mirror of
https://github.com/ZDoom/gzdoom.git
synced 2024-11-26 22:11:43 +00:00
3108 lines
88 KiB
C++
3108 lines
88 KiB
C++
// Game_Music_Emu https://bitbucket.org/mpyne/game-music-emu/
|
|
|
|
// Based on Mame YM2612 ym2612.c
|
|
|
|
#include "Ym2612_MAME.h"
|
|
|
|
/*
|
|
**
|
|
** File: fm2612.c -- software implementation of Yamaha YM2612 FM sound generator
|
|
** Split from fm.c to keep 2612 fixes from infecting other OPN chips
|
|
**
|
|
** Copyright Jarek Burczynski (bujar at mame dot net)
|
|
** Copyright Tatsuyuki Satoh , MultiArcadeMachineEmulator development
|
|
**
|
|
** Version 1.5.1 (Genesis Plus GX ym2612.c rev. 368)
|
|
**
|
|
*/
|
|
|
|
/*
|
|
** History:
|
|
**
|
|
** 2006~2012 Eke-Eke (Genesis Plus GX):
|
|
** Huge thanks to Nemesis, lot of those fixes came from his tests on Sega Genesis hardware
|
|
** More informations at http://gendev.spritesmind.net/forum/viewtopic.php?t=386
|
|
**
|
|
** TODO:
|
|
**
|
|
** - core documentation
|
|
** - BUSY flag support
|
|
**
|
|
** CHANGELOG:
|
|
**
|
|
** 26-09-2017 Eke-Eke (Genesis Plus GX):
|
|
** - fixed EG counter loopback behavior (verified on YM3438 die)
|
|
** - reverted changes to EG rates 2-7 increment values
|
|
**
|
|
** xx-xx-xxxx
|
|
** - fixed LFO implementation:
|
|
** .added support for CH3 special mode: fixes various sound effects (birds in Warlock, bug sound in Aladdin...)
|
|
** .inverted LFO AM waveform: fixes Spider-Man & Venom : Separation Anxiety (intro), California Games (surfing event)
|
|
** .improved LFO timing accuracy: now updated AFTER sample output, like EG/PG updates, and without any precision loss anymore.
