpecConstantTrue:
|
|
case OpSpecConstantFalse:
|
|
case OpSpecConstant:
|
|
case OpSpecConstantComposite:
|
|
case OpSpecConstantOp:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Return true if consuming 'opcode' means consuming a specialization constant.
|
|
bool Builder::isSpecConstantOpCode(Op opcode) const
|
|
{
|
|
switch (opcode) {
|
|
case OpSpecConstantTrue:
|
|
case OpSpecConstantFalse:
|
|
case OpSpecConstant:
|
|
case OpSpecConstantComposite:
|
|
case OpSpecConstantOp:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
Id Builder::makeBoolConstant(bool b, bool specConstant)
|
|
{
|
|
Id typeId = makeBoolType();
|
|
Instruction* constant;
|
|
Op opcode = specConstant ? (b ? OpSpecConstantTrue : OpSpecConstantFalse) : (b ? OpConstantTrue : OpConstantFalse);
|
|
|
|
// See if we already made it. Applies only to regular constants, because specialization constants
|
|
// must remain distinct for the purpose of applying a SpecId decoration.
|
|
if (! specConstant) {
|
|
Id existing = 0;
|
|
for (int i = 0; i < (int)groupedConstants[OpTypeBool].size(); ++i) {
|
|
constant = groupedConstants[OpTypeBool][i];
|
|
if (constant->getTypeId() == typeId && constant->getOpCode() == opcode)
|
|
existing = constant->getResultId();
|
|
}
|
|
|
|
if (existing)
|
|
return existing;
|
|
}
|
|
|
|
// Make it
|
|
Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
|
|
groupedConstants[OpTypeBool].push_back(c);
|
|
module.mapInstruction(c);
|
|
|
|
return c->getResultId();
|
|
}
|
|
|
|
Id Builder::makeIntConstant(Id typeId, unsigned value, bool specConstant)
|
|
{
|
|
Op opcode = specConstant ? OpSpecConstant : OpConstant;
|
|
|
|
// See if we already made it. Applies only to regular constants, because specialization constants
|
|
// must remain distinct for the purpose of applying a SpecId decoration.
|
|
if (! specConstant) {
|
|
Id existing = findScalarConstant(OpTypeInt, opcode, typeId, value);
|
|
if (existing)
|
|
return existing;
|
|
}
|
|
|
|
Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
|
|
c->addImmediateOperand(value);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
|
|
groupedConstants[OpTypeInt].push_back(c);
|
|
module.mapInstruction(c);
|
|
|
|
return c->getResultId();
|
|
}
|
|
|
|
Id Builder::makeInt64Constant(Id typeId, unsigned long long value, bool specConstant)
|
|
{
|
|
Op opcode = specConstant ? OpSpecConstant : OpConstant;
|
|
|
|
unsigned op1 = value & 0xFFFFFFFF;
|
|
unsigned op2 = value >> 32;
|
|
|
|
// See if we already made it. Applies only to regular constants, because specialization constants
|
|
// must remain distinct for the purpose of applying a SpecId decoration.
|
|
if (! specConstant) {
|
|
Id existing = findScalarConstant(OpTypeInt, opcode, typeId, op1, op2);
|
|
if (existing)
|
|
return existing;
|
|
}
|
|
|
|
Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
|
|
c->addImmediateOperand(op1);
|
|
c->addImmediateOperand(op2);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
|
|
groupedConstants[OpTypeInt].push_back(c);
|
|
module.mapInstruction(c);
|
|
|
|
return c->getResultId();
|
|
}
|
|
|
|
Id Builder::makeFloatConstant(float f, bool specConstant)
|
|
{
|
|
Op opcode = specConstant ? OpSpecConstant : OpConstant;
|
|
Id typeId = makeFloatType(32);
|
|
union { float fl; unsigned int ui; } u;
|
|
u.fl = f;
|
|
unsigned value = u.ui;
|
|
|
|
// See if we already made it. Applies only to regular constants, because specialization constants
|
|
// must remain distinct for the purpose of applying a SpecId decoration.
|
|
if (! specConstant) {
|
|
Id existing = findScalarConstant(OpTypeFloat, opcode, typeId, value);
|
|
if (existing)
|
|
return existing;
|
|
}
|
|
|
|
Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
|
|
c->addImmediateOperand(value);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
|
|
groupedConstants[OpTypeFloat].push_back(c);
|
|
module.mapInstruction(c);
|
|
|
|
return c->getResultId();
|
|
}
|
|
|
|
Id Builder::makeDoubleConstant(double d, bool specConstant)
|
|
{
|
|
Op opcode = specConstant ? OpSpecConstant : OpConstant;
|
|
Id typeId = makeFloatType(64);
|
|
union { double db; unsigned long long ull; } u;
|
|
u.db = d;
|
|
unsigned long long value = u.ull;
|
|
unsigned op1 = value & 0xFFFFFFFF;
|
|
unsigned op2 = value >> 32;
|
|
|
|
// See if we already made it. Applies only to regular constants, because specialization constants
|
|
// must remain distinct for the purpose of applying a SpecId decoration.
|
|
if (! specConstant) {
|
|
Id existing = findScalarConstant(OpTypeFloat, opcode, typeId, op1, op2);
|
|
if (existing)
|
|
return existing;
|
|
}
|
|
|
|
Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
|
|
c->addImmediateOperand(op1);
|
|
c->addImmediateOperand(op2);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
|
|
groupedConstants[OpTypeFloat].push_back(c);
|
|
module.mapInstruction(c);
|
|
|
|
return c->getResultId();
|
|
}
|
|
|
|
Id Builder::makeFloat16Constant(float f16, bool specConstant)
|
|
{
|
|
Op opcode = specConstant ? OpSpecConstant : OpConstant;
|
|
Id typeId = makeFloatType(16);
|
|
|
|
spvutils::HexFloat<spvutils::FloatProxy<float>> fVal(f16);
|
|
spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>> f16Val(0);
|
|
fVal.castTo(f16Val, spvutils::kRoundToZero);
|
|
|
|
unsigned value = f16Val.value().getAsFloat().get_value();
|
|
|
|
// See if we already made it. Applies only to regular constants, because specialization constants
|
|
// must remain distinct for the purpose of applying a SpecId decoration.
|
|
if (!specConstant) {
|
|
Id existing = findScalarConstant(OpTypeFloat, opcode, typeId, value);
|
|
if (existing)
|
|
return existing;
|
|
}
|
|
|
|
Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
|
|
c->addImmediateOperand(value);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
|
|
groupedConstants[OpTypeFloat].push_back(c);
|
|
module.mapInstruction(c);
|
|
|
|
return c->getResultId();
|
|
}
|
|
|
|
Id Builder::makeFpConstant(Id type, double d, bool specConstant)
|
|
{
|
|
assert(isFloatType(type));
|
|
|
|
switch (getScalarTypeWidth(type)) {
|
|
case 16:
|
|
return makeFloat16Constant((float)d, specConstant);
|
|
case 32:
|
|
return makeFloatConstant((float)d, specConstant);
|
|
case 64:
|
|
return makeDoubleConstant(d, specConstant);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
assert(false);
|
|
return NoResult;
|
|
}
|
|
|
|
Id Builder::findCompositeConstant(Op typeClass, const std::vector<Id>& comps)
|
|
{
|
|
Instruction* constant = 0;
|
|
bool found = false;
|
|
for (int i = 0; i < (int)groupedConstants[typeClass].size(); ++i) {
|
|
constant = groupedConstants[typeClass][i];
|
|
|
|
// same shape?
|
|
if (constant->getNumOperands() != (int)comps.size())
|
|
continue;
|
|
|
|
// same contents?
|
|
bool mismatch = false;
|
|
for (int op = 0; op < constant->getNumOperands(); ++op) {
|
|
if (constant->getIdOperand(op) != comps[op]) {
|
|
mismatch = true;
|
|
break;
|
|
}
|
|
}
|
|
if (! mismatch) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return found ? constant->getResultId() : NoResult;
|
|
}
|
|
|
|
Id Builder::findStructConstant(Id typeId, const std::vector<Id>& comps)
|
|
{
|
|
Instruction* constant = 0;
|
|
bool found = false;
|
|
for (int i = 0; i < (int)groupedStructConstants[typeId].size(); ++i) {
|
|
constant = groupedStructConstants[typeId][i];
|
|
|
|
// same contents?
|
|
bool mismatch = false;
|
|
for (int op = 0; op < constant->getNumOperands(); ++op) {
|
|
if (constant->getIdOperand(op) != comps[op]) {
|
|
mismatch = true;
|
|
break;
|
|
}
|
|
}
|
|
if (! mismatch) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return found ? constant->getResultId() : NoResult;
|
|
}
|
|
|
|
// Comments in header
|
|
Id Builder::makeCompositeConstant(Id typeId, const std::vector<Id>& members, bool specConstant)
|
|
{
|
|
Op opcode = specConstant ? OpSpecConstantComposite : OpConstantComposite;
|
|
assert(typeId);
|
|
Op typeClass = getTypeClass(typeId);
|
|
|
|
switch (typeClass) {
|
|
case OpTypeVector:
|
|
case OpTypeArray:
|
|
case OpTypeMatrix:
|
|
if (! specConstant) {
|
|
Id existing = findCompositeConstant(typeClass, members);
|
|
if (existing)
|
|
return existing;
|
|
}
|
|
break;
|
|
case OpTypeStruct:
|
|
if (! specConstant) {
|
|
Id existing = findStructConstant(typeId, members);
|
|
if (existing)
|
|
return existing;
|
|
}
|
|
break;
|
|
default:
|
|
assert(0);
|
|
return makeFloatConstant(0.0);
|
|
}
|
|
|
|
Instruction* c = new Instruction(getUniqueId(), typeId, opcode);
|
|
for (int op = 0; op < (int)members.size(); ++op)
|
|
c->addIdOperand(members[op]);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(c));
|
|
if (typeClass == OpTypeStruct)
|
|
groupedStructConstants[typeId].push_back(c);
|
|
else
|
|
groupedConstants[typeClass].push_back(c);
|
|
module.mapInstruction(c);
|
|
|
|
return c->getResultId();
|
|
}
|
|
|
|
Instruction* Builder::addEntryPoint(ExecutionModel model, Function* function, const char* name)
|
|
{
|
|
Instruction* entryPoint = new Instruction(OpEntryPoint);
|
|
entryPoint->addImmediateOperand(model);
|
|
entryPoint->addIdOperand(function->getId());
|
|
entryPoint->addStringOperand(name);
|
|
|
|
entryPoints.push_back(std::unique_ptr<Instruction>(entryPoint));
|
|
|
|
return entryPoint;
|
|
}
|
|
|
|
// Currently relying on the fact that all 'value' of interest are small non-negative values.