|
|
** - improved internal timers emulation
|
|
** - adjusted lowest EG rates increment values
|
|
** - fixed Attack Rate not being updated in some specific cases (Batman & Robin intro)
|
|
** - fixed EG behavior when Attack Rate is maximal
|
|
** - fixed EG behavior when SL=0 (Mega Turrican tracks 03,09...) or/and Key ON occurs at minimal attenuation
|
|
** - implemented EG output immediate changes on register writes
|
|
** - fixed YM2612 initial values (after the reset): fixes missing intro in B.O.B
|
|
** - implemented Detune overflow (Ariel, Comix Zone, Shaq Fu, Spiderman & many other games using GEMS sound engine)
|
|
** - implemented accurate CSM mode emulation
|
|
** - implemented accurate SSG-EG emulation (Asterix, Beavis&Butthead, Bubba'n Stix & many other games)
|
|
** - implemented accurate address/data ports behavior
|
|
**
|
|
** 06-23-2007 Zsolt Vasvari:
|
|
** - changed the timing not to require the use of floating point calculations
|
|
**
|
|
** 03-08-2003 Jarek Burczynski:
|
|
** - fixed YM2608 initial values (after the reset)
|
|
** - fixed flag and irqmask handling (YM2608)
|
|
** - fixed BUFRDY flag handling (YM2608)
|
|
**
|
|
** 14-06-2003 Jarek Burczynski:
|
|
** - implemented all of the YM2608 status register flags
|
|
** - implemented support for external memory read/write via YM2608
|
|
** - implemented support for deltat memory limit register in YM2608 emulation
|
|
**
|
|
** 22-05-2003 Jarek Burczynski:
|
|
** - fixed LFO PM calculations (copy&paste bugfix)
|
|
**
|
|
** 08-05-2003 Jarek Burczynski:
|
|
** - fixed SSG support
|
|
**
|
|
** 22-04-2003 Jarek Burczynski:
|
|
** - implemented 100% correct LFO generator (verified on real YM2610 and YM2608)
|
|
**
|
|
** 15-04-2003 Jarek Burczynski:
|
|
** - added support for YM2608's register 0x110 - status mask
|
|
**
|
|
** 01-12-2002 Jarek Burczynski:
|
|
** - fixed register addressing in YM2608, YM2610, YM2610B chips. (verified on real YM2608)
|
|
** The addressing patch used for early Neo-Geo games can be removed now.
|
|
**
|
|
** 26-11-2002 Jarek Burczynski, Nicola Salmoria:
|
|
** - recreated YM2608 ADPCM ROM using data from real YM2608's output which leads to:
|
|
** - added emulation of YM2608 drums.
|
|
** - output of YM2608 is two times lower now - same as YM2610 (verified on real YM2608)
|
|
**
|
|
** 16-08-2002 Jarek Burczynski:
|
|
** - binary exact Envelope Generator (verified on real YM2203);
|
|
** identical to YM2151
|
|
** - corrected 'off by one' error in feedback calculations (when feedback is off)
|
|
** - corrected connection (algorithm) calculation (verified on real YM2203 and YM2610)
|
|
**
|
|
** 18-12-2001 Jarek Burczynski:
|
|
** - added SSG-EG support (verified on real YM2203)
|
|
**
|
|
** 12-08-2001 Jarek Burczynski:
|
|
** - corrected sin_tab and tl_tab data (verified on real chip)
|
|
** - corrected feedback calculations (verified on real chip)
|
|
** - corrected phase generator calculations (verified on real chip)
|
|
** - corrected envelope generator calculations (verified on real chip)
|
|
** - corrected FM volume level (YM2610 and YM2610B).
|
|
** - changed YMxxxUpdateOne() functions (YM2203, YM2608, YM2610, YM2610B, YM2612) :
|
|
** this was needed to calculate YM2610 FM channels output correctly.
|
|
** (Each FM channel is calculated as in other chips, but the output of the channel
|
|
** gets shifted right by one *before* sending to accumulator. That was impossible to do
|
|
** with previous implementation).
|
|
**
|
|
** 23-07-2001 Jarek Burczynski, Nicola Salmoria:
|
|
** - corrected YM2610 ADPCM type A algorithm and tables (verified on real chip)
|
|
**
|
|
** 11-06-2001 Jarek Burczynski:
|
|
** - corrected end of sample bug in ADPCMA_calc_cha().
|
|
** Real YM2610 checks for equality between current and end addresses (only 20 LSB bits).
|
|
**
|
|
** 08-12-98 hiro-shi:
|
|
** rename ADPCMA -> ADPCMB, ADPCMB -> ADPCMA
|
|
** move ROM limit check.(CALC_CH? -> 2610Write1/2)
|
|
** test program (ADPCMB_TEST)
|
|
** move ADPCM A/B end check.
|
|
** ADPCMB repeat flag(no check)
|
|
** change ADPCM volume rate (8->16) (32->48).
|
|
**
|
|
** 09-12-98 hiro-shi:
|
|
** change ADPCM volume. (8->16, 48->64)
|
|
** replace ym2610 ch0/3 (YM-2610B)
|
|
** change ADPCM_SHIFT (10->8) missing bank change 0x4000-0xffff.
|
|
** add ADPCM_SHIFT_MASK
|
|
** change ADPCMA_DECODE_MIN/MAX.
|
|
*/
|
|
|
|
/************************************************************************/
|
|
/* comment of hiro-shi(Hiromitsu Shioya) */
|
|
/* YM2610(B) = OPN-B */
|
|
/* YM2610 : PSG:3ch FM:4ch ADPCM(18.5KHz):6ch DeltaT ADPCM:1ch */
|
|
/* YM2610B : PSG:3ch FM:6ch ADPCM(18.5KHz):6ch DeltaT ADPCM:1ch */
|
|
/************************************************************************/
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h> /* for memset */
|
|
#include <stddef.h> /* for NULL */
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
|
|
namespace Ym2612_MameImpl
|
|
{
|
|
|
|
/* ---- mamedef - begin ---- */
|
|
/* typedefs to use MAME's (U)INTxx types (copied from MAME\src\ods\odscomm.h) */
|
|
/* 8-bit values */
|
|
typedef unsigned char UINT8;
|
|
typedef signed char INT8;
|
|
|
|
/* 16-bit values */
|
|
typedef unsigned short UINT16;
|
|
typedef signed short INT16;
|
|
|
|
/* 32-bit values */
|
|
#ifndef _WINDOWS_H
|
|
typedef unsigned int UINT32;
|
|
typedef signed int INT32;
|
|
#endif
|
|
|
|
/* 64-bit values */
|
|
#ifndef _WINDOWS_H
|
|
#ifdef _MSC_VER
|
|
typedef signed __int64 INT64;
|
|
typedef unsigned __int64 UINT64;
|
|
#else
|
|
__extension__ typedef unsigned long long UINT64;
|
|
__extension__ typedef signed long long INT64;
|
|
#endif
|
|
#endif
|
|
|
|
/* offsets and addresses are 32-bit (for now...) */
|
|
typedef UINT32 offs_t;
|
|
|
|
/* stream_sample_t is used to represent a single sample in a sound stream */
|
|
typedef INT16 stream_sample_t;
|
|
|
|
#if defined(VGM_BIG_ENDIAN)
|
|
#define BYTE_XOR_BE(x) (x)
|
|
#elif defined(VGM_LITTLE_ENDIAN)
|
|
#define BYTE_XOR_BE(x) ((x) ^ 0x01)
|
|
#else
|
|
/* don't define BYTE_XOR_BE so that it throws an error when compiling */
|
|
#endif
|
|
|
|
#if defined(_MSC_VER)
|
|
//#define INLINE static __forceinline
|
|
#define INLINE static __inline
|
|
#elif defined(__GNUC__)
|
|
#define INLINE static __inline__
|
|
#else
|
|
#define INLINE static inline
|
|
#endif
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
|
|
#ifdef _DEBUG
|
|
#define logerror printf
|
|
#else
|
|
#define logerror
|
|
#endif
|
|
|
|
typedef void (*SRATE_CALLBACK)(void*, UINT32);
|
|
/* ---- mamedef - end ---- */
|
|
|
|
/* --- select emulation chips --- */
|
|
/*
|
|
#define BUILD_YM2203 (HAS_YM2203) // build YM2203(OPN) emulator
|
|
#define BUILD_YM2608 (HAS_YM2608) // build YM2608(OPNA) emulator
|
|
#define BUILD_YM2610 (HAS_YM2610) // build YM2610(OPNB) emulator
|
|
#define BUILD_YM2610B (HAS_YM2610B) // build YM2610B(OPNB?)emulator
|
|
#define BUILD_YM2612 (HAS_YM2612) // build YM2612(OPN2) emulator
|
|
#define BUILD_YM3438 (HAS_YM3438) // build YM3438(OPN) emulator
|
|
*/
|
|
#define BUILD_YM2203 0
|
|
#define BUILD_YM2608 0
|
|
#define BUILD_YM2610 0
|
|
#define BUILD_YM2610B 0
|
|
#define BUILD_YM2612 1
|
|
#define BUILD_YM3438 0
|
|
|
|
#define FM_BUSY_FLAG_SUPPORT 0
|
|
|
|
/* select bit size of output : 8 or 16 */
|
|
#define FM_SAMPLE_BITS 16
|
|
|
|
/* select timer system internal or external */
|
|
#define FM_INTERNAL_TIMER 1
|
|
|
|
/* --- speedup optimize --- */
|
|
/* busy flag enulation , The definition of FM_GET_TIME_NOW() is necessary. */
|
|
/* #define FM_BUSY_FLAG_SUPPORT 1 */
|
|
|
|
/* --- external SSG(YM2149/AY-3-8910)emulator interface port */
|
|
/* used by YM2203,YM2608,and YM2610 */
|
|
typedef struct _ssg_callbacks ssg_callbacks;
|
|
struct _ssg_callbacks
|
|
{
|
|
void (*set_clock)(void *param, int clock);
|
|
void (*write)(void *param, int address, int data);
|
|
int (*read)(void *param);
|
|
void (*reset)(void *param);
|
|
};
|
|
|
|
/* --- external callback funstions for realtime update --- */
|
|
|
|
#if FM_BUSY_FLAG_SUPPORT
|
|
#define TIME_TYPE attotime
|
|
#define UNDEFINED_TIME attotime_zero
|
|
#define FM_GET_TIME_NOW(machine) timer_get_time(machine)
|
|
#define ADD_TIMES(t1, t2) attotime_add((t1), (t2))
|
|
#define COMPARE_TIMES(t1, t2) attotime_compare((t1), (t2))
|
|
#define MULTIPLY_TIME_BY_INT(t,i) attotime_mul(t, i)
|
|
#endif
|
|
|
|
/* compiler dependence */
|
|
#if 0
|
|
#ifndef OSD_CPU_H
|
|
#define OSD_CPU_H
|
|
typedef unsigned char UINT8; /* unsigned 8bit */
|
|
typedef unsigned short UINT16; /* unsigned 16bit */
|
|
typedef unsigned int UINT32; /* unsigned 32bit */
|
|
typedef signed char INT8; /* signed 8bit */
|
|
typedef signed short INT16; /* signed 16bit */
|
|
typedef signed int INT32; /* signed 32bit */
|
|
#endif /* OSD_CPU_H */
|
|
#endif
|
|
|
|
typedef stream_sample_t FMSAMPLE;
|
|
/*
|
|
#if (FM_SAMPLE_BITS==16)
|
|
typedef INT16 FMSAMPLE;
|
|
#endif
|
|
#if (FM_SAMPLE_BITS==8)
|
|
typedef unsigned char FMSAMPLE;
|
|
#endif
|
|
*/
|
|
|
|
typedef void (*FM_TIMERHANDLER)(void *param,int c,int cnt,int clock);
|
|
typedef void (*FM_IRQHANDLER)(void *param,int irq);
|
|
/* FM_TIMERHANDLER : Stop or Start timer */
|
|
/* int n = chip number */
|
|
/* int c = Channel 0=TimerA,1=TimerB */
|
|
/* int count = timer count (0=stop) */
|
|
/* doube stepTime = step time of one count (sec.)*/
|
|
|
|
/* FM_IRQHHANDLER : IRQ level changing sense */
|
|
/* int n = chip number */
|
|
/* int irq = IRQ level 0=OFF,1=ON */
|
|
|
|
/**
|
|
* @brief Initialize chip and return the instance
|
|
* @param param Unused, keep NULL
|
|
* @param baseclock YM2612 clock
|
|
* @param rate Output sample rate
|
|
* @param TimerHandler Keep NULL
|
|
* @param IRQHandler Keep NULL
|
|
* @return Chip instance or NULL on any error
|
|
*/
|
|
static void * ym2612_init(void *param, int baseclock, int rate,
|
|
FM_TIMERHANDLER TimerHandler,FM_IRQHANDLER IRQHandler);
|
|
/**
|
|
* @brief Free chip instance
|
|
* @param chip Chip instance
|
|
*/
|
|
static void ym2612_shutdown(void *chip);
|
|
/**
|
|
* @brief Reset state of the chip
|
|
* @param chip Chip instance
|
|
*/
|
|
static void ym2612_reset_chip(void *chip);
|
|
/**
|
|
* @brief Generate stereo output of specified length
|
|
* @param chip Chip instance
|
|
* @param buffer Output sound buffer
|
|
* @param frames Output buffer size in frames (one frame - two array entries of the buffer)
|
|
* @param mix 0 - override buffer data, 1 - mix output data with a content of the buffer
|
|
*/
|
|
static void ym2612_generate(void *chip, FMSAMPLE *buffer, int frames, int mix);
|
|
#define ym2612_update_one(chip, buffer, length) ym2612_generate(chip, buffer, length, 0)
|
|
|
|
/**
|
|
* @brief Single-Sample generation prepare
|
|
* @param chip Chip instance
|
|
*/
|
|
static void ym2612_pre_generate(void *chip);
|
|
/**
|
|
* @brief Generate single stereo PCM frame. Will be used native sample rate of 53267 Hz
|
|
* @param chip Chip instance
|
|
* @param buffer One stereo PCM frame
|
|
*/
|
|
static void ym2612_generate_one_native(void *chip, FMSAMPLE buffer[2]);
|
|
|
|
/* void ym2612_post_generate(void *chip, int length); */
|
|
|
|
static int ym2612_write(void *chip, int a,unsigned char v);
|
|
#if 0
|
|
static unsigned char ym2612_read(void *chip,int a);
|
|
static int ym2612_timer_over(void *chip, int c );
|
|
#endif
|
|
|
|
#ifdef __STATE_H__
|
|
static void ym2612_postload(void *chip);
|
|
#endif
|
|
|
|
static void ym2612_set_mutemask(void *chip, UINT32 MuteMask);
|
|
#if 0
|
|
static void ym2612_setoptions(UINT8 Flags);
|
|
#endif
|
|
|
|
|
|
static stream_sample_t *DUMMYBUF = NULL;
|
|
|
|
/* shared function building option */
|
|
#define BUILD_OPN (BUILD_YM2203||BUILD_YM2608||BUILD_YM2610||BUILD_YM2610B||BUILD_YM2612||BUILD_YM3438)
|
|
#define BUILD_OPN_PRESCALER (BUILD_YM2203||BUILD_YM2608)
|
|
|
|
#define RSM_ENABLE 0
|
|
#define RSM_FRAC 10
|
|
|
|
/* globals */
|
|
#define TYPE_SSG 0x01 /* SSG support */
|
|
#define TYPE_LFOPAN 0x02 /* OPN type LFO and PAN */
|
|
#define TYPE_6CH 0x04 /* FM 6CH / 3CH */
|
|
#define TYPE_DAC 0x08 /* YM2612's DAC device */
|
|
#define TYPE_ADPCM 0x10 /* two ADPCM units */
|
|
#define TYPE_2610 0x20 /* bogus flag to differentiate 2608 from 2610 */
|
|
|
|
|
|
#define TYPE_YM2203 (TYPE_SSG)
|
|
#define TYPE_YM2608 (TYPE_SSG |TYPE_LFOPAN |TYPE_6CH |TYPE_ADPCM)
|
|
#define TYPE_YM2610 (TYPE_SSG |TYPE_LFOPAN |TYPE_6CH |TYPE_ADPCM |TYPE_2610)
|
|
#define TYPE_YM2612 (TYPE_DAC |TYPE_LFOPAN |TYPE_6CH)
|
|
|
|
|
|
/* globals */
|
|
#define FREQ_SH 16 /* 16.16 fixed point (frequency calculations) */
|
|
#define EG_SH 16 /* 16.16 fixed point (envelope generator timing) */
|
|
#define LFO_SH 24 /* 8.24 fixed point (LFO calculations) */
|
|
#define TIMER_SH 16 /* 16.16 fixed point (timers calculations) */
|
|
|
|
#define FREQ_MASK ((1<<FREQ_SH)-1)
|
|
|
|
#define MAXOUT (+32767)
|
|
#define MINOUT (-32768)
|
|
|
|
/* envelope generator */
|
|
#define ENV_BITS 10
|
|
#define ENV_LEN (1<<ENV_BITS)
|
|
#define ENV_STEP (128.0/ENV_LEN)
|
|
|
|
#define MAX_ATT_INDEX (ENV_LEN-1) /* 1023 */
|
|
#define MIN_ATT_INDEX (0) /* 0 */
|
|
|
|
#define EG_ATT 4
|
|
#define EG_DEC 3
|
|
#define EG_SUS 2
|
|
#define EG_REL 1
|
|
#define EG_OFF 0
|
|
|
|
/* operator unit */
|
|
#define SIN_BITS 10
|
|
#define SIN_LEN (1<<SIN_BITS)
|
|
#define SIN_MASK (SIN_LEN-1)
|
|
|
|
#define TL_RES_LEN (256) /* 8 bits addressing (real chip) */
|
|
|
|
/* TL_TAB_LEN is calculated as:
|
|
* 13 - sinus amplitude bits (Y axis)
|
|
* 2 - sinus sign bit (Y axis)
|
|
* TL_RES_LEN - sinus resolution (X axis)
|
|
*/
|
|
#define TL_TAB_LEN (13*2*TL_RES_LEN)
|
|
static signed int tl_tab[TL_TAB_LEN];
|
|
|
|
#define ENV_QUIET (TL_TAB_LEN>>3)
|
|
|
|
/* sin waveform table in 'decibel' scale */
|
|
static unsigned int sin_tab[SIN_LEN];
|
|
|
|
/* sustain level table (3dB per step) */
|
|
/* bit0, bit1, bit2, bit3, bit4, bit5, bit6 */
|
|
/* 1, 2, 4, 8, 16, 32, 64 (value)*/
|
|
/* 0.75, 1.5, 3, 6, 12, 24, 48 (dB)*/
|
|
|
|