|
|
void Builder::addExecutionMode(Function* entryPoint, ExecutionMode mode, int value1, int value2, int value3)
|
|
{
|
|
Instruction* instr = new Instruction(OpExecutionMode);
|
|
instr->addIdOperand(entryPoint->getId());
|
|
instr->addImmediateOperand(mode);
|
|
if (value1 >= 0)
|
|
instr->addImmediateOperand(value1);
|
|
if (value2 >= 0)
|
|
instr->addImmediateOperand(value2);
|
|
if (value3 >= 0)
|
|
instr->addImmediateOperand(value3);
|
|
|
|
executionModes.push_back(std::unique_ptr<Instruction>(instr));
|
|
}
|
|
|
|
void Builder::addName(Id id, const char* string)
|
|
{
|
|
Instruction* name = new Instruction(OpName);
|
|
name->addIdOperand(id);
|
|
name->addStringOperand(string);
|
|
|
|
names.push_back(std::unique_ptr<Instruction>(name));
|
|
}
|
|
|
|
void Builder::addMemberName(Id id, int memberNumber, const char* string)
|
|
{
|
|
Instruction* name = new Instruction(OpMemberName);
|
|
name->addIdOperand(id);
|
|
name->addImmediateOperand(memberNumber);
|
|
name->addStringOperand(string);
|
|
|
|
names.push_back(std::unique_ptr<Instruction>(name));
|
|
}
|
|
|
|
void Builder::addDecoration(Id id, Decoration decoration, int num)
|
|
{
|
|
if (decoration == spv::DecorationMax)
|
|
return;
|
|
|
|
Instruction* dec = new Instruction(OpDecorate);
|
|
dec->addIdOperand(id);
|
|
dec->addImmediateOperand(decoration);
|
|
if (num >= 0)
|
|
dec->addImmediateOperand(num);
|
|
|
|
decorations.push_back(std::unique_ptr<Instruction>(dec));
|
|
}
|
|
|
|
void Builder::addDecoration(Id id, Decoration decoration, const char* s)
|
|
{
|
|
if (decoration == spv::DecorationMax)
|
|
return;
|
|
|
|
Instruction* dec = new Instruction(OpDecorateStringGOOGLE);
|
|
dec->addIdOperand(id);
|
|
dec->addImmediateOperand(decoration);
|
|
dec->addStringOperand(s);
|
|
|
|
decorations.push_back(std::unique_ptr<Instruction>(dec));
|
|
}
|
|
|
|
void Builder::addDecorationId(Id id, Decoration decoration, Id idDecoration)
|
|
{
|
|
if (decoration == spv::DecorationMax)
|
|
return;
|
|
|
|
Instruction* dec = new Instruction(OpDecorateId);
|
|
dec->addIdOperand(id);
|
|
dec->addImmediateOperand(decoration);
|
|
dec->addIdOperand(idDecoration);
|
|
|
|
decorations.push_back(std::unique_ptr<Instruction>(dec));
|
|
}
|
|
|
|
void Builder::addMemberDecoration(Id id, unsigned int member, Decoration decoration, int num)
|
|
{
|
|
if (decoration == spv::DecorationMax)
|
|
return;
|
|
|
|
Instruction* dec = new Instruction(OpMemberDecorate);
|
|
dec->addIdOperand(id);
|
|
dec->addImmediateOperand(member);
|
|
dec->addImmediateOperand(decoration);
|
|
if (num >= 0)
|
|
dec->addImmediateOperand(num);
|
|
|
|
decorations.push_back(std::unique_ptr<Instruction>(dec));
|
|
}
|
|
|
|
void Builder::addMemberDecoration(Id id, unsigned int member, Decoration decoration, const char *s)
|
|
{
|
|
if (decoration == spv::DecorationMax)
|
|
return;
|
|
|
|
Instruction* dec = new Instruction(OpMemberDecorateStringGOOGLE);
|
|
dec->addIdOperand(id);
|
|
dec->addImmediateOperand(member);
|
|
dec->addImmediateOperand(decoration);
|
|
dec->addStringOperand(s);
|
|
|
|
decorations.push_back(std::unique_ptr<Instruction>(dec));
|
|
}
|
|
|
|
// Comments in header
|
|
Function* Builder::makeEntryPoint(const char* entryPoint)
|
|
{
|
|
assert(! entryPointFunction);
|
|
|
|
Block* entry;
|
|
std::vector<Id> params;
|
|
std::vector<std::vector<Decoration>> decorations;
|
|
|
|
entryPointFunction = makeFunctionEntry(NoPrecision, makeVoidType(), entryPoint, params, decorations, &entry);
|
|
|
|
return entryPointFunction;
|
|
}
|
|
|
|
// Comments in header
|
|
Function* Builder::makeFunctionEntry(Decoration precision, Id returnType, const char* name,
|
|
const std::vector<Id>& paramTypes, const std::vector<std::vector<Decoration>>& decorations, Block **entry)
|
|
{
|
|
// Make the function and initial instructions in it
|
|
Id typeId = makeFunctionType(returnType, paramTypes);
|
|
Id firstParamId = paramTypes.size() == 0 ? 0 : getUniqueIds((int)paramTypes.size());
|
|
Function* function = new Function(getUniqueId(), returnType, typeId, firstParamId, module);
|
|
|
|
// Set up the precisions
|
|
setPrecision(function->getId(), precision);
|
|
for (unsigned p = 0; p < (unsigned)decorations.size(); ++p) {
|
|
for (int d = 0; d < (int)decorations[p].size(); ++d)
|
|
addDecoration(firstParamId + p, decorations[p][d]);
|
|
}
|
|
|
|
// CFG
|
|
if (entry) {
|
|
*entry = new Block(getUniqueId(), *function);
|
|
function->addBlock(*entry);
|
|
setBuildPoint(*entry);
|
|
}
|
|
|
|
if (name)
|
|
addName(function->getId(), name);
|
|
|
|
functions.push_back(std::unique_ptr<Function>(function));
|
|
|
|
return function;
|
|
}
|
|
|
|
// Comments in header
|
|
void Builder::makeReturn(bool implicit, Id retVal)
|
|
{
|
|
if (retVal) {
|
|
Instruction* inst = new Instruction(NoResult, NoType, OpReturnValue);
|
|
inst->addIdOperand(retVal);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(inst));
|
|
} else
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(new Instruction(NoResult, NoType, OpReturn)));
|
|
|
|
if (! implicit)
|
|
createAndSetNoPredecessorBlock("post-return");
|
|
}
|
|
|
|
// Comments in header
|
|
void Builder::leaveFunction()
|
|
{
|
|
Block* block = buildPoint;
|
|
Function& function = buildPoint->getParent();
|
|
assert(block);
|
|
|
|
// If our function did not contain a return, add a return void now.
|
|
if (! block->isTerminated()) {
|
|
if (function.getReturnType() == makeVoidType())
|
|
makeReturn(true);
|
|
else {
|
|
makeReturn(true, createUndefined(function.getReturnType()));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Comments in header
|
|
void Builder::makeDiscard()
|
|
{
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(new Instruction(OpKill)));
|
|
createAndSetNoPredecessorBlock("post-discard");
|
|
}
|
|
|
|
// Comments in header
|
|
Id Builder::createVariable(StorageClass storageClass, Id type, const char* name)
|
|
{
|
|
Id pointerType = makePointer(storageClass, type);
|
|
Instruction* inst = new Instruction(getUniqueId(), pointerType, OpVariable);
|
|
inst->addImmediateOperand(storageClass);
|
|
|
|
switch (storageClass) {
|
|
case StorageClassFunction:
|
|
// Validation rules require the declaration in the entry block
|
|
buildPoint->getParent().addLocalVariable(std::unique_ptr<Instruction>(inst));
|
|
break;
|
|
|
|
default:
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(inst));
|
|
module.mapInstruction(inst);
|
|
break;
|
|
}
|
|
|
|
if (name)
|
|
addName(inst->getResultId(), name);
|
|
|
|
return inst->getResultId();
|
|
}
|
|
|
|
// Comments in header
|
|
Id Builder::createUndefined(Id type)
|
|
{
|
|
Instruction* inst = new Instruction(getUniqueId(), type, OpUndef);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(inst));
|
|
return inst->getResultId();
|
|
}
|
|
|
|
// av/vis/nonprivate are unnecessary and illegal for some storage classes.
|
|
spv::MemoryAccessMask Builder::sanitizeMemoryAccessForStorageClass(spv::MemoryAccessMask memoryAccess, StorageClass sc) const
|
|
{
|
|
switch (sc) {
|
|
case spv::StorageClassUniform:
|
|
case spv::StorageClassWorkgroup:
|
|
case spv::StorageClassStorageBuffer:
|
|
case spv::StorageClassPhysicalStorageBufferEXT:
|
|
break;
|
|
default:
|
|
memoryAccess = spv::MemoryAccessMask(memoryAccess &
|
|
~(spv::MemoryAccessMakePointerAvailableKHRMask |
|
|
spv::MemoryAccessMakePointerVisibleKHRMask |
|
|
spv::MemoryAccessNonPrivatePointerKHRMask));
|
|
break;
|
|
}
|
|
return memoryAccess;
|
|
}
|
|
|
|
// Comments in header
|
|
void Builder::createStore(Id rValue, Id lValue, spv::MemoryAccessMask memoryAccess, spv::Scope scope, unsigned int alignment)
|
|
{
|
|
Instruction* store = new Instruction(OpStore);
|
|
store->addIdOperand(lValue);
|
|
store->addIdOperand(rValue);
|
|
|
|
memoryAccess = sanitizeMemoryAccessForStorageClass(memoryAccess, getStorageClass(lValue));
|
|
|
|
if (memoryAccess != MemoryAccessMaskNone) {
|
|
store->addImmediateOperand(memoryAccess);
|
|
if (memoryAccess & spv::MemoryAccessAlignedMask) {
|
|
store->addImmediateOperand(alignment);
|
|
}
|
|
if (memoryAccess & spv::MemoryAccessMakePointerAvailableKHRMask) {
|
|
store->addIdOperand(makeUintConstant(scope));
|
|
}
|
|
}
|
|
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(store));
|
|
}
|
|
|
|
// Comments in header
|
|
Id Builder::createLoad(Id lValue, spv::MemoryAccessMask memoryAccess, spv::Scope scope, unsigned int alignment)
|
|
{
|
|
Instruction* load = new Instruction(getUniqueId(), getDerefTypeId(lValue), OpLoad);
|
|
load->addIdOperand(lValue);
|
|
|
|
memoryAccess = sanitizeMemoryAccessForStorageClass(memoryAccess, getStorageClass(lValue));
|
|
|
|
if (memoryAccess != MemoryAccessMaskNone) {
|
|
load->addImmediateOperand(memoryAccess);
|
|
if (memoryAccess & spv::MemoryAccessAlignedMask) {
|
|
load->addImmediateOperand(alignment);
|
|
}
|
|
if (memoryAccess & spv::MemoryAccessMakePointerVisibleKHRMask) {
|
|
load->addIdOperand(makeUintConstant(scope));
|
|
}
|
|
}
|
|
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(load));
|
|
|
|
return load->getResultId();
|
|
}
|
|
|
|
// Comments in header
|
|
Id Builder::createAccessChain(StorageClass storageClass, Id base, const std::vector<Id>& offsets)
|
|
{
|
|
// Figure out the final resulting type.