/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
|
|
/* attenuation value (10 bits) = (SL << 2) << 3 */
|
|
#define SC(db) (UINT32) ( db * (4.0/ENV_STEP) )
|
|
static const UINT32 sl_table[16]={
|
|
SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
|
|
SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
|
|
};
|
|
#undef SC
|
|
|
|
|
|
#define RATE_STEPS (8)
|
|
static const UINT8 eg_inc[19*RATE_STEPS]={
|
|
|
|
/*cycle:0 1 2 3 4 5 6 7*/
|
|
|
|
/* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..11 0 (increment by 0 or 1) */
|
|
/* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..11 1 */
|
|
/* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..11 2 */
|
|
/* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..11 3 */
|
|
|
|
/* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 12 0 (increment by 1) */
|
|
/* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 12 1 */
|
|
/* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 12 2 */
|
|
/* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 12 3 */
|
|
|
|
/* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 13 0 (increment by 2) */
|
|
/* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 13 1 */
|
|
/*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 13 2 */
|
|
/*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 13 3 */
|
|
|
|
/*12 */ 4,4, 4,4, 4,4, 4,4, /* rate 14 0 (increment by 4) */
|
|
/*13 */ 4,4, 4,8, 4,4, 4,8, /* rate 14 1 */
|
|
/*14 */ 4,8, 4,8, 4,8, 4,8, /* rate 14 2 */
|
|
/*15 */ 4,8, 8,8, 4,8, 8,8, /* rate 14 3 */
|
|
|
|
/*16 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 0, 15 1, 15 2, 15 3 (increment by 8) */
|
|
/*17 */ 16,16,16,16,16,16,16,16, /* rates 15 2, 15 3 for attack */
|
|
/*18 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */
|
|
};
|
|
|
|
|
|
#define O(a) (a*RATE_STEPS)
|
|
|
|
/*note that there is no O(17) in this table - it's directly in the code */
|
|
static const UINT8 eg_rate_select2612[32+64+32]={ /* Envelope Generator rates (32 + 64 rates + 32 RKS) */
|
|
/* 32 infinite time rates (same as Rate 0) */
|
|
O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),
|
|
O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),
|
|
O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),
|
|
O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),
|
|
|
|
/* rates 00-11 */
|
|
/*
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
*/
|
|
O(18),O(18),O( 2),O( 3), /* from Nemesis's tests on real YM2612 hardware */
|
|
O( 0),O( 1),O( 2),O( 2), /* Nemesis's tests */
|
|
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
|
|
/* rate 12 */
|
|
O( 4),O( 5),O( 6),O( 7),
|
|
|
|
/* rate 13 */
|
|
O( 8),O( 9),O(10),O(11),
|
|
|
|
/* rate 14 */
|
|
O(12),O(13),O(14),O(15),
|
|
|
|
/* rate 15 */
|
|
O(16),O(16),O(16),O(16),
|
|
|
|
/* 32 dummy rates (same as 15 3) */
|
|
O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16),
|
|
O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16),
|
|
O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16),
|
|
O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16)
|
|
|
|
};
|
|
#undef O
|
|
|
|
/*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15*/
|
|
/*shift 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0 */
|
|
/*mask 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0, 0 */
|
|
|
|
#define O(a) (a*1)
|
|
static const UINT8 eg_rate_shift[32+64+32]={ /* Envelope Generator counter shifts (32 + 64 rates + 32 RKS) */
|
|
/* 32 infinite time rates */
|
|
/* O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
|
|
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
|
|
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
|
|
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0), */
|
|
|
|
/* fixed (should be the same as rate 0, even if it makes no difference since increment value is 0 for these rates) */
|
|
O(11),O(11),O(11),O(11),O(11),O(11),O(11),O(11),
|
|
O(11),O(11),O(11),O(11),O(11),O(11),O(11),O(11),
|
|
O(11),O(11),O(11),O(11),O(11),O(11),O(11),O(11),
|
|
O(11),O(11),O(11),O(11),O(11),O(11),O(11),O(11),
|
|
|
|
/* rates 00-11 */
|
|
O(11),O(11),O(11),O(11),
|
|
O(10),O(10),O(10),O(10),
|
|
O( 9),O( 9),O( 9),O( 9),
|
|
O( 8),O( 8),O( 8),O( 8),
|
|
O( 7),O( 7),O( 7),O( 7),
|
|
O( 6),O( 6),O( 6),O( 6),
|
|
O( 5),O( 5),O( 5),O( 5),
|
|
O( 4),O( 4),O( 4),O( 4),
|
|
O( 3),O( 3),O( 3),O( 3),
|
|
O( 2),O( 2),O( 2),O( 2),
|
|
O( 1),O( 1),O( 1),O( 1),
|
|
O( 0),O( 0),O( 0),O( 0),
|
|
|
|
/* rate 12 */
|
|
O( 0),O( 0),O( 0),O( 0),
|
|
|
|
/* rate 13 */
|
|
O( 0),O( 0),O( 0),O( 0),
|
|
|
|
/* rate 14 */
|
|
O( 0),O( 0),O( 0),O( 0),
|
|
|
|
/* rate 15 */
|
|
O( 0),O( 0),O( 0),O( 0),
|
|
|
|
/* 32 dummy rates (same as 15 3) */
|
|
O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
|
|
O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
|
|
O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
|
|
O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0)
|
|
|
|
};
|
|
#undef O
|
|
|
|
static const UINT8 dt_tab[4 * 32]={
|
|
/* this is YM2151 and YM2612 phase increment data (in 10.10 fixed point format)*/
|
|
/* FD=0 */
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
/* FD=1 */
|
|
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
|
|
2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 8, 8, 8,
|
|
/* FD=2 */
|
|
1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5,
|
|
5, 6, 6, 7, 8, 8, 9,10,11,12,13,14,16,16,16,16,
|
|
/* FD=3 */
|
|
2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7,
|
|
8 , 8, 9,10,11,12,13,14,16,17,19,20,22,22,22,22
|
|
};
|
|
|
|
|
|
/* OPN key frequency number -> key code follow table */
|
|
/* fnum higher 4bit -> keycode lower 2bit */
|
|
static const UINT8 opn_fktable[16] = {0,0,0,0,0,0,0,1,2,3,3,3,3,3,3,3};
|
|
|
|
|
|
/* 8 LFO speed parameters */
|
|
/* each value represents number of samples that one LFO level will last for */
|
|
static const UINT32 lfo_samples_per_step[8] = {108, 77, 71, 67, 62, 44, 8, 5};
|
|
|
|
|
|
|
|
/*There are 4 different LFO AM depths available, they are:
|
|
0 dB, 1.4 dB, 5.9 dB, 11.8 dB
|
|
Here is how it is generated (in EG steps):
|
|
|
|
11.8 dB = 0, 2, 4, 6, 8, 10,12,14,16...126,126,124,122,120,118,....4,2,0
|
|
5.9 dB = 0, 1, 2, 3, 4, 5, 6, 7, 8....63, 63, 62, 61, 60, 59,.....2,1,0
|
|
1.4 dB = 0, 0, 0, 0, 1, 1, 1, 1, 2,...15, 15, 15, 15, 14, 14,.....0,0,0
|
|
|
|
(1.4 dB is losing precision as you can see)
|
|
|
|
It's implemented as generator from 0..126 with step 2 then a shift
|
|
right N times, where N is:
|
|
8 for 0 dB
|
|
3 for 1.4 dB
|
|
1 for 5.9 dB
|
|
0 for 11.8 dB
|
|
*/
|
|
static const UINT8 lfo_ams_depth_shift[4] = {8, 3, 1, 0};
|
|
|
|
|
|
|
|
/*There are 8 different LFO PM depths available, they are:
|
|
0, 3.4, 6.7, 10, 14, 20, 40, 80 (cents)
|
|
|
|
Modulation level at each depth depends on F-NUMBER bits: 4,5,6,7,8,9,10
|
|
(bits 8,9,10 = FNUM MSB from OCT/FNUM register)
|
|
|
|
Here we store only first quarter (positive one) of full waveform.