|
|
spv::Id typeId = getTypeId(base);
|
|
assert(isPointerType(typeId) && offsets.size() > 0);
|
|
typeId = getContainedTypeId(typeId);
|
|
for (int i = 0; i < (int)offsets.size(); ++i) {
|
|
if (isStructType(typeId)) {
|
|
assert(isConstantScalar(offsets[i]));
|
|
typeId = getContainedTypeId(typeId, getConstantScalar(offsets[i]));
|
|
} else
|
|
typeId = getContainedTypeId(typeId, offsets[i]);
|
|
}
|
|
typeId = makePointer(storageClass, typeId);
|
|
|
|
// Make the instruction
|
|
Instruction* chain = new Instruction(getUniqueId(), typeId, OpAccessChain);
|
|
chain->addIdOperand(base);
|
|
for (int i = 0; i < (int)offsets.size(); ++i)
|
|
chain->addIdOperand(offsets[i]);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(chain));
|
|
|
|
return chain->getResultId();
|
|
}
|
|
|
|
Id Builder::createArrayLength(Id base, unsigned int member)
|
|
{
|
|
spv::Id intType = makeUintType(32);
|
|
Instruction* length = new Instruction(getUniqueId(), intType, OpArrayLength);
|
|
length->addIdOperand(base);
|
|
length->addImmediateOperand(member);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(length));
|
|
|
|
return length->getResultId();
|
|
}
|
|
|
|
Id Builder::createCompositeExtract(Id composite, Id typeId, unsigned index)
|
|
{
|
|
// Generate code for spec constants if in spec constant operation
|
|
// generation mode.
|
|
if (generatingOpCodeForSpecConst) {
|
|
return createSpecConstantOp(OpCompositeExtract, typeId, std::vector<Id>(1, composite), std::vector<Id>(1, index));
|
|
}
|
|
Instruction* extract = new Instruction(getUniqueId(), typeId, OpCompositeExtract);
|
|
extract->addIdOperand(composite);
|
|
extract->addImmediateOperand(index);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(extract));
|
|
|
|
return extract->getResultId();
|
|
}
|
|
|
|
Id Builder::createCompositeExtract(Id composite, Id typeId, const std::vector<unsigned>& indexes)
|
|
{
|
|
// Generate code for spec constants if in spec constant operation
|
|
// generation mode.
|
|
if (generatingOpCodeForSpecConst) {
|
|
return createSpecConstantOp(OpCompositeExtract, typeId, std::vector<Id>(1, composite), indexes);
|
|
}
|
|
Instruction* extract = new Instruction(getUniqueId(), typeId, OpCompositeExtract);
|
|
extract->addIdOperand(composite);
|
|
for (int i = 0; i < (int)indexes.size(); ++i)
|
|
extract->addImmediateOperand(indexes[i]);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(extract));
|
|
|
|
return extract->getResultId();
|
|
}
|
|
|
|
Id Builder::createCompositeInsert(Id object, Id composite, Id typeId, unsigned index)
|
|
{
|
|
Instruction* insert = new Instruction(getUniqueId(), typeId, OpCompositeInsert);
|
|
insert->addIdOperand(object);
|
|
insert->addIdOperand(composite);
|
|
insert->addImmediateOperand(index);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(insert));
|
|
|
|
return insert->getResultId();
|
|
}
|
|
|
|
Id Builder::createCompositeInsert(Id object, Id composite, Id typeId, const std::vector<unsigned>& indexes)
|
|
{
|
|
Instruction* insert = new Instruction(getUniqueId(), typeId, OpCompositeInsert);
|
|
insert->addIdOperand(object);
|
|
insert->addIdOperand(composite);
|
|
for (int i = 0; i < (int)indexes.size(); ++i)
|
|
insert->addImmediateOperand(indexes[i]);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(insert));
|
|
|
|
return insert->getResultId();
|
|
}
|
|
|
|
Id Builder::createVectorExtractDynamic(Id vector, Id typeId, Id componentIndex)
|
|
{
|
|
Instruction* extract = new Instruction(getUniqueId(), typeId, OpVectorExtractDynamic);
|
|
extract->addIdOperand(vector);
|
|
extract->addIdOperand(componentIndex);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(extract));
|
|
|
|
return extract->getResultId();
|
|
}
|
|
|
|
Id Builder::createVectorInsertDynamic(Id vector, Id typeId, Id component, Id componentIndex)
|
|
{
|
|
Instruction* insert = new Instruction(getUniqueId(), typeId, OpVectorInsertDynamic);
|
|
insert->addIdOperand(vector);
|
|
insert->addIdOperand(component);
|
|
insert->addIdOperand(componentIndex);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(insert));
|
|
|
|
return insert->getResultId();
|
|
}
|
|
|
|
// An opcode that has no operands, no result id, and no type
|
|
void Builder::createNoResultOp(Op opCode)
|
|
{
|
|
Instruction* op = new Instruction(opCode);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
|
|
}
|
|
|
|
// An opcode that has one id operand, no result id, and no type
|
|
void Builder::createNoResultOp(Op opCode, Id operand)
|
|
{
|
|
Instruction* op = new Instruction(opCode);
|
|
op->addIdOperand(operand);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
|
|
}
|
|
|
|
// An opcode that has one or more operands, no result id, and no type
|
|
void Builder::createNoResultOp(Op opCode, const std::vector<Id>& operands)
|
|
{
|
|
Instruction* op = new Instruction(opCode);
|
|
for (auto it = operands.cbegin(); it != operands.cend(); ++it) {
|
|
op->addIdOperand(*it);
|
|
}
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
|
|
}
|
|
|
|
// An opcode that has multiple operands, no result id, and no type
|
|
void Builder::createNoResultOp(Op opCode, const std::vector<IdImmediate>& operands)
|
|
{
|
|
Instruction* op = new Instruction(opCode);
|
|
for (auto it = operands.cbegin(); it != operands.cend(); ++it) {
|
|
if (it->isId)
|
|
op->addIdOperand(it->word);
|
|
else
|
|
op->addImmediateOperand(it->word);
|
|
}
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
|
|
}
|
|
|
|
void Builder::createControlBarrier(Scope execution, Scope memory, MemorySemanticsMask semantics)
|
|
{
|
|
Instruction* op = new Instruction(OpControlBarrier);
|
|
op->addIdOperand(makeUintConstant(execution));
|
|
op->addIdOperand(makeUintConstant(memory));
|
|
op->addIdOperand(makeUintConstant(semantics));
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
|
|
}
|
|
|
|
void Builder::createMemoryBarrier(unsigned executionScope, unsigned memorySemantics)
|
|
{
|
|
Instruction* op = new Instruction(OpMemoryBarrier);
|
|
op->addIdOperand(makeUintConstant(executionScope));
|
|
op->addIdOperand(makeUintConstant(memorySemantics));
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
|
|
}
|
|
|
|
// An opcode that has one operands, a result id, and a type
|
|
Id Builder::createUnaryOp(Op opCode, Id typeId, Id operand)
|
|
{
|
|
// Generate code for spec constants if in spec constant operation
|
|
// generation mode.
|
|
if (generatingOpCodeForSpecConst) {
|
|
return createSpecConstantOp(opCode, typeId, std::vector<Id>(1, operand), std::vector<Id>());
|
|
}
|
|
Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
|
|
op->addIdOperand(operand);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
|
|
|
|
return op->getResultId();
|
|
}
|
|
|
|
Id Builder::createBinOp(Op opCode, Id typeId, Id left, Id right)
|
|
{
|
|
// Generate code for spec constants if in spec constant operation
|
|
// generation mode.
|
|
if (generatingOpCodeForSpecConst) {
|
|
std::vector<Id> operands(2);
|
|
operands[0] = left; operands[1] = right;
|
|
return createSpecConstantOp(opCode, typeId, operands, std::vector<Id>());
|
|
}
|
|
Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
|
|
op->addIdOperand(left);
|
|
op->addIdOperand(right);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
|
|
|
|
return op->getResultId();
|
|
}
|
|
|
|
Id Builder::createTriOp(Op opCode, Id typeId, Id op1, Id op2, Id op3)
|
|
{
|
|
// Generate code for spec constants if in spec constant operation
|
|
// generation mode.
|
|
if (generatingOpCodeForSpecConst) {
|
|
std::vector<Id> operands(3);
|
|
operands[0] = op1;
|
|
operands[1] = op2;
|
|
operands[2] = op3;
|
|
return createSpecConstantOp(
|
|
opCode, typeId, operands, std::vector<Id>());
|
|
}
|
|
Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
|
|
op->addIdOperand(op1);
|
|
op->addIdOperand(op2);
|
|
op->addIdOperand(op3);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
|
|
|
|
return op->getResultId();
|
|
}
|
|
|
|
Id Builder::createOp(Op opCode, Id typeId, const std::vector<Id>& operands)
|
|
{
|
|
Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
|
|
for (auto it = operands.cbegin(); it != operands.cend(); ++it)
|
|
op->addIdOperand(*it);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
|
|
|
|
return op->getResultId();
|
|
}
|
|
|
|
Id Builder::createOp(Op opCode, Id typeId, const std::vector<IdImmediate>& operands)
|
|
{
|
|
Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
|
|
for (auto it = operands.cbegin(); it != operands.cend(); ++it) {
|
|
if (it->isId)
|
|
op->addIdOperand(it->word);
|
|
else
|
|
op->addImmediateOperand(it->word);
|
|
}
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
|
|
|
|
return op->getResultId();
|
|
}
|
|
|
|
Id Builder::createSpecConstantOp(Op opCode, Id typeId, const std::vector<Id>& operands, const std::vector<unsigned>& literals)
|
|
{
|
|
Instruction* op = new Instruction(getUniqueId(), typeId, OpSpecConstantOp);
|
|
op->addImmediateOperand((unsigned) opCode);
|
|
for (auto it = operands.cbegin(); it != operands.cend(); ++it)
|
|
op->addIdOperand(*it);
|
|
for (auto it = literals.cbegin(); it != literals.cend(); ++it)
|
|
op->addImmediateOperand(*it);
|
|
module.mapInstruction(op);
|
|
constantsTypesGlobals.push_back(std::unique_ptr<Instruction>(op));
|
|
|
|
return op->getResultId();
|
|
}
|
|
|
|
Id Builder::createFunctionCall(spv::Function* function, const std::vector<spv::Id>& args)
|
|
{
|
|
Instruction* op = new Instruction(getUniqueId(), function->getReturnType(), OpFunctionCall);
|
|
op->addIdOperand(function->getId());
|
|
for (int a = 0; a < (int)args.size(); ++a)
|
|
op->addIdOperand(args[a]);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
|
|
|
|
return op->getResultId();
|
|
}
|
|
|
|
// Comments in header
|
|
Id Builder::createRvalueSwizzle(Decoration precision, Id typeId, Id source, const std::vector<unsigned>& channels)
|
|
{
|
|
if (channels.size() == 1)
|
|
return setPrecision(createCompositeExtract(source, typeId, channels.front()), precision);
|
|
|
|
if (generatingOpCodeForSpecConst) {
|
|
std::vector<Id> operands(2);
|
|
operands[0] = operands[1] = source;
|
|
return setPrecision(createSpecConstantOp(OpVectorShuffle, typeId, operands, channels), precision);
|
|
}
|
|
Instruction* swizzle = new Instruction(getUniqueId(), typeId, OpVectorShuffle);
|
|
assert(isVector(source));
|
|
swizzle->addIdOperand(source);
|
|
swizzle->addIdOperand(source);
|
|
for (int i = 0; i < (int)channels.size(); ++i)
|
|
swizzle->addImmediateOperand(channels[i]);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(swizzle));
|
|
|
|
return setPrecision(swizzle->getResultId(), precision);
|
|
}
|
|
|
|
// Comments in header
|
|
Id Builder::createLvalueSwizzle(Id typeId, Id target, Id source, const std::vector<unsigned>& channels)
|
|
{
|
|
if (channels.size() == 1 && getNumComponents(source) == 1)
|
|
return createCompositeInsert(source, target, typeId, channels.front());
|
|
|
|
Instruction* swizzle = new Instruction(getUniqueId(), typeId, OpVectorShuffle);
|
|
|
|
assert(isVector(target));
|
|
swizzle->addIdOperand(target);
|
|
|
|
assert(getNumComponents(source) == (int)channels.size());
|
|
assert(isVector(source));
|
|
swizzle->addIdOperand(source);
|
|
|
|
// Set up an identity shuffle from the base value to the result value
|
|
unsigned int components[4];
|
|
int numTargetComponents = getNumComponents(target);
|
|
for (int i = 0; i < numTargetComponents; ++i)
|
|
components[i] = i;
|
|
|
|
// Punch in the l-value swizzle
|
|
for (int i = 0; i < (int)channels.size(); ++i)
|
|
components[channels[i]] = numTargetComponents + i;
|
|
|
|
// finish the instruction with these components selectors
|
|
for (int i = 0; i < numTargetComponents; ++i)
|
|
swizzle->addImmediateOperand(components[i]);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(swizzle));
|
|
|
|
return swizzle->getResultId();
|
|
}
|
|
|
|
// Comments in header
|
|
void Builder::promoteScalar(Decoration precision, Id& left, Id& right)
|
|
{
|
|
int direction = getNumComponents(right) - getNumComponents(left);
|
|
|
|
if (direction > 0)
|
|
left = smearScalar(precision, left, makeVectorType(getTypeId(left), getNumComponents(right)));
|
|
else if (direction < 0)
|
|
right = smearScalar(precision, right, makeVectorType(getTypeId(right), getNumComponents(left)));
|
|
|
|
return;
|
|
}
|
|
|
|
// Comments in header
|
|
Id Builder::smearScalar(Decoration precision, Id scalar, Id vectorType)
|
|
{
|
|
assert(getNumComponents(scalar) == 1);
|
|
assert(getTypeId(scalar) == getScalarTypeId(vectorType));
|
|
|
|
int numComponents = getNumTypeComponents(vectorType);
|
|
if (numComponents == 1)
|
|
return scalar;
|
|
|
|
Instruction* smear = nullptr;
|
|
if (generatingOpCodeForSpecConst) {
|
|
auto members = std::vector<spv::Id>(numComponents, scalar);
|
|
// Sometime even in spec-constant-op mode, the temporary vector created by
|
|
// promoting a scalar might not be a spec constant. This should depend on
|
|
// the scalar.