|
|
Full table (lfo_pm_table) containing all 128 waveforms is build
|
|
at run (init) time.
|
|
|
|
One value in table below represents 4 (four) basic LFO steps
|
|
(1 PM step = 4 AM steps).
|
|
|
|
For example:
|
|
at LFO SPEED=0 (which is 108 samples per basic LFO step)
|
|
one value from "lfo_pm_output" table lasts for 432 consecutive
|
|
samples (4*108=432) and one full LFO waveform cycle lasts for 13824
|
|
samples (32*432=13824; 32 because we store only a quarter of whole
|
|
waveform in the table below)
|
|
*/
|
|
static const UINT8 lfo_pm_output[7*8][8]={ /* 7 bits meaningful (of F-NUMBER), 8 LFO output levels per one depth (out of 32), 8 LFO depths */
|
|
/* FNUM BIT 4: 000 0001xxxx */
|
|
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 3 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 4 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 5 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 6 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 7 */ {0, 0, 0, 0, 1, 1, 1, 1},
|
|
|
|
/* FNUM BIT 5: 000 0010xxxx */
|
|
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 3 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 4 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 5 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 6 */ {0, 0, 0, 0, 1, 1, 1, 1},
|
|
/* DEPTH 7 */ {0, 0, 1, 1, 2, 2, 2, 3},
|
|
|
|
/* FNUM BIT 6: 000 0100xxxx */
|
|
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 3 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 4 */ {0, 0, 0, 0, 0, 0, 0, 1},
|
|
/* DEPTH 5 */ {0, 0, 0, 0, 1, 1, 1, 1},
|
|
/* DEPTH 6 */ {0, 0, 1, 1, 2, 2, 2, 3},
|
|
/* DEPTH 7 */ {0, 0, 2, 3, 4, 4, 5, 6},
|
|
|
|
/* FNUM BIT 7: 000 1000xxxx */
|
|
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 1, 1},
|
|
/* DEPTH 3 */ {0, 0, 0, 0, 1, 1, 1, 1},
|
|
/* DEPTH 4 */ {0, 0, 0, 1, 1, 1, 1, 2},
|
|
/* DEPTH 5 */ {0, 0, 1, 1, 2, 2, 2, 3},
|
|
/* DEPTH 6 */ {0, 0, 2, 3, 4, 4, 5, 6},
|
|
/* DEPTH 7 */ {0, 0, 4, 6, 8, 8, 0xa, 0xc},
|
|
|
|
/* FNUM BIT 8: 001 0000xxxx */
|
|
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 1 */ {0, 0, 0, 0, 1, 1, 1, 1},
|
|
/* DEPTH 2 */ {0, 0, 0, 1, 1, 1, 2, 2},
|
|
/* DEPTH 3 */ {0, 0, 1, 1, 2, 2, 3, 3},
|
|
/* DEPTH 4 */ {0, 0, 1, 2, 2, 2, 3, 4},
|
|
/* DEPTH 5 */ {0, 0, 2, 3, 4, 4, 5, 6},
|
|
/* DEPTH 6 */ {0, 0, 4, 6, 8, 8, 0xa, 0xc},
|
|
/* DEPTH 7 */ {0, 0, 8, 0xc,0x10,0x10,0x14,0x18},
|
|
|
|
/* FNUM BIT 9: 010 0000xxxx */
|
|
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 1 */ {0, 0, 0, 0, 2, 2, 2, 2},
|
|
/* DEPTH 2 */ {0, 0, 0, 2, 2, 2, 4, 4},
|
|
/* DEPTH 3 */ {0, 0, 2, 2, 4, 4, 6, 6},
|
|
/* DEPTH 4 */ {0, 0, 2, 4, 4, 4, 6, 8},
|
|
/* DEPTH 5 */ {0, 0, 4, 6, 8, 8, 0xa, 0xc},
|
|
/* DEPTH 6 */ {0, 0, 8, 0xc,0x10,0x10,0x14,0x18},
|
|
/* DEPTH 7 */ {0, 0,0x10,0x18,0x20,0x20,0x28,0x30},
|
|
|
|
/* FNUM BIT10: 100 0000xxxx */
|
|
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 1 */ {0, 0, 0, 0, 4, 4, 4, 4},
|
|
/* DEPTH 2 */ {0, 0, 0, 4, 4, 4, 8, 8},
|
|
/* DEPTH 3 */ {0, 0, 4, 4, 8, 8, 0xc, 0xc},
|
|
/* DEPTH 4 */ {0, 0, 4, 8, 8, 8, 0xc,0x10},
|
|
/* DEPTH 5 */ {0, 0, 8, 0xc,0x10,0x10,0x14,0x18},
|
|
/* DEPTH 6 */ {0, 0,0x10,0x18,0x20,0x20,0x28,0x30},
|
|
/* DEPTH 7 */ {0, 0,0x20,0x30,0x40,0x40,0x50,0x60},
|
|
|
|
};
|
|
|
|
/* all 128 LFO PM waveforms */
|
|
static INT32 lfo_pm_table[128*8*32]; /* 128 combinations of 7 bits meaningful (of F-NUMBER), 8 LFO depths, 32 LFO output levels per one depth */
|
|
|
|
/* register number to channel number , slot offset */
|
|
#define OPN_CHAN(N) (N&3)
|
|
#define OPN_SLOT(N) ((N>>2)&3)
|
|
|
|
/* slot number */
|
|
#define SLOT1 0
|
|
#define SLOT2 2
|
|
#define SLOT3 1
|
|
#define SLOT4 3
|
|
|
|
/* bit0 = Right enable , bit1 = Left enable */
|
|
#define OUTD_RIGHT 1
|
|
#define OUTD_LEFT 2
|
|
#define OUTD_CENTER 3
|
|
|
|
|
|
/* save output as raw 16-bit sample */
|
|
/* #define SAVE_SAMPLE */
|
|
|
|
#ifdef SAVE_SAMPLE
|
|
static FILE *sample[1];
|
|
#if 1 /*save to MONO file */
|
|
#define SAVE_ALL_CHANNELS \
|
|
{ signed int pom = lt; \
|
|
fputc((unsigned short)pom&0xff,sample[0]); \
|
|
fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
|
|
}
|
|
#else /*save to STEREO file */
|
|
#define SAVE_ALL_CHANNELS \
|
|
{ signed int pom = lt; \
|
|
fputc((unsigned short)pom&0xff,sample[0]); \
|
|
fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
|
|
pom = rt; \
|
|
fputc((unsigned short)pom&0xff,sample[0]); \
|
|
fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
|
|
/* struct describing a single operator (SLOT) */
|
|
typedef struct
|
|
{
|
|
INT32 *DT; /* detune :dt_tab[DT] */
|
|
UINT8 KSR; /* key scale rate :3-KSR */
|
|
UINT32 ar; /* attack rate */
|
|
UINT32 d1r; /* decay rate */
|
|
UINT32 d2r; /* sustain rate */
|
|
UINT32 rr; /* release rate */
|
|
UINT8 ksr; /* key scale rate :kcode>>(3-KSR) */
|
|
UINT32 mul; /* multiple :ML_TABLE[ML] */
|
|
|
|
/* Phase Generator */
|
|
UINT32 phase; /* phase counter */
|
|
INT32 Incr; /* phase step */
|
|
|
|
/* Envelope Generator */
|
|
UINT8 state; /* phase type */
|
|
UINT32 tl; /* total level: TL << 3 */
|
|
INT32 volume; /* envelope counter */
|
|
UINT32 sl; /* sustain level:sl_table[SL] */
|
|
UINT32 vol_out; /* current output from EG circuit (without AM from LFO) */
|
|
|
|
UINT8 eg_sh_ar; /* (attack state) */
|
|
UINT8 eg_sel_ar; /* (attack state) */
|
|
UINT8 eg_sh_d1r; /* (decay state) */
|
|
UINT8 eg_sel_d1r; /* (decay state) */
|
|
UINT8 eg_sh_d2r; /* (sustain state) */
|
|
UINT8 eg_sel_d2r; /* (sustain state) */
|
|
UINT8 eg_sh_rr; /* (release state) */
|
|
UINT8 eg_sel_rr; /* (release state) */
|
|
|
|
UINT8 ssg; /* SSG-EG waveform */
|
|
UINT8 ssgn; /* SSG-EG negated output */
|
|
|
|
UINT8 key; /* 0=last key was KEY OFF, 1=KEY ON */
|
|
|
|
/* LFO */
|
|
UINT32 AMmask; /* AM enable flag */
|
|
|
|
} FM_SLOT;
|
|
|
|
typedef struct
|
|
{
|
|
FM_SLOT SLOT[4]; /* four SLOTs (operators) */
|
|
|
|
UINT8 ALGO; /* algorithm */
|
|
UINT8 FB; /* feedback shift */
|
|
INT32 op1_out[2]; /* op1 output for feedback */
|
|
|
|
INT32 *connect1; /* SLOT1 output pointer */
|
|
INT32 *connect3; /* SLOT3 output pointer */
|
|
INT32 *connect2; /* SLOT2 output pointer */
|
|
INT32 *connect4; /* SLOT4 output pointer */
|
|
|
|
INT32 *mem_connect;/* where to put the delayed sample (MEM) */
|
|
INT32 mem_value; /* delayed sample (MEM) value */
|
|
|
|
INT32 pms; /* channel PMS */
|
|
UINT8 ams; /* channel AMS */
|
|
|
|
UINT32 fc; /* fnum,blk:adjusted to sample rate */
|
|
UINT8 kcode; /* key code: */
|
|
UINT32 block_fnum; /* current blk/fnum value for this slot (can be different betweeen slots of one channel in 3slot mode) */
|
|
UINT8 Muted;
|
|
} FM_CH;
|
|
|
|
|
|
typedef struct
|
|
{
|
|