|
|
// e.g.:
|
|
// const vec2 spec_const_result = a_spec_const_vec2 + a_front_end_const_scalar;
|
|
// In such cases, the temporary vector created from a_front_end_const_scalar
|
|
// is not a spec constant vector, even though the binary operation node is marked
|
|
// as 'specConstant' and we are in spec-constant-op mode.
|
|
auto result_id = makeCompositeConstant(vectorType, members, isSpecConstant(scalar));
|
|
smear = module.getInstruction(result_id);
|
|
} else {
|
|
smear = new Instruction(getUniqueId(), vectorType, OpCompositeConstruct);
|
|
for (int c = 0; c < numComponents; ++c)
|
|
smear->addIdOperand(scalar);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(smear));
|
|
}
|
|
|
|
return setPrecision(smear->getResultId(), precision);
|
|
}
|
|
|
|
// Comments in header
|
|
Id Builder::createBuiltinCall(Id resultType, Id builtins, int entryPoint, const std::vector<Id>& args)
|
|
{
|
|
Instruction* inst = new Instruction(getUniqueId(), resultType, OpExtInst);
|
|
inst->addIdOperand(builtins);
|
|
inst->addImmediateOperand(entryPoint);
|
|
for (int arg = 0; arg < (int)args.size(); ++arg)
|
|
inst->addIdOperand(args[arg]);
|
|
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(inst));
|
|
|
|
return inst->getResultId();
|
|
}
|
|
|
|
// Accept all parameters needed to create a texture instruction.
|
|
// Create the correct instruction based on the inputs, and make the call.
|
|
Id Builder::createTextureCall(Decoration precision, Id resultType, bool sparse, bool fetch, bool proj, bool gather,
|
|
bool noImplicitLod, const TextureParameters& parameters)
|
|
{
|
|
static const int maxTextureArgs = 10;
|
|
Id texArgs[maxTextureArgs] = {};
|
|
|
|
//
|
|
// Set up the fixed arguments
|
|
//
|
|
int numArgs = 0;
|
|
bool explicitLod = false;
|
|
texArgs[numArgs++] = parameters.sampler;
|
|
texArgs[numArgs++] = parameters.coords;
|
|
if (parameters.Dref != NoResult)
|
|
texArgs[numArgs++] = parameters.Dref;
|
|
if (parameters.component != NoResult)
|
|
texArgs[numArgs++] = parameters.component;
|
|
|
|
#ifdef NV_EXTENSIONS
|
|
if (parameters.granularity != NoResult)
|
|
texArgs[numArgs++] = parameters.granularity;
|
|
if (parameters.coarse != NoResult)
|
|
texArgs[numArgs++] = parameters.coarse;
|
|
#endif
|
|
|
|
//
|
|
// Set up the optional arguments
|
|
//
|
|
int optArgNum = numArgs; // track which operand, if it exists, is the mask of optional arguments
|
|
++numArgs; // speculatively make room for the mask operand
|
|
ImageOperandsMask mask = ImageOperandsMaskNone; // the mask operand
|
|
if (parameters.bias) {
|
|
mask = (ImageOperandsMask)(mask | ImageOperandsBiasMask);
|
|
texArgs[numArgs++] = parameters.bias;
|
|
}
|
|
if (parameters.lod) {
|
|
mask = (ImageOperandsMask)(mask | ImageOperandsLodMask);
|
|
texArgs[numArgs++] = parameters.lod;
|
|
explicitLod = true;
|
|
} else if (parameters.gradX) {
|
|
mask = (ImageOperandsMask)(mask | ImageOperandsGradMask);
|
|
texArgs[numArgs++] = parameters.gradX;
|
|
texArgs[numArgs++] = parameters.gradY;
|
|
explicitLod = true;
|
|
} else if (noImplicitLod && ! fetch && ! gather) {
|
|
// have to explicitly use lod of 0 if not allowed to have them be implicit, and
|
|
// we would otherwise be about to issue an implicit instruction
|
|
mask = (ImageOperandsMask)(mask | ImageOperandsLodMask);
|
|
texArgs[numArgs++] = makeFloatConstant(0.0);
|
|
explicitLod = true;
|
|
}
|
|
if (parameters.offset) {
|
|
if (isConstant(parameters.offset))
|
|
mask = (ImageOperandsMask)(mask | ImageOperandsConstOffsetMask);
|
|
else {
|
|
addCapability(CapabilityImageGatherExtended);
|
|
mask = (ImageOperandsMask)(mask | ImageOperandsOffsetMask);
|
|
}
|
|
texArgs[numArgs++] = parameters.offset;
|
|
}
|
|
if (parameters.offsets) {
|
|
addCapability(CapabilityImageGatherExtended);
|
|
mask = (ImageOperandsMask)(mask | ImageOperandsConstOffsetsMask);
|
|
texArgs[numArgs++] = parameters.offsets;
|
|
}
|
|
if (parameters.sample) {
|
|
mask = (ImageOperandsMask)(mask | ImageOperandsSampleMask);
|
|
texArgs[numArgs++] = parameters.sample;
|
|
}
|
|
if (parameters.lodClamp) {
|
|
// capability if this bit is used
|
|
addCapability(CapabilityMinLod);
|
|
|
|
mask = (ImageOperandsMask)(mask | ImageOperandsMinLodMask);
|
|
texArgs[numArgs++] = parameters.lodClamp;
|
|
}
|
|
if (parameters.nonprivate) {
|
|
mask = mask | ImageOperandsNonPrivateTexelKHRMask;
|
|
}
|
|
if (parameters.volatil) {
|
|
mask = mask | ImageOperandsVolatileTexelKHRMask;
|
|
}
|
|
if (mask == ImageOperandsMaskNone)
|
|
--numArgs; // undo speculative reservation for the mask argument
|
|
else
|
|
texArgs[optArgNum] = mask;
|
|
|
|
//
|
|
// Set up the instruction
|
|
//
|
|
Op opCode = OpNop; // All paths below need to set this
|
|
if (fetch) {
|
|
if (sparse)
|
|
opCode = OpImageSparseFetch;
|
|
else
|
|
opCode = OpImageFetch;
|
|
#ifdef NV_EXTENSIONS
|
|
} else if (parameters.granularity && parameters.coarse) {
|
|
opCode = OpImageSampleFootprintNV;
|
|
#endif
|
|
} else if (gather) {
|
|
if (parameters.Dref)
|
|
if (sparse)
|
|
opCode = OpImageSparseDrefGather;
|
|
else
|
|
opCode = OpImageDrefGather;
|
|
else
|
|
if (sparse)
|
|
opCode = OpImageSparseGather;
|
|
else
|
|
opCode = OpImageGather;
|
|
} else if (explicitLod) {
|
|
if (parameters.Dref) {
|
|
if (proj)
|
|
if (sparse)
|
|
opCode = OpImageSparseSampleProjDrefExplicitLod;
|
|
else
|
|
opCode = OpImageSampleProjDrefExplicitLod;
|
|
else
|
|
if (sparse)
|
|
opCode = OpImageSparseSampleDrefExplicitLod;
|
|
else
|
|
opCode = OpImageSampleDrefExplicitLod;
|
|
} else {
|
|
if (proj)
|
|
if (sparse)
|
|
opCode = OpImageSparseSampleProjExplicitLod;
|
|
else
|
|
opCode = OpImageSampleProjExplicitLod;
|
|
else
|
|
if (sparse)
|
|
opCode = OpImageSparseSampleExplicitLod;
|
|
else
|
|
opCode = OpImageSampleExplicitLod;
|
|
}
|
|
} else {
|
|
if (parameters.Dref) {
|
|
if (proj)
|
|
if (sparse)
|
|
opCode = OpImageSparseSampleProjDrefImplicitLod;
|
|
else
|
|
opCode = OpImageSampleProjDrefImplicitLod;
|
|
else
|
|
if (sparse)
|
|
opCode = OpImageSparseSampleDrefImplicitLod;
|
|
else
|
|
opCode = OpImageSampleDrefImplicitLod;
|
|
} else {
|
|
if (proj)
|
|
if (sparse)
|
|
opCode = OpImageSparseSampleProjImplicitLod;
|
|
else
|
|
opCode = OpImageSampleProjImplicitLod;
|
|
else
|
|
if (sparse)
|
|
opCode = OpImageSparseSampleImplicitLod;
|
|
else
|
|
opCode = OpImageSampleImplicitLod;
|
|
}
|
|
}
|
|
|
|
// See if the result type is expecting a smeared result.
|
|
// This happens when a legacy shadow*() call is made, which
|
|
// gets a vec4 back instead of a float.
|
|
Id smearedType = resultType;
|
|
if (! isScalarType(resultType)) {
|
|
switch (opCode) {
|
|
case OpImageSampleDrefImplicitLod:
|
|
case OpImageSampleDrefExplicitLod:
|
|
case OpImageSampleProjDrefImplicitLod:
|
|
case OpImageSampleProjDrefExplicitLod:
|
|
resultType = getScalarTypeId(resultType);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
Id typeId0 = 0;
|
|
Id typeId1 = 0;
|
|
|
|
if (sparse) {
|
|
typeId0 = resultType;
|
|
typeId1 = getDerefTypeId(parameters.texelOut);
|
|
resultType = makeStructResultType(typeId0, typeId1);
|
|
}
|
|
|
|
// Build the SPIR-V instruction
|
|
Instruction* textureInst = new Instruction(getUniqueId(), resultType, opCode);
|
|
for (int op = 0; op < optArgNum; ++op)
|
|
textureInst->addIdOperand(texArgs[op]);
|
|
if (optArgNum < numArgs)
|
|
textureInst->addImmediateOperand(texArgs[optArgNum]);
|
|
for (int op = optArgNum + 1; op < numArgs; ++op)
|
|
textureInst->addIdOperand(texArgs[op]);
|
|
setPrecision(textureInst->getResultId(), precision);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(textureInst));
|
|
|
|
Id resultId = textureInst->getResultId();
|
|
|
|
if (sparse) {
|
|
// set capability
|
|
addCapability(CapabilitySparseResidency);
|
|
|
|
// Decode the return type that was a special structure
|
|
createStore(createCompositeExtract(resultId, typeId1, 1), parameters.texelOut);
|
|
resultId = createCompositeExtract(resultId, typeId0, 0);
|
|
setPrecision(resultId, precision);
|
|
} else {
|
|
// When a smear is needed, do it, as per what was computed
|
|
// above when resultType was changed to a scalar type.
|
|
if (resultType != smearedType)
|
|
resultId = smearScalar(precision, resultId, smearedType);
|
|
}
|
|
|
|
return resultId;
|
|
}
|
|
|
|
// Comments in header
|
|
Id Builder::createTextureQueryCall(Op opCode, const TextureParameters& parameters, bool isUnsignedResult)
|
|
{
|
|
// Figure out the result type
|
|
Id resultType = 0;
|
|
switch (opCode) {
|
|
case OpImageQuerySize:
|
|
case OpImageQuerySizeLod:
|
|
{
|
|
int numComponents = 0;
|
|
switch (getTypeDimensionality(getImageType(parameters.sampler))) {
|
|
case Dim1D:
|
|
case DimBuffer:
|
|
numComponents = 1;
|
|
break;
|
|
case Dim2D:
|
|
case DimCube:
|
|
case DimRect:
|
|
case DimSubpassData:
|
|
numComponents = 2;
|
|
break;
|
|
case Dim3D:
|
|
numComponents = 3;
|
|
break;
|
|
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
if (isArrayedImageType(getImageType(parameters.sampler)))
|
|
++numComponents;
|
|
|
|
Id intType = isUnsignedResult ? makeUintType(32) : makeIntType(32);
|
|
if (numComponents == 1)
|
|
resultType = intType;
|
|
else
|
|
resultType = makeVectorType(intType, numComponents);
|
|
|
|
break;
|
|
}
|
|
case OpImageQueryLod:
|
|
#ifdef AMD_EXTENSIONS
|
|
resultType = makeVectorType(getScalarTypeId(getTypeId(parameters.coords)), 2);
|
|
#else
|
|
resultType = makeVectorType(makeFloatType(32), 2);
|
|
#endif
|
|
break;
|
|
case OpImageQueryLevels:
|
|
case OpImageQuerySamples:
|
|
resultType = isUnsignedResult ? makeUintType(32) : makeIntType(32);
|
|
break;
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
|
|
Instruction* query = new Instruction(getUniqueId(), resultType, opCode);
|
|
query->addIdOperand(parameters.sampler);
|
|
if (parameters.coords)
|
|
query->addIdOperand(parameters.coords);
|
|
if (parameters.lod)
|
|
query->addIdOperand(parameters.lod);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(query));
|
|
|
|
return query->getResultId();
|
|
}
|
|
|
|
// External comments in header.
|
|
// Operates recursively to visit the composite's hierarchy.
|
|
Id Builder::createCompositeCompare(Decoration precision, Id value1, Id value2, bool equal)
|
|
{
|
|
Id boolType = makeBoolType();
|
|
Id valueType = getTypeId(value1);
|
|
|
|
Id resultId = NoResult;
|
|
|
|
int numConstituents = getNumTypeConstituents(valueType);
|
|
|
|
// Scalars and Vectors
|
|
|
|
if (isScalarType(valueType) || isVectorType(valueType)) {
|
|
assert(valueType == getTypeId(value2));
|
|
// These just need a single comparison, just have
|
|
// to figure out what it is.
|
|
Op op;
|
|
switch (getMostBasicTypeClass(valueType)) {
|
|
case OpTypeFloat:
|
|
op = equal ? OpFOrdEqual : OpFOrdNotEqual;
|
|
break;
|
|
case OpTypeInt:
|
|
default:
|
|
op = equal ? OpIEqual : OpINotEqual;
|
|
break;
|
|
case OpTypeBool:
|
|
op = equal ? OpLogicalEqual : OpLogicalNotEqual;
|
|
precision = NoPrecision;
|
|
break;
|
|
}
|
|
|
|
if (isScalarType(valueType)) {
|
|
// scalar
|
|
resultId = createBinOp(op, boolType, value1, value2);
|
|
} else {
|
|
// vector
|
|
resultId = createBinOp(op, makeVectorType(boolType, numConstituents), value1, value2);
|
|
setPrecision(resultId, precision);
|
|
// reduce vector compares...
|
|
resultId = createUnaryOp(equal ? OpAll : OpAny, boolType, resultId);
|
|
}
|
|
|
|
return setPrecision(resultId, precision);
|
|
}
|
|
|
|
// Only structs, arrays, and matrices should be left.
|
|
// They share in common the reduction operation across their constituents.
|
|
assert(isAggregateType(valueType) || isMatrixType(valueType));
|
|
|
|
// Compare each pair of constituents
|
|
for (int constituent = 0; constituent < numConstituents; ++constituent) {
|
|
std::vector<unsigned> indexes(1, constituent);
|
|
Id constituentType1 = getContainedTypeId(getTypeId(value1), constituent);
|
|
Id constituentType2 = getContainedTypeId(getTypeId(value2), constituent);
|
|
Id constituent1 = createCompositeExtract(value1, constituentType1, indexes);
|
|
Id constituent2 = createCompositeExtract(value2, constituentType2, indexes);
|
|
|
|
Id subResultId = createCompositeCompare(precision, constituent1, constituent2, equal);
|
|
|
|
if (constituent == 0)
|
|
resultId = subResultId;
|
|
else
|
|
resultId = setPrecision(createBinOp(equal ? OpLogicalAnd : OpLogicalOr, boolType, resultId, subResultId), precision);
|
|
}
|
|
|
|
return resultId;
|
|
}
|
|
|
|
// OpCompositeConstruct
|
|
Id Builder::createCompositeConstruct(Id typeId, const std::vector<Id>& constituents)
|
|
{
|
|
assert(isAggregateType(typeId) || (getNumTypeConstituents(typeId) > 1 && getNumTypeConstituents(typeId) == (int)constituents.size()));
|
|
|
|
if (generatingOpCodeForSpecConst) {
|
|
// Sometime, even in spec-constant-op mode, the constant composite to be
|
|
// constructed may not be a specialization constant.
|
|
// e.g.:
|
|
// const mat2 m2 = mat2(a_spec_const, a_front_end_const, another_front_end_const, third_front_end_const);
|
|
// The first column vector should be a spec constant one, as a_spec_const is a spec constant.
|
|
// The second column vector should NOT be spec constant, as it does not contain any spec constants.
|
|
// To handle such cases, we check the constituents of the constant vector to determine whether this
|
|
// vector should be created as a spec constant.
|
|
return makeCompositeConstant(typeId, constituents,
|
|
std::any_of(constituents.begin(), constituents.end(),
|
|
[&](spv::Id id) { return isSpecConstant(id); }));
|
|
}
|
|
|
|
Instruction* op = new Instruction(getUniqueId(), typeId, OpCompositeConstruct);
|
|
for (int c = 0; c < (int)constituents.size(); ++c)
|
|
op->addIdOperand(constituents[c]);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(op));
|
|
|
|
return op->getResultId();
|
|
}
|
|
|
|
// Vector or scalar constructor
|
|
Id Builder::createConstructor(Decoration precision, const std::vector<Id>& sources, Id resultTypeId)
|
|
{
|
|
Id result = NoResult;
|
|
unsigned int numTargetComponents = getNumTypeComponents(resultTypeId);
|
|
unsigned int targetComponent = 0;
|
|
|
|
// Special case: when calling a vector constructor with a single scalar
|
|
// argument, smear the scalar
|
|
if (sources.size() == 1 && isScalar(sources[0]) && numTargetComponents > 1)
|
|
return smearScalar(precision, sources[0], resultTypeId);
|
|
|
|
// accumulate the arguments for OpCompositeConstruct
|
|
std::vector<Id> constituents;
|
|
Id scalarTypeId = getScalarTypeId(resultTypeId);
|
|
|
|
// lambda to store the result of visiting an argument component
|
|
const auto latchResult = [&](Id comp) {
|
|
if (numTargetComponents > 1)
|
|
constituents.push_back(comp);
|
|
else
|
|
result = comp;
|
|
++targetComponent;
|
|
};
|
|
|
|
// lambda to visit a vector argument's components
|
|
const auto accumulateVectorConstituents = [&](Id sourceArg) {
|
|
unsigned int sourceSize = getNumComponents(sourceArg);
|
|
unsigned int sourcesToUse = sourceSize;
|
|
if (sourcesToUse + targetComponent > numTargetComponents)
|
|
sourcesToUse = numTargetComponents - targetComponent;
|
|
|
|
for (unsigned int s = 0; s < sourcesToUse; ++s) {
|
|
std::vector<unsigned> swiz;
|
|
swiz.push_back(s);
|
|
latchResult(createRvalueSwizzle(precision, scalarTypeId, sourceArg, swiz));
|
|
}
|
|
};
|
|
|
|
// lambda to visit a matrix argument's components
|
|
const auto accumulateMatrixConstituents = [&](Id sourceArg) {
|
|
unsigned int sourceSize = getNumColumns(sourceArg) * getNumRows(sourceArg);
|
|
unsigned int sourcesToUse = sourceSize;
|
|
if (sourcesToUse + targetComponent > numTargetComponents)
|
|
sourcesToUse = numTargetComponents - targetComponent;
|
|
|
|
int col = 0;
|
|
int row = 0;
|
|
for (unsigned int s = 0; s < sourcesToUse; ++s) {
|
|
if (row >= getNumRows(sourceArg)) {
|
|
row = 0;
|
|
col++;
|
|
}
|
|
std::vector<Id> indexes;
|
|
indexes.push_back(col);
|
|
indexes.push_back(row);
|
|
latchResult(createCompositeExtract(sourceArg, scalarTypeId, indexes));
|
|
row++;
|
|
}
|
|
};
|
|
|
|
// Go through the source arguments, each one could have either
|
|
// a single or multiple components to contribute.