/* running_device *device; */
|
|
void * param; /* this chip parameter */
|
|
double freqbase; /* frequency base */
|
|
int timer_prescaler; /* timer prescaler */
|
|
UINT8 irq; /* interrupt level */
|
|
UINT8 irqmask; /* irq mask */
|
|
#if FM_BUSY_FLAG_SUPPORT
|
|
TIME_TYPE busy_expiry_time; /* expiry time of the busy status */
|
|
#endif
|
|
UINT32 clock; /* master clock (Hz) */
|
|
UINT32 rate; /* internal sampling rate (Hz) */
|
|
#if RSM_ENABLE
|
|
INT32 rateratio; /* resampling ratio */
|
|
INT32 framecnt; /* resampling frames count*/
|
|
FMSAMPLE cur_sample[2]; /* previous sample */
|
|
FMSAMPLE prev_sample[2]; /* previous sample */
|
|
#endif
|
|
UINT8 address; /* address register */
|
|
UINT8 status; /* status flag */
|
|
UINT32 mode; /* mode CSM / 3SLOT */
|
|
UINT8 fn_h; /* freq latch */
|
|
UINT8 prescaler_sel; /* prescaler selector */
|
|
INT32 TA; /* timer a */
|
|
INT32 TAC; /* timer a counter */
|
|
UINT8 TB; /* timer b */
|
|
INT32 TBC; /* timer b counter */
|
|
/* local time tables */
|
|
INT32 dt_tab[8][32]; /* DeTune table */
|
|
/* Extention Timer and IRQ handler */
|
|
FM_TIMERHANDLER timer_handler;
|
|
FM_IRQHANDLER IRQ_Handler;
|
|
const ssg_callbacks *SSG;
|
|
} FM_ST;
|
|
|
|
|
|
|
|
/***********************************************************/
|
|
/* OPN unit */
|
|
/***********************************************************/
|
|
|
|
/* OPN 3slot struct */
|
|
typedef struct
|
|
{
|
|
UINT32 fc[3]; /* fnum3,blk3: calculated */
|
|
UINT8 fn_h; /* freq3 latch */
|
|
UINT8 kcode[3]; /* key code */
|
|
UINT32 block_fnum[3]; /* current fnum value for this slot (can be different betweeen slots of one channel in 3slot mode) */
|
|
UINT8 key_csm; /* CSM mode Key-ON flag */
|
|
} FM_3SLOT;
|
|
|
|
/* OPN/A/B common state */
|
|
typedef struct
|
|
{
|
|
UINT8 type; /* chip type */
|
|
FM_ST ST; /* general state */
|
|
FM_3SLOT SL3; /* 3 slot mode state */
|
|
FM_CH *P_CH; /* pointer of CH */
|
|
unsigned int pan[6*2]; /* fm channels output masks (0xffffffff = enable) */
|
|
|
|
UINT32 eg_cnt; /* global envelope generator counter */
|
|
UINT32 eg_timer; /* global envelope generator counter works at frequency = chipclock/144/3 */
|
|
UINT32 eg_timer_add; /* step of eg_timer */
|
|
UINT32 eg_timer_overflow;/* envelope generator timer overlfows every 3 samples (on real chip) */
|
|
|
|
|
|
/* there are 2048 FNUMs that can be generated using FNUM/BLK registers
|
|
but LFO works with one more bit of a precision so we really need 4096 elements */
|
|
UINT32 fn_table[4096]; /* fnumber->increment counter */
|
|
UINT32 fn_max; /* maximal phase increment (used for phase overflow) */
|
|
|
|
/* LFO */
|
|
UINT8 lfo_cnt; /* current LFO phase (out of 128) */
|
|
UINT32 lfo_timer; /* current LFO phase runs at LFO frequency */
|
|
UINT32 lfo_timer_add; /* step of lfo_timer */
|
|
UINT32 lfo_timer_overflow; /* LFO timer overflows every N samples (depends on LFO frequency) */
|
|
UINT32 LFO_AM; /* current LFO AM step */
|
|
UINT32 LFO_PM; /* current LFO PM step */
|
|
|
|
INT32 m2,c1,c2; /* Phase Modulation input for operators 2,3,4 */
|
|
INT32 mem; /* one sample delay memory */
|
|
INT32 out_fm[6]; /* outputs of working channels */
|
|
|
|
} FM_OPN;
|
|
|
|
/* here's the virtual YM2612 */
|
|
typedef struct
|
|
{
|
|
UINT8 REGS[512]; /* registers */
|
|
FM_OPN OPN; /* OPN state */
|
|
FM_CH CH[6]; /* channel state */
|
|
UINT8 addr_A1; /* address line A1 */
|
|
|
|
/* dac output (YM2612) */
|
|
/* int dacen; */
|
|
UINT8 dacen;
|
|
UINT8 dac_test;
|
|
INT32 dacout;
|
|
UINT8 MuteDAC;
|
|
|
|
UINT8 WaveOutMode;
|
|
INT32 WaveL;
|
|
INT32 WaveR;
|
|
} YM2612;
|
|
|
|
/* log output level */
|
|
#define LOG_ERR 3 /* ERROR */
|
|
#define LOG_WAR 2 /* WARNING */
|
|
#define LOG_INF 1 /* INFORMATION */
|
|
#define LOG_LEVEL LOG_INF
|
|
|
|
#ifndef __RAINE__
|
|
#define LOG(n,x) do { if( (n)>=LOG_LEVEL ) logerror x; } while (0)
|
|
#endif
|
|
|
|
/* limitter */
|
|
#define Limit(val, max,min) { \
|
|
if ( val > max ) val = max; \
|
|
else if ( val < min ) val = min; \
|
|
}
|
|
|
|
#if 0
|
|
#define USE_VGM_INIT_SWITCH
|
|
static UINT8 IsVGMInit = 0;
|
|
#endif
|
|
static UINT8 PseudoSt = 0x00;
|
|
/*#include <stdio.h>
|
|
static FILE* hFile;
|
|
static UINT32 FileSample;*/
|
|
|
|
/* status set and IRQ handling */
|
|
INLINE void FM_STATUS_SET(FM_ST *ST,int flag)
|
|
{
|
|
/* set status flag */
|
|
ST->status |= flag;
|
|
if ( !(ST->irq) && (ST->status & ST->irqmask) )
|
|
{
|
|
ST->irq = 1;
|
|
/* callback user interrupt handler (IRQ is OFF to ON) */
|
|
if(ST->IRQ_Handler) (ST->IRQ_Handler)(ST->param,1);
|
|
}
|
|
}
|
|
|
|
/* status reset and IRQ handling */
|
|
INLINE void FM_STATUS_RESET(FM_ST *ST,int flag)
|
|
{
|
|
/* reset status flag */
|
|
ST->status &=~flag;
|
|
if ( (ST->irq) && !(ST->status & ST->irqmask) )
|
|
{
|
|
ST->irq = 0;
|
|
/* callback user interrupt handler (IRQ is ON to OFF) */
|
|
if(ST->IRQ_Handler) (ST->IRQ_Handler)(ST->param,0);
|
|
}
|
|
}
|
|
|
|
/* IRQ mask set */
|
|
INLINE void FM_IRQMASK_SET(FM_ST *ST,int flag)
|
|
{
|
|
ST->irqmask = flag;
|
|
/* IRQ handling check */
|
|
FM_STATUS_SET(ST,0);
|
|
FM_STATUS_RESET(ST,0);
|
|
}
|
|
|
|
INLINE void FM_KEYON(FM_OPN *OPN, FM_CH *CH , int s )
|
|
{
|
|
FM_SLOT *SLOT = &CH->SLOT[s];
|
|
|
|
/* Note by Valley Bell:
|
|
I assume that the CSM mode shouldn't affect channels
|
|
other than FM3, so I added a check for it here.*/
|
|
if( !SLOT->key && (!OPN->SL3.key_csm || CH == &OPN->P_CH[3]))
|
|
{
|
|
/* restart Phase Generator */
|
|
SLOT->phase = 0;
|
|
|
|
/* reset SSG-EG inversion flag */
|
|
SLOT->ssgn = 0;
|
|
|
|
if ((SLOT->ar + SLOT->ksr) < 94 /*32+62*/)
|
|
{
|
|
SLOT->state = (SLOT->volume <= MIN_ATT_INDEX) ? ((SLOT->sl == MIN_ATT_INDEX) ? EG_SUS : EG_DEC) : EG_ATT;
|
|
}
|
|
else
|
|
{
|
|
/* force attenuation level to 0 */
|
|
SLOT->volume = MIN_ATT_INDEX;
|
|
|
|
/* directly switch to Decay (or Sustain) */
|
|
SLOT->state = (SLOT->sl == MIN_ATT_INDEX) ? EG_SUS : EG_DEC;
|
|
}
|
|
|
|
/* recalculate EG output */
|
|
if ((SLOT->ssg&0x08) && (SLOT->ssgn ^ (SLOT->ssg&0x04)))
|
|
SLOT->vol_out = ((UINT32)(0x200 - SLOT->volume) & MAX_ATT_INDEX) + SLOT->tl;
|
|
else
|
|
SLOT->vol_out = (UINT32)SLOT->volume + SLOT->tl;
|
|
}
|
|
|
|
SLOT->key = 1;
|
|
}
|
|
|
|
INLINE void FM_KEYOFF(FM_OPN *OPN, FM_CH *CH , int s )
|
|
{
|
|
FM_SLOT *SLOT = &CH->SLOT[s];
|
|
|
|
if (SLOT->key && (!OPN->SL3.key_csm || CH == &OPN->P_CH[3]))
|
|
{
|
|
#ifdef USE_VGM_INIT_SWITCH
|
|
if (IsVGMInit) /* workaround for VGMs trimmed with VGMTool */
|
|
{
|
|
SLOT->state = EG_OFF;
|
|
SLOT->volume = MAX_ATT_INDEX;
|
|
SLOT->vol_out= MAX_ATT_INDEX;
|
|
}
|
|
else
|
|
#endif
|
|
if (SLOT->state>EG_REL)
|
|
{
|
|
SLOT->state = EG_REL; /* phase -> Release */
|