|
|
for (unsigned int i = 0; i < sources.size(); ++i) {
|
|
|
|
if (isScalar(sources[i]) || isPointer(sources[i]))
|
|
latchResult(sources[i]);
|
|
else if (isVector(sources[i]))
|
|
accumulateVectorConstituents(sources[i]);
|
|
else if (isMatrix(sources[i]))
|
|
accumulateMatrixConstituents(sources[i]);
|
|
else
|
|
assert(0);
|
|
|
|
if (targetComponent >= numTargetComponents)
|
|
break;
|
|
}
|
|
|
|
// If the result is a vector, make it from the gathered constituents.
|
|
if (constituents.size() > 0)
|
|
result = createCompositeConstruct(resultTypeId, constituents);
|
|
|
|
return setPrecision(result, precision);
|
|
}
|
|
|
|
// Comments in header
|
|
Id Builder::createMatrixConstructor(Decoration precision, const std::vector<Id>& sources, Id resultTypeId)
|
|
{
|
|
Id componentTypeId = getScalarTypeId(resultTypeId);
|
|
int numCols = getTypeNumColumns(resultTypeId);
|
|
int numRows = getTypeNumRows(resultTypeId);
|
|
|
|
Instruction* instr = module.getInstruction(componentTypeId);
|
|
unsigned bitCount = instr->getImmediateOperand(0);
|
|
|
|
// Optimize matrix constructed from a bigger matrix
|
|
if (isMatrix(sources[0]) && getNumColumns(sources[0]) >= numCols && getNumRows(sources[0]) >= numRows) {
|
|
// To truncate the matrix to a smaller number of rows/columns, we need to:
|
|
// 1. For each column, extract the column and truncate it to the required size using shuffle
|
|
// 2. Assemble the resulting matrix from all columns
|
|
Id matrix = sources[0];
|
|
Id columnTypeId = getContainedTypeId(resultTypeId);
|
|
Id sourceColumnTypeId = getContainedTypeId(getTypeId(matrix));
|
|
|
|
std::vector<unsigned> channels;
|
|
for (int row = 0; row < numRows; ++row)
|
|
channels.push_back(row);
|
|
|
|
std::vector<Id> matrixColumns;
|
|
for (int col = 0; col < numCols; ++col) {
|
|
std::vector<unsigned> indexes;
|
|
indexes.push_back(col);
|
|
Id colv = createCompositeExtract(matrix, sourceColumnTypeId, indexes);
|
|
setPrecision(colv, precision);
|
|
|
|
if (numRows != getNumRows(matrix)) {
|
|
matrixColumns.push_back(createRvalueSwizzle(precision, columnTypeId, colv, channels));
|
|
} else {
|
|
matrixColumns.push_back(colv);
|
|
}
|
|
}
|
|
|
|
return setPrecision(createCompositeConstruct(resultTypeId, matrixColumns), precision);
|
|
}
|
|
|
|
// Otherwise, will use a two step process
|
|
// 1. make a compile-time 2D array of values
|
|
// 2. construct a matrix from that array
|
|
|
|
// Step 1.
|
|
|
|
// initialize the array to the identity matrix
|
|
Id ids[maxMatrixSize][maxMatrixSize];
|
|
Id one = (bitCount == 64 ? makeDoubleConstant(1.0) : makeFloatConstant(1.0));
|
|
Id zero = (bitCount == 64 ? makeDoubleConstant(0.0) : makeFloatConstant(0.0));
|
|
for (int col = 0; col < 4; ++col) {
|
|
for (int row = 0; row < 4; ++row) {
|
|
if (col == row)
|
|
ids[col][row] = one;
|
|
else
|
|
ids[col][row] = zero;
|
|
}
|
|
}
|
|
|
|
// modify components as dictated by the arguments
|
|
if (sources.size() == 1 && isScalar(sources[0])) {
|
|
// a single scalar; resets the diagonals
|
|
for (int col = 0; col < 4; ++col)
|
|
ids[col][col] = sources[0];
|
|
} else if (isMatrix(sources[0])) {
|
|
// constructing from another matrix; copy over the parts that exist in both the argument and constructee
|
|
Id matrix = sources[0];
|
|
int minCols = std::min(numCols, getNumColumns(matrix));
|
|
int minRows = std::min(numRows, getNumRows(matrix));
|
|
for (int col = 0; col < minCols; ++col) {
|
|
std::vector<unsigned> indexes;
|
|
indexes.push_back(col);
|
|
for (int row = 0; row < minRows; ++row) {
|
|
indexes.push_back(row);
|
|
ids[col][row] = createCompositeExtract(matrix, componentTypeId, indexes);
|
|
indexes.pop_back();
|
|
setPrecision(ids[col][row], precision);
|
|
}
|
|
}
|
|
} else {
|
|
// fill in the matrix in column-major order with whatever argument components are available
|
|
int row = 0;
|
|
int col = 0;
|
|
|
|
for (int arg = 0; arg < (int)sources.size(); ++arg) {
|
|
Id argComp = sources[arg];
|
|
for (int comp = 0; comp < getNumComponents(sources[arg]); ++comp) {
|
|
if (getNumComponents(sources[arg]) > 1) {
|
|
argComp = createCompositeExtract(sources[arg], componentTypeId, comp);
|
|
setPrecision(argComp, precision);
|
|
}
|
|
ids[col][row++] = argComp;
|
|
if (row == numRows) {
|
|
row = 0;
|
|
col++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Step 2: Construct a matrix from that array.
|
|
// First make the column vectors, then make the matrix.
|
|
|
|
// make the column vectors
|
|
Id columnTypeId = getContainedTypeId(resultTypeId);
|
|
std::vector<Id> matrixColumns;
|
|
for (int col = 0; col < numCols; ++col) {
|
|
std::vector<Id> vectorComponents;
|
|
for (int row = 0; row < numRows; ++row)
|
|
vectorComponents.push_back(ids[col][row]);
|
|
Id column = createCompositeConstruct(columnTypeId, vectorComponents);
|
|
setPrecision(column, precision);
|
|
matrixColumns.push_back(column);
|
|
}
|
|
|
|
// make the matrix
|
|
return setPrecision(createCompositeConstruct(resultTypeId, matrixColumns), precision);
|
|
}
|
|
|
|
// Comments in header
|
|
Builder::If::If(Id cond, unsigned int ctrl, Builder& gb) :
|
|
builder(gb),
|
|
condition(cond),
|
|
control(ctrl),
|
|
elseBlock(0)
|
|
{
|
|
function = &builder.getBuildPoint()->getParent();
|
|
|
|
// make the blocks, but only put the then-block into the function,
|
|
// the else-block and merge-block will be added later, in order, after
|
|
// earlier code is emitted
|
|
thenBlock = new Block(builder.getUniqueId(), *function);
|
|
mergeBlock = new Block(builder.getUniqueId(), *function);
|
|
|
|
// Save the current block, so that we can add in the flow control split when
|
|
// makeEndIf is called.
|
|
headerBlock = builder.getBuildPoint();
|
|
|
|
function->addBlock(thenBlock);
|
|
builder.setBuildPoint(thenBlock);
|
|
}
|
|
|
|
// Comments in header
|
|
void Builder::If::makeBeginElse()
|
|
{
|
|
// Close out the "then" by having it jump to the mergeBlock
|
|
builder.createBranch(mergeBlock);
|
|
|
|
// Make the first else block and add it to the function
|
|
elseBlock = new Block(builder.getUniqueId(), *function);
|
|
function->addBlock(elseBlock);
|
|
|
|
// Start building the else block
|
|
builder.setBuildPoint(elseBlock);
|
|
}
|
|
|
|
// Comments in header
|
|
void Builder::If::makeEndIf()
|
|
{
|
|
// jump to the merge block
|
|
builder.createBranch(mergeBlock);
|
|
|
|
// Go back to the headerBlock and make the flow control split
|
|
builder.setBuildPoint(headerBlock);
|
|
builder.createSelectionMerge(mergeBlock, control);
|
|
if (elseBlock)
|
|
builder.createConditionalBranch(condition, thenBlock, elseBlock);
|
|
else
|
|
builder.createConditionalBranch(condition, thenBlock, mergeBlock);
|
|
|
|
// add the merge block to the function
|
|
function->addBlock(mergeBlock);
|
|
builder.setBuildPoint(mergeBlock);
|
|
}
|
|
|
|
// Comments in header
|
|
void Builder::makeSwitch(Id selector, unsigned int control, int numSegments, const std::vector<int>& caseValues,
|
|
const std::vector<int>& valueIndexToSegment, int defaultSegment,
|
|
std::vector<Block*>& segmentBlocks)
|
|
{
|
|
Function& function = buildPoint->getParent();
|
|
|
|
// make all the blocks
|
|
for (int s = 0; s < numSegments; ++s)
|
|
segmentBlocks.push_back(new Block(getUniqueId(), function));
|
|
|
|
Block* mergeBlock = new Block(getUniqueId(), function);
|
|
|
|
// make and insert the switch's selection-merge instruction
|
|
createSelectionMerge(mergeBlock, control);
|
|
|
|
// make the switch instruction
|
|
Instruction* switchInst = new Instruction(NoResult, NoType, OpSwitch);
|
|
switchInst->addIdOperand(selector);
|
|
auto defaultOrMerge = (defaultSegment >= 0) ? segmentBlocks[defaultSegment] : mergeBlock;
|
|
switchInst->addIdOperand(defaultOrMerge->getId());
|
|
defaultOrMerge->addPredecessor(buildPoint);
|
|
for (int i = 0; i < (int)caseValues.size(); ++i) {
|
|
switchInst->addImmediateOperand(caseValues[i]);
|
|
switchInst->addIdOperand(segmentBlocks[valueIndexToSegment[i]]->getId());
|
|
segmentBlocks[valueIndexToSegment[i]]->addPredecessor(buildPoint);
|
|
}
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(switchInst));
|
|
|
|
// push the merge block
|
|
switchMerges.push(mergeBlock);
|
|
}
|
|
|
|
// Comments in header
|
|
void Builder::addSwitchBreak()
|
|
{
|
|
// branch to the top of the merge block stack
|
|
createBranch(switchMerges.top());
|
|
createAndSetNoPredecessorBlock("post-switch-break");
|
|
}
|
|
|
|
// Comments in header
|
|
void Builder::nextSwitchSegment(std::vector<Block*>& segmentBlock, int nextSegment)
|
|
{
|
|
int lastSegment = nextSegment - 1;
|
|
if (lastSegment >= 0) {
|
|
// Close out previous segment by jumping, if necessary, to next segment
|
|
if (! buildPoint->isTerminated())
|
|
createBranch(segmentBlock[nextSegment]);
|
|
}
|
|
Block* block = segmentBlock[nextSegment];
|
|
block->getParent().addBlock(block);
|
|
setBuildPoint(block);
|
|
}
|
|
|
|
// Comments in header
|
|
void Builder::endSwitch(std::vector<Block*>& /*segmentBlock*/)
|
|
{
|
|
// Close out previous segment by jumping, if necessary, to next segment
|
|
if (! buildPoint->isTerminated())
|
|
addSwitchBreak();
|
|
|
|
switchMerges.top()->getParent().addBlock(switchMerges.top());
|
|
setBuildPoint(switchMerges.top());
|
|
|
|
switchMerges.pop();
|
|
}
|
|
|
|
Block& Builder::makeNewBlock()
|
|
{
|
|
Function& function = buildPoint->getParent();
|
|
auto block = new Block(getUniqueId(), function);
|
|
function.addBlock(block);
|
|
return *block;
|
|
}
|
|
|
|
Builder::LoopBlocks& Builder::makeNewLoop()
|
|
{
|
|
// This verbosity is needed to simultaneously get the same behavior
|
|
// everywhere (id's in the same order), have a syntax that works
|
|
// across lots of versions of C++, have no warnings from pedantic
|
|
// compilation modes, and leave the rest of the code alone.