|
|
|
/* SSG-EG specific update */
|
|
if (SLOT->ssg&0x08)
|
|
{
|
|
/* convert EG attenuation level */
|
|
if (SLOT->ssgn ^ (SLOT->ssg&0x04))
|
|
SLOT->volume = (0x200 - SLOT->volume);
|
|
|
|
/* force EG attenuation level */
|
|
if (SLOT->volume >= 0x200)
|
|
{
|
|
SLOT->volume = MAX_ATT_INDEX;
|
|
SLOT->state = EG_OFF;
|
|
}
|
|
|
|
/* recalculate EG output */
|
|
SLOT->vol_out = (UINT32)SLOT->volume + SLOT->tl;
|
|
}
|
|
}
|
|
}
|
|
|
|
SLOT->key = 0;
|
|
}
|
|
|
|
INLINE void FM_KEYON_CSM(FM_OPN *OPN, FM_CH *CH , int s )
|
|
{
|
|
FM_SLOT *SLOT = &CH->SLOT[s];
|
|
|
|
if( !SLOT->key && !OPN->SL3.key_csm)
|
|
{
|
|
/* restart Phase Generator */
|
|
SLOT->phase = 0;
|
|
|
|
/* reset SSG-EG inversion flag */
|
|
SLOT->ssgn = 0;
|
|
|
|
if ((SLOT->ar + SLOT->ksr) < 94 /*32+62*/)
|
|
{
|
|
SLOT->state = (SLOT->volume <= MIN_ATT_INDEX) ? ((SLOT->sl == MIN_ATT_INDEX) ? EG_SUS : EG_DEC) : EG_ATT;
|
|
}
|
|
else
|
|
{
|
|
/* force attenuation level to 0 */
|
|
SLOT->volume = MIN_ATT_INDEX;
|
|
|
|
/* directly switch to Decay (or Sustain) */
|
|
SLOT->state = (SLOT->sl == MIN_ATT_INDEX) ? EG_SUS : EG_DEC;
|
|
}
|
|
|
|
/* recalculate EG output */
|
|
if ((SLOT->ssg&0x08) && (SLOT->ssgn ^ (SLOT->ssg&0x04)))
|
|
SLOT->vol_out = ((UINT32)(0x200 - SLOT->volume) & MAX_ATT_INDEX) + SLOT->tl;
|
|
else
|
|
SLOT->vol_out = (UINT32)SLOT->volume + SLOT->tl;
|
|
}
|
|
}
|
|
|
|
INLINE void FM_KEYOFF_CSM(FM_CH *CH , int s )
|
|
{
|
|
FM_SLOT *SLOT = &CH->SLOT[s];
|
|
if (!SLOT->key)
|
|
{
|
|
#ifdef USE_VGM_INIT_SWITCH
|
|
if (IsVGMInit)
|
|
{
|
|
SLOT->state = EG_OFF;
|
|
SLOT->volume = MAX_ATT_INDEX;
|
|
SLOT->vol_out= MAX_ATT_INDEX;
|
|
}
|
|
else
|
|
#endif
|
|
if (SLOT->state>EG_REL)
|
|
{
|
|
SLOT->state = EG_REL; /* phase -> Release */
|
|
|
|
/* SSG-EG specific update */
|
|
if (SLOT->ssg&0x08)
|
|
{
|
|
/* convert EG attenuation level */
|
|
if (SLOT->ssgn ^ (SLOT->ssg&0x04))
|
|
SLOT->volume = (0x200 - SLOT->volume);
|
|
|
|
/* force EG attenuation level */
|
|
if (SLOT->volume >= 0x200)
|
|
{
|
|
SLOT->volume = MAX_ATT_INDEX;
|
|
SLOT->state = EG_OFF;
|
|
}
|
|
|
|
/* recalculate EG output */
|
|
SLOT->vol_out = (UINT32)SLOT->volume + SLOT->tl;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* OPN Mode Register Write */
|
|
INLINE void set_timers( FM_OPN *OPN, FM_ST *ST, void *n, int v )
|
|
{
|
|
/* b7 = CSM MODE */
|
|
/* b6 = 3 slot mode */
|
|
/* b5 = reset b */
|
|
/* b4 = reset a */
|
|
/* b3 = timer enable b */
|
|
/* b2 = timer enable a */
|
|
/* b1 = load b */
|
|
/* b0 = load a */
|
|
|
|
if ((OPN->ST.mode ^ v) & 0xC0)
|
|
{
|
|
/* phase increment need to be recalculated */
|
|
OPN->P_CH[2].SLOT[SLOT1].Incr=-1;
|
|
|
|
/* CSM mode disabled and CSM key ON active*/
|
|
if (((v & 0xC0) != 0x80) && OPN->SL3.key_csm)
|
|
{
|
|
/* CSM Mode Key OFF (verified by Nemesis on real hardware) */
|
|
FM_KEYOFF_CSM(&OPN->P_CH[2],SLOT1);
|
|
FM_KEYOFF_CSM(&OPN->P_CH[2],SLOT2);
|
|
FM_KEYOFF_CSM(&OPN->P_CH[2],SLOT3);
|
|
FM_KEYOFF_CSM(&OPN->P_CH[2],SLOT4);
|
|
OPN->SL3.key_csm = 0;
|
|
}
|
|
}
|
|
|
|
/* reset Timer b flag */
|
|
if( v & 0x20 )
|
|
FM_STATUS_RESET(ST,0x02);
|
|
/* reset Timer a flag */
|
|
if( v & 0x10 )
|
|
FM_STATUS_RESET(ST,0x01);
|
|
/* load b */
|
|
if ((v&2) && !(ST->mode&2))
|
|
{
|
|
ST->TBC = ( 256-ST->TB)<<4;
|
|
/* External timer handler */
|
|
if (ST->timer_handler) (ST->timer_handler)(n,1,ST->TBC * ST->timer_prescaler,(int)ST->clock);
|
|
}
|
|
/* load a */
|
|
if ((v&1) && !(ST->mode&1))
|
|
{
|
|
ST->TAC = (1024-ST->TA);
|
|
/* External timer handler */
|
|
if (ST->timer_handler) (ST->timer_handler)(n,0,ST->TAC * ST->timer_prescaler,(int)ST->clock);
|
|
ST->TAC *= 4096;
|
|
}
|
|
|
|
ST->mode = (UINT32)v;
|
|
}
|
|
|
|
|
|
/* Timer A Overflow */
|
|
INLINE void TimerAOver(FM_ST *ST)
|
|
{
|
|
/* set status (if enabled) */
|
|
if(ST->mode & 0x04) FM_STATUS_SET(ST,0x01);
|
|
/* clear or reload the counter */
|
|
ST->TAC = (1024-ST->TA);
|
|
if (ST->timer_handler) (ST->timer_handler)(ST->param,0,ST->TAC * ST->timer_prescaler,(int)ST->clock);
|
|
ST->TAC *= 4096;
|
|
}
|
|
/* Timer B Overflow */
|
|
INLINE void TimerBOver(FM_ST *ST)
|
|
{
|
|
/* set status (if enabled) */
|
|
if(ST->mode & 0x08) FM_STATUS_SET(ST,0x02);
|
|
/* clear or reload the counter */
|
|
ST->TBC = ( 256-ST->TB)<<4;
|
|
if (ST->timer_handler) (ST->timer_handler)(ST->param,1,ST->TBC * ST->timer_prescaler,(int)ST->clock);
|
|
}
|
|
|
|
|
|
#if FM_INTERNAL_TIMER
|
|
/* ----- internal timer mode , update timer */
|
|
/* Valley Bell: defines fixed */
|
|
|
|
/* ---------- calculate timer A ---------- */
|
|
#define INTERNAL_TIMER_A(ST,CSM_CH) \
|
|
{ \
|
|
if( (ST)->TAC && ((ST)->timer_handler==0) ) \
|
|
if( ((ST)->TAC -= (int)((ST)->freqbase*4096)) <= 0 ) \
|
|
{ \
|
|
TimerAOver( ST ); \
|
|
/* CSM mode total level latch and auto key on */ \
|
|
if( (ST)->mode & 0x80 ) \
|
|
CSMKeyControll( OPN, CSM_CH ); \
|
|
} \
|
|
}
|
|
/* ---------- calculate timer B ---------- */
|
|
#define INTERNAL_TIMER_B(ST,step) \
|
|
{ \
|
|
if( (ST)->TBC && ((ST)->timer_handler==0) ) \
|
|
if( ((ST)->TBC -= (int)((ST)->freqbase*4096*step)) <= 0 ) \
|
|
TimerBOver( ST ); \
|
|
}
|
|
#else /* FM_INTERNAL_TIMER */
|
|
/* external timer mode */
|
|
#define INTERNAL_TIMER_A(ST,CSM_CH)
|
|
#define INTERNAL_TIMER_B(ST,step)
|
|
#endif /* FM_INTERNAL_TIMER */
|
|
|
|
|
|
|
|
#if FM_BUSY_FLAG_SUPPORT
|
|
#define FM_BUSY_CLEAR(ST) ((ST)->busy_expiry_time = UNDEFINED_TIME)
|
|
INLINE UINT8 FM_STATUS_FLAG(FM_ST *ST)
|
|
{
|
|
if( COMPARE_TIMES(ST->busy_expiry_time, UNDEFINED_TIME) != 0 )
|
|
{
|
|
if (COMPARE_TIMES(ST->busy_expiry_time, FM_GET_TIME_NOW(ST->device->machine)) > 0)
|
|
return ST->status | 0x80; /* with busy */
|
|
/* expire */
|
|
FM_BUSY_CLEAR(ST);
|
|
}
|
|
return ST->status;
|
|
}
|
|
INLINE void FM_BUSY_SET(FM_ST *ST,int busyclock )
|
|
{
|
|
TIME_TYPE expiry_period = MULTIPLY_TIME_BY_INT(ATTOTIME_IN_HZ(ST->clock), busyclock * ST->timer_prescaler);
|
|
ST->busy_expiry_time = ADD_TIMES(FM_GET_TIME_NOW(ST->device->machine), expiry_period);
|
|
}
|
|
#else
|
|
#define FM_STATUS_FLAG(ST) ((ST)->status)
|
|
#define FM_BUSY_SET(ST,bclock) {}
|
|
#define FM_BUSY_CLEAR(ST) {}
|
|
#endif
|
|
|
|
|
|
/* set algorithm connection */
|
|
INLINE void setup_connection( FM_OPN *OPN, FM_CH *CH, int ch )
|
|
{
|
|
INT32 *carrier = &OPN->out_fm[ch];
|
|
|
|
INT32 **om1 = &CH->connect1;
|
|
INT32 **om2 = &CH->connect3;
|
|
INT32 **oc1 = &CH->connect2;
|
|
|
|
INT32 **memc = &CH->mem_connect;
|
|
|
|
switch( CH->ALGO )
|
|
{
|
|
case 0:
|
|
/* M1---C1---MEM---M2---C2---OUT */
|
|
*om1 = &OPN->c1;
|
|
*oc1 = &OPN->mem;
|
|
*om2 = &OPN->c2;
|
|
*memc= &OPN->m2;
|
|
break;
|
|
case 1:
|
|
/* M1------+-MEM---M2---C2---OUT */
|
|
/* C1-+ */
|
|