|
|
Block& head = makeNewBlock();
|
|
Block& body = makeNewBlock();
|
|
Block& merge = makeNewBlock();
|
|
Block& continue_target = makeNewBlock();
|
|
LoopBlocks blocks(head, body, merge, continue_target);
|
|
loops.push(blocks);
|
|
return loops.top();
|
|
}
|
|
|
|
void Builder::createLoopContinue()
|
|
{
|
|
createBranch(&loops.top().continue_target);
|
|
// Set up a block for dead code.
|
|
createAndSetNoPredecessorBlock("post-loop-continue");
|
|
}
|
|
|
|
void Builder::createLoopExit()
|
|
{
|
|
createBranch(&loops.top().merge);
|
|
// Set up a block for dead code.
|
|
createAndSetNoPredecessorBlock("post-loop-break");
|
|
}
|
|
|
|
void Builder::closeLoop()
|
|
{
|
|
loops.pop();
|
|
}
|
|
|
|
void Builder::clearAccessChain()
|
|
{
|
|
accessChain.base = NoResult;
|
|
accessChain.indexChain.clear();
|
|
accessChain.instr = NoResult;
|
|
accessChain.swizzle.clear();
|
|
accessChain.component = NoResult;
|
|
accessChain.preSwizzleBaseType = NoType;
|
|
accessChain.isRValue = false;
|
|
accessChain.coherentFlags.clear();
|
|
accessChain.alignment = 0;
|
|
}
|
|
|
|
// Comments in header
|
|
void Builder::accessChainPushSwizzle(std::vector<unsigned>& swizzle, Id preSwizzleBaseType, AccessChain::CoherentFlags coherentFlags, unsigned int alignment)
|
|
{
|
|
accessChain.coherentFlags |= coherentFlags;
|
|
accessChain.alignment |= alignment;
|
|
|
|
// swizzles can be stacked in GLSL, but simplified to a single
|
|
// one here; the base type doesn't change
|
|
if (accessChain.preSwizzleBaseType == NoType)
|
|
accessChain.preSwizzleBaseType = preSwizzleBaseType;
|
|
|
|
// if needed, propagate the swizzle for the current access chain
|
|
if (accessChain.swizzle.size() > 0) {
|
|
std::vector<unsigned> oldSwizzle = accessChain.swizzle;
|
|
accessChain.swizzle.resize(0);
|
|
for (unsigned int i = 0; i < swizzle.size(); ++i) {
|
|
assert(swizzle[i] < oldSwizzle.size());
|
|
accessChain.swizzle.push_back(oldSwizzle[swizzle[i]]);
|
|
}
|
|
} else
|
|
accessChain.swizzle = swizzle;
|
|
|
|
// determine if we need to track this swizzle anymore
|
|
simplifyAccessChainSwizzle();
|
|
}
|
|
|
|
// Comments in header
|
|
void Builder::accessChainStore(Id rvalue, spv::MemoryAccessMask memoryAccess, spv::Scope scope, unsigned int alignment)
|
|
{
|
|
assert(accessChain.isRValue == false);
|
|
|
|
transferAccessChainSwizzle(true);
|
|
Id base = collapseAccessChain();
|
|
Id source = rvalue;
|
|
|
|
// dynamic component should be gone
|
|
assert(accessChain.component == NoResult);
|
|
|
|
// If swizzle still exists, it is out-of-order or not full, we must load the target vector,
|
|
// extract and insert elements to perform writeMask and/or swizzle.
|
|
if (accessChain.swizzle.size() > 0) {
|
|
Id tempBaseId = createLoad(base);
|
|
source = createLvalueSwizzle(getTypeId(tempBaseId), tempBaseId, source, accessChain.swizzle);
|
|
}
|
|
|
|
// take LSB of alignment
|
|
alignment = alignment & ~(alignment & (alignment-1));
|
|
if (getStorageClass(base) == StorageClassPhysicalStorageBufferEXT) {
|
|
memoryAccess = (spv::MemoryAccessMask)(memoryAccess | spv::MemoryAccessAlignedMask);
|
|
}
|
|
|
|
createStore(source, base, memoryAccess, scope, alignment);
|
|
}
|
|
|
|
// Comments in header
|
|
Id Builder::accessChainLoad(Decoration precision, Decoration nonUniform, Id resultType, spv::MemoryAccessMask memoryAccess, spv::Scope scope, unsigned int alignment)
|
|
{
|
|
Id id;
|
|
|
|
if (accessChain.isRValue) {
|
|
// transfer access chain, but try to stay in registers
|
|
transferAccessChainSwizzle(false);
|
|
if (accessChain.indexChain.size() > 0) {
|
|
Id swizzleBase = accessChain.preSwizzleBaseType != NoType ? accessChain.preSwizzleBaseType : resultType;
|
|
|
|
// if all the accesses are constants, we can use OpCompositeExtract
|
|
std::vector<unsigned> indexes;
|
|
bool constant = true;
|
|
for (int i = 0; i < (int)accessChain.indexChain.size(); ++i) {
|
|
if (isConstantScalar(accessChain.indexChain[i]))
|
|
indexes.push_back(getConstantScalar(accessChain.indexChain[i]));
|
|
else {
|
|
constant = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (constant)
|
|
id = createCompositeExtract(accessChain.base, swizzleBase, indexes);
|
|
else {
|
|
// make a new function variable for this r-value
|
|
Id lValue = createVariable(StorageClassFunction, getTypeId(accessChain.base), "indexable");
|
|
|
|
// store into it
|
|
createStore(accessChain.base, lValue);
|
|
|
|
// move base to the new variable
|
|
accessChain.base = lValue;
|
|
accessChain.isRValue = false;
|
|
|
|
// load through the access chain
|
|
id = createLoad(collapseAccessChain());
|
|
}
|
|
setPrecision(id, precision);
|
|
} else
|
|
id = accessChain.base; // no precision, it was set when this was defined
|
|
} else {
|
|
transferAccessChainSwizzle(true);
|
|
|
|
// take LSB of alignment
|
|
alignment = alignment & ~(alignment & (alignment-1));
|
|
if (getStorageClass(accessChain.base) == StorageClassPhysicalStorageBufferEXT) {
|
|
memoryAccess = (spv::MemoryAccessMask)(memoryAccess | spv::MemoryAccessAlignedMask);
|
|
}
|
|
|
|
// load through the access chain
|
|
id = createLoad(collapseAccessChain(), memoryAccess, scope, alignment);
|
|
setPrecision(id, precision);
|
|
addDecoration(id, nonUniform);
|
|
}
|
|
|
|
// Done, unless there are swizzles to do
|
|
if (accessChain.swizzle.size() == 0 && accessChain.component == NoResult)
|
|
return id;
|
|
|
|
// Do remaining swizzling
|
|
|
|
// Do the basic swizzle
|
|
if (accessChain.swizzle.size() > 0) {
|
|
Id swizzledType = getScalarTypeId(getTypeId(id));
|
|
if (accessChain.swizzle.size() > 1)
|
|
swizzledType = makeVectorType(swizzledType, (int)accessChain.swizzle.size());
|
|
id = createRvalueSwizzle(precision, swizzledType, id, accessChain.swizzle);
|
|
}
|
|
|
|
// Do the dynamic component
|
|
if (accessChain.component != NoResult)
|
|
id = setPrecision(createVectorExtractDynamic(id, resultType, accessChain.component), precision);
|
|
|
|
addDecoration(id, nonUniform);
|
|
return id;
|
|
}
|
|
|
|
Id Builder::accessChainGetLValue()
|
|
{
|
|
assert(accessChain.isRValue == false);
|
|
|
|
transferAccessChainSwizzle(true);
|
|
Id lvalue = collapseAccessChain();
|
|
|
|
// If swizzle exists, it is out-of-order or not full, we must load the target vector,
|
|
// extract and insert elements to perform writeMask and/or swizzle. This does not
|
|
// go with getting a direct l-value pointer.
|
|
assert(accessChain.swizzle.size() == 0);
|
|
assert(accessChain.component == NoResult);
|
|
|
|
return lvalue;
|
|
}
|
|
|
|
// comment in header
|
|
Id Builder::accessChainGetInferredType()
|
|
{
|
|
// anything to operate on?
|
|
if (accessChain.base == NoResult)
|
|
return NoType;
|
|
Id type = getTypeId(accessChain.base);
|
|
|
|
// do initial dereference
|
|
if (! accessChain.isRValue)
|
|
type = getContainedTypeId(type);
|
|
|
|
// dereference each index
|
|
for (auto it = accessChain.indexChain.cbegin(); it != accessChain.indexChain.cend(); ++it) {
|
|
if (isStructType(type))
|
|
type = getContainedTypeId(type, getConstantScalar(*it));
|
|
else
|
|
type = getContainedTypeId(type);
|
|
}
|
|
|
|
// dereference swizzle
|
|
if (accessChain.swizzle.size() == 1)
|
|
type = getContainedTypeId(type);
|
|
else if (accessChain.swizzle.size() > 1)
|
|
type = makeVectorType(getContainedTypeId(type), (int)accessChain.swizzle.size());
|
|
|
|
// dereference component selection
|
|
if (accessChain.component)
|
|
type = getContainedTypeId(type);
|
|
|
|
return type;
|
|
}
|
|
|
|
void Builder::dump(std::vector<unsigned int>& out) const
|
|
{
|
|
// Header, before first instructions:
|
|
out.push_back(MagicNumber);
|
|
out.push_back(spvVersion);
|
|
out.push_back(builderNumber);
|
|
out.push_back(uniqueId + 1);
|
|
out.push_back(0);
|
|
|
|
// Capabilities
|
|
for (auto it = capabilities.cbegin(); it != capabilities.cend(); ++it) {
|
|
Instruction capInst(0, 0, OpCapability);
|
|
capInst.addImmediateOperand(*it);
|
|
capInst.dump(out);
|
|
}
|
|
|
|
for (auto it = extensions.cbegin(); it != extensions.cend(); ++it) {
|
|
Instruction extInst(0, 0, OpExtension);
|
|
extInst.addStringOperand(it->c_str());
|
|
extInst.dump(out);
|
|
}
|
|
|
|
dumpInstructions(out, imports);
|
|
Instruction memInst(0, 0, OpMemoryModel);
|
|
memInst.addImmediateOperand(addressModel);
|
|
memInst.addImmediateOperand(memoryModel);
|
|
memInst.dump(out);
|
|
|
|
// Instructions saved up while building:
|
|
dumpInstructions(out, entryPoints);
|
|
dumpInstructions(out, executionModes);
|
|
|
|
// Debug instructions
|
|
dumpInstructions(out, strings);
|
|
dumpSourceInstructions(out);
|
|
for (int e = 0; e < (int)sourceExtensions.size(); ++e) {
|
|
Instruction sourceExtInst(0, 0, OpSourceExtension);
|
|
sourceExtInst.addStringOperand(sourceExtensions[e]);
|
|
sourceExtInst.dump(out);
|
|
}
|
|
dumpInstructions(out, names);
|
|
dumpModuleProcesses(out);
|
|
|
|
// Annotation instructions
|
|
dumpInstructions(out, decorations);
|
|
|
|
dumpInstructions(out, constantsTypesGlobals);
|
|
dumpInstructions(out, externals);
|
|
|
|
// The functions
|
|
module.dump(out);
|
|
}
|
|
|
|
//
|
|
// Protected methods.
|
|
//
|
|
|
|
// Turn the described access chain in 'accessChain' into an instruction(s)
|
|
// computing its address. This *cannot* include complex swizzles, which must
|
|
// be handled after this is called.
|
|
//
|
|
// Can generate code.
|
|
Id Builder::collapseAccessChain()
|
|
{
|
|
assert(accessChain.isRValue == false);
|
|
|
|
// did we already emit an access chain for this?
|
|
if (accessChain.instr != NoResult)
|
|
return accessChain.instr;
|
|
|
|
// If we have a dynamic component, we can still transfer
|
|
// that into a final operand to the access chain. We need to remap the
|
|
// dynamic component through the swizzle to get a new dynamic component to
|
|
// update.
|
|
//
|
|
// This was not done in transferAccessChainSwizzle() because it might
|
|
// generate code.
|
|
remapDynamicSwizzle();
|
|
if (accessChain.component != NoResult) {
|
|
// transfer the dynamic component to the access chain
|
|
accessChain.indexChain.push_back(accessChain.component);
|
|
accessChain.component = NoResult;
|
|
}
|
|
|
|
// note that non-trivial swizzling is left pending
|
|
|
|
// do we have an access chain?
|
|
if (accessChain.indexChain.size() == 0)
|
|
return accessChain.base;
|
|
|
|
// emit the access chain
|
|
StorageClass storageClass = (StorageClass)module.getStorageClass(getTypeId(accessChain.base));
|
|
accessChain.instr = createAccessChain(storageClass, accessChain.base, accessChain.indexChain);
|
|
|
|
return accessChain.instr;
|
|
}
|
|
|
|
// For a dynamic component selection of a swizzle.
|
|
//
|
|
// Turn the swizzle and dynamic component into just a dynamic component.
|
|
//
|
|
// Generates code.
|
|
void Builder::remapDynamicSwizzle()
|
|
{
|
|
// do we have a swizzle to remap a dynamic component through?
|
|
if (accessChain.component != NoResult && accessChain.swizzle.size() > 1) {
|
|
// build a vector of the swizzle for the component to map into
|
|
std::vector<Id> components;
|
|
for (int c = 0; c < (int)accessChain.swizzle.size(); ++c)
|
|
components.push_back(makeUintConstant(accessChain.swizzle[c]));
|
|
Id mapType = makeVectorType(makeUintType(32), (int)accessChain.swizzle.size());
|
|
Id map = makeCompositeConstant(mapType, components);
|
|
|
|
// use it
|
|
accessChain.component = createVectorExtractDynamic(map, makeUintType(32), accessChain.component);
|
|
accessChain.swizzle.clear();
|
|
}
|
|
}
|
|
|
|
// clear out swizzle if it is redundant, that is reselecting the same components
|
|
// that would be present without the swizzle.
|
|
void Builder::simplifyAccessChainSwizzle()
|
|
{
|
|
// If the swizzle has fewer components than the vector, it is subsetting, and must stay
|
|
// to preserve that fact.
|
|
if (getNumTypeComponents(accessChain.preSwizzleBaseType) > (int)accessChain.swizzle.size())
|
|
return;
|
|
|
|
// if components are out of order, it is a swizzle
|
|
for (unsigned int i = 0; i < accessChain.swizzle.size(); ++i) {
|
|
if (i != accessChain.swizzle[i])
|
|
return;
|
|
}
|
|
|
|
// otherwise, there is no need to track this swizzle
|
|
accessChain.swizzle.clear();
|
|
if (accessChain.component == NoResult)
|
|
accessChain.preSwizzleBaseType = NoType;
|
|
}
|
|
|
|
// To the extent any swizzling can become part of the chain
|
|
// of accesses instead of a post operation, make it so.
|
|
// If 'dynamic' is true, include transferring the dynamic component,
|
|
// otherwise, leave it pending.
|
|
//
|
|
// Does not generate code. just updates the access chain.
|
|
void Builder::transferAccessChainSwizzle(bool dynamic)
|
|
{
|
|
// non existent?
|
|
if (accessChain.swizzle.size() == 0 && accessChain.component == NoResult)
|
|
return;
|
|
|
|
// too complex?
|
|
// (this requires either a swizzle, or generating code for a dynamic component)
|
|
if (accessChain.swizzle.size() > 1)
|
|
return;
|
|
|
|
// single component, either in the swizzle and/or dynamic component
|
|
if (accessChain.swizzle.size() == 1) {
|
|
assert(accessChain.component == NoResult);
|
|
// handle static component selection
|
|
accessChain.indexChain.push_back(makeUintConstant(accessChain.swizzle.front()));
|
|
accessChain.swizzle.clear();
|
|
accessChain.preSwizzleBaseType = NoType;
|
|
} else if (dynamic && accessChain.component != NoResult) {
|
|
assert(accessChain.swizzle.size() == 0);
|
|
// handle dynamic component
|
|
accessChain.indexChain.push_back(accessChain.component);
|
|
accessChain.preSwizzleBaseType = NoType;
|
|
accessChain.component = NoResult;
|
|
}
|
|
}
|
|
|
|
// Utility method for creating a new block and setting the insert point to
|
|
// be in it. This is useful for flow-control operations that need a "dummy"
|
|
// block proceeding them (e.g. instructions after a discard, etc).
|
|
void Builder::createAndSetNoPredecessorBlock(const char* /*name*/)
|
|
{
|
|
Block* block = new Block(getUniqueId(), buildPoint->getParent());
|
|
block->setUnreachable();
|
|
buildPoint->getParent().addBlock(block);
|
|
setBuildPoint(block);
|
|
|
|
// if (name)
|
|
// addName(block->getId(), name);
|
|
}
|
|
|
|
// Comments in header
|
|
void Builder::createBranch(Block* block)
|
|
{
|
|
Instruction* branch = new Instruction(OpBranch);
|
|
branch->addIdOperand(block->getId());
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(branch));
|
|
block->addPredecessor(buildPoint);
|
|
}
|
|
|
|
void Builder::createSelectionMerge(Block* mergeBlock, unsigned int control)
|
|
{
|
|
Instruction* merge = new Instruction(OpSelectionMerge);
|
|
merge->addIdOperand(mergeBlock->getId());
|
|
merge->addImmediateOperand(control);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(merge));
|
|
}
|
|
|
|
void Builder::createLoopMerge(Block* mergeBlock, Block* continueBlock, unsigned int control,
|
|
unsigned int dependencyLength)
|
|
{
|
|
Instruction* merge = new Instruction(OpLoopMerge);
|
|
merge->addIdOperand(mergeBlock->getId());
|
|
merge->addIdOperand(continueBlock->getId());
|
|
merge->addImmediateOperand(control);
|
|
if ((control & LoopControlDependencyLengthMask) != 0)
|
|
merge->addImmediateOperand(dependencyLength);
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(merge));
|
|
}
|
|
|
|
void Builder::createConditionalBranch(Id condition, Block* thenBlock, Block* elseBlock)
|
|
{
|
|
Instruction* branch = new Instruction(OpBranchConditional);
|
|
branch->addIdOperand(condition);
|
|
branch->addIdOperand(thenBlock->getId());
|
|
branch->addIdOperand(elseBlock->getId());
|
|
buildPoint->addInstruction(std::unique_ptr<Instruction>(branch));
|
|
thenBlock->addPredecessor(buildPoint);
|
|
elseBlock->addPredecessor(buildPoint);
|
|
}
|
|
|
|
// OpSource
|
|
// [OpSourceContinued]
|
|
// ...
|
|
void Builder::dumpSourceInstructions(const spv::Id fileId, const std::string& text,
|
|
std::vector<unsigned int>& out) const
|
|
{
|
|
const int maxWordCount = 0xFFFF;
|
|
const int opSourceWordCount = 4;
|
|
const int nonNullBytesPerInstruction = 4 * (maxWordCount - opSourceWordCount) - 1;
|
|
|
|
if (source != SourceLanguageUnknown) {
|
|
// OpSource Language Version File Source
|
|
Instruction sourceInst(NoResult, NoType, OpSource);
|
|
sourceInst.addImmediateOperand(source);
|
|
sourceInst.addImmediateOperand(sourceVersion);
|
|
// File operand
|
|
if (fileId != NoResult) {
|
|
sourceInst.addIdOperand(fileId);
|
|
// Source operand
|
|
if (text.size() > 0) {
|
|
int nextByte = 0;
|
|
std::string subString;
|
|
while ((int)text.size() - nextByte > 0) {
|
|
subString = text.substr(nextByte, nonNullBytesPerInstruction);
|
|
if (nextByte == 0) {
|
|
// OpSource
|
|
sourceInst.addStringOperand(subString.c_str());
|
|
sourceInst.dump(out);
|
|
} else {
|
|
// OpSourcContinued
|
|
Instruction sourceContinuedInst(OpSourceContinued);
|
|
sourceContinuedInst.addStringOperand(subString.c_str());
|
|
sourceContinuedInst.dump(out);
|
|
}
|
|
nextByte += nonNullBytesPerInstruction;
|
|
}
|
|
} else
|
|
sourceInst.dump(out);
|
|
} else
|
|
sourceInst.dump(out);
|
|
}
|
|
}
|
|
|
|
// Dump an OpSource[Continued] sequence for the source and every include file
|
|
void Builder::dumpSourceInstructions(std::vector<unsigned int>& out) const
|
|
{
|
|
dumpSourceInstructions(sourceFileStringId, sourceText, out);
|
|
for (auto iItr = includeFiles.begin(); iItr != includeFiles.end(); ++iItr)
|
|
dumpSourceInstructions(iItr->first, *iItr->second, out);
|
|
}
|
|
|
|
void Builder::dumpInstructions(std::vector<unsigned int>& out, const std::vector<std::unique_ptr<Instruction> >& instructions) const
|
|
{
|
|
for (int i = 0; i < (int)instructions.size(); ++i) {
|
|
instructions[i]->dump(out);
|
|
}
|
|
}
|
|
|
|
void Builder::dumpModuleProcesses(std::vector<unsigned int>& out) const
|
|
{
|
|
for (int i = 0; i < (int)moduleProcesses.size(); ++i) {
|
|
Instruction moduleProcessed(OpModuleProcessed);
|
|
moduleProcessed.addStringOperand(moduleProcesses[i]);
|
|
moduleProcessed.dump(out);
|
|
}
|
|
}
|
|
|
|
}; // end spv namespace
|