*om1 = &OPN->mem;
|
|
*oc1 = &OPN->mem;
|
|
*om2 = &OPN->c2;
|
|
*memc= &OPN->m2;
|
|
break;
|
|
case 2:
|
|
/* M1-----------------+-C2---OUT */
|
|
/* C1---MEM---M2-+ */
|
|
*om1 = &OPN->c2;
|
|
*oc1 = &OPN->mem;
|
|
*om2 = &OPN->c2;
|
|
*memc= &OPN->m2;
|
|
break;
|
|
case 3:
|
|
/* M1---C1---MEM------+-C2---OUT */
|
|
/* M2-+ */
|
|
*om1 = &OPN->c1;
|
|
*oc1 = &OPN->mem;
|
|
*om2 = &OPN->c2;
|
|
*memc= &OPN->c2;
|
|
break;
|
|
case 4:
|
|
/* M1---C1-+-OUT */
|
|
/* M2---C2-+ */
|
|
/* MEM: not used */
|
|
*om1 = &OPN->c1;
|
|
*oc1 = carrier;
|
|
*om2 = &OPN->c2;
|
|
*memc= &OPN->mem; /* store it anywhere where it will not be used */
|
|
break;
|
|
case 5:
|
|
/* +----C1----+ */
|
|
/* M1-+-MEM---M2-+-OUT */
|
|
/* +----C2----+ */
|
|
*om1 = 0; /* special mark */
|
|
*oc1 = carrier;
|
|
*om2 = carrier;
|
|
*memc= &OPN->m2;
|
|
break;
|
|
case 6:
|
|
/* M1---C1-+ */
|
|
/* M2-+-OUT */
|
|
/* C2-+ */
|
|
/* MEM: not used */
|
|
*om1 = &OPN->c1;
|
|
*oc1 = carrier;
|
|
*om2 = carrier;
|
|
*memc= &OPN->mem; /* store it anywhere where it will not be used */
|
|
break;
|
|
case 7:
|
|
/* M1-+ */
|
|
/* C1-+-OUT */
|
|
/* M2-+ */
|
|
/* C2-+ */
|
|
/* MEM: not used*/
|
|
*om1 = carrier;
|
|
*oc1 = carrier;
|
|
*om2 = carrier;
|
|
*memc= &OPN->mem; /* store it anywhere where it will not be used */
|
|
break;
|
|
}
|
|
|
|
CH->connect4 = carrier;
|
|
}
|
|
|
|
/* set detune & multiple */
|
|
INLINE void set_det_mul(FM_ST *ST,FM_CH *CH,FM_SLOT *SLOT,int v)
|
|
{
|
|
SLOT->mul = (v&0x0f)? (v&0x0f)*2 : 1;
|
|
SLOT->DT = ST->dt_tab[(v>>4)&7];
|
|
CH->SLOT[SLOT1].Incr=-1;
|
|
}
|
|
|
|
/* set total level */
|
|
INLINE void set_tl(FM_CH *CH,FM_SLOT *SLOT , int v)
|
|
{
|
|
SLOT->tl = (v&0x7f)<<(ENV_BITS-7); /* 7bit TL */
|
|
(void)CH;
|
|
|
|
/* recalculate EG output */
|
|
if ((SLOT->ssg&0x08) && (SLOT->ssgn ^ (SLOT->ssg&0x04)) && (SLOT->state > EG_REL))
|
|
SLOT->vol_out = ((UINT32)(0x200 - SLOT->volume) & MAX_ATT_INDEX) + SLOT->tl;
|
|
else
|
|
SLOT->vol_out = (UINT32)SLOT->volume + SLOT->tl;
|
|
}
|
|
|
|
/* set attack rate & key scale */
|
|
INLINE void set_ar_ksr(UINT8 type, FM_CH *CH,FM_SLOT *SLOT,int v)
|
|
{
|
|
UINT8 old_KSR = SLOT->KSR;
|
|
(void)type;
|
|
|
|
SLOT->ar = (v&0x1f) ? 32 + ((v&0x1f)<<1) : 0;
|
|
|
|
SLOT->KSR = 3-(v>>6);
|
|
if (SLOT->KSR != old_KSR)
|
|
{
|
|
CH->SLOT[SLOT1].Incr=-1;
|
|
}
|
|
|
|
/* Even if it seems unnecessary, in some odd case, KSR and KC are both modified */
|
|
/* and could result in SLOT->kc remaining unchanged. */
|
|
/* In such case, AR values would not be recalculated despite SLOT->ar has changed */
|
|
/* This fixes the introduction music of Batman & Robin (Eke-Eke) */
|
|
if ((SLOT->ar + SLOT->ksr) < 94 /*32+62*/)
|
|
{
|
|
SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
|
|
SLOT->eg_sel_ar = eg_rate_select2612[SLOT->ar + SLOT->ksr ];
|
|
}
|
|
else
|
|
{
|
|
SLOT->eg_sh_ar = 0;
|
|
SLOT->eg_sel_ar = 18*RATE_STEPS; /* verified by Nemesis on real hardware */
|
|
}
|
|
}
|
|
|
|
/* set decay rate */
|
|
INLINE void set_dr(UINT8 type, FM_SLOT *SLOT,int v)
|
|
{
|
|
(void)type;
|
|
SLOT->d1r = (v&0x1f) ? 32 + ((v&0x1f)<<1) : 0;
|
|
|
|
SLOT->eg_sh_d1r = eg_rate_shift [SLOT->d1r + SLOT->ksr];
|
|
SLOT->eg_sel_d1r= eg_rate_select2612[SLOT->d1r + SLOT->ksr];
|
|
}
|
|
|
|
/* set sustain rate */
|
|
INLINE void set_sr(UINT8 type, FM_SLOT *SLOT,int v)
|
|
{
|
|
(void)type;
|
|
SLOT->d2r = (v&0x1f) ? 32 + ((v&0x1f)<<1) : 0;
|
|
|
|
SLOT->eg_sh_d2r = eg_rate_shift [SLOT->d2r + SLOT->ksr];
|
|
SLOT->eg_sel_d2r= eg_rate_select2612[SLOT->d2r + SLOT->ksr];
|
|
}
|
|
|
|
/* set release rate */
|
|
INLINE void set_sl_rr(UINT8 type, FM_SLOT *SLOT,int v)
|
|
{
|
|
(void)type;
|
|
SLOT->sl = sl_table[ v>>4 ];
|
|
|
|
/* check EG state changes */
|
|
if ((SLOT->state == EG_DEC) && (SLOT->volume >= (INT32)(SLOT->sl)))
|
|
SLOT->state = EG_SUS;
|
|
|
|
SLOT->rr = 34 + ((v&0x0f)<<2);
|
|
|
|
SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr];
|
|
SLOT->eg_sel_rr = eg_rate_select2612[SLOT->rr + SLOT->ksr];
|
|
}
|
|
|
|
/* advance LFO to next sample */
|
|
INLINE void advance_lfo(FM_OPN *OPN)
|
|
{
|
|
if (OPN->lfo_timer_overflow) /* LFO enabled ? */
|
|
{
|
|
/* increment LFO timer */
|
|
OPN->lfo_timer += OPN->lfo_timer_add;
|
|
|
|
/* when LFO is enabled, one level will last for 108, 77, 71, 67, 62, 44, 8 or 5 samples */
|
|
while (OPN->lfo_timer >= OPN->lfo_timer_overflow)
|
|
{
|
|
OPN->lfo_timer -= OPN->lfo_timer_overflow;
|
|
|
|
/* There are 128 LFO steps */
|
|
OPN->lfo_cnt = ( OPN->lfo_cnt + 1 ) & 127;
|
|
|
|
/* Valley Bell: Replaced old code (non-inverted triangle) with
|
|
the one from Genesis Plus GX 1.71. */
|
|
/* triangle (inverted) */
|
|
/* AM: from 126 to 0 step -2, 0 to 126 step +2 */
|
|
if (OPN->lfo_cnt<64)
|
|
OPN->LFO_AM = (UINT32)(OPN->lfo_cnt ^ 63) << 1;
|
|
else
|
|
OPN->LFO_AM = (UINT32)(OPN->lfo_cnt & 63) << 1;
|
|
|
|
/* PM works with 4 times slower clock */
|
|
OPN->LFO_PM = OPN->lfo_cnt >> 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
INLINE void advance_eg_channel(FM_OPN *OPN, FM_SLOT *SLOT)
|
|
{
|
|
/* unsigned int out; */
|
|
unsigned int i = 4; /* four operators per channel */
|
|
|
|
do
|
|
{
|
|
switch(SLOT->state)
|
|
{
|
|
case EG_ATT: /* attack phase */
|
|
if (!(OPN->eg_cnt & ((1<<SLOT->eg_sh_ar)-1)))
|
|
{
|
|
/* update attenuation level */
|
|
SLOT->volume += (~SLOT->volume * (eg_inc[SLOT->eg_sel_ar + ((OPN->eg_cnt>>SLOT->eg_sh_ar)&7)]))>>4;
|
|
|
|
/* check phase transition*/
|
|
if (SLOT->volume <= MIN_ATT_INDEX)
|
|
{
|
|
SLOT->volume = MIN_ATT_INDEX;
|
|
SLOT->state = (SLOT->sl == MIN_ATT_INDEX) ? EG_SUS : EG_DEC; /* special case where SL=0 */
|
|
}
|
|
|
|
/* recalculate EG output */
|
|
if ((SLOT->ssg&0x08) && (SLOT->ssgn ^ (SLOT->ssg&0x04))) /* SSG-EG Output Inversion */
|
|
SLOT->vol_out = ((UINT32)(0x200 - SLOT->volume) & MAX_ATT_INDEX) + SLOT->tl;
|
|
else
|
|
SLOT->vol_out = (UINT32)SLOT->volume + SLOT->tl;
|
|
}
|
|
break;
|
|
|
|
case EG_DEC: /* decay phase */
|
|
if (!(OPN->eg_cnt & ((1<<SLOT->eg_sh_d1r)-1)))
|
|
{
|
|
/* SSG EG type */
|
|
if (SLOT->ssg&0x08)
|
|
{
|
|
/* update attenuation level */
|
|
if (SLOT->volume < 0x200)
|
|
{
|
|
SLOT->volume += 4 * eg_inc[SLOT->eg_sel_d1r + ((OPN->eg_cnt>>SLOT->eg_sh_d1r)&7)];
|
|
|
|
/* recalculate EG output */
|
|
if (SLOT->ssgn ^ (SLOT->ssg&0x04)) /* SSG-EG Output Inversion */
|
|
SLOT->vol_out = ((UINT32)(0x200 - SLOT->volume) & MAX_ATT_INDEX) + SLOT->tl;
|
|
else
|
|
SLOT->vol_out = (UINT32)SLOT->volume + SLOT->tl;
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
/* update attenuation level */
|
|
SLOT->volume += eg_inc[SLOT->eg_sel_d1r + ((OPN->eg_cnt>>SLOT->eg_sh_d1r)&7)];
|
|
|
|
/* recalculate EG output */
|
|
SLOT->vol_out = (UINT32)SLOT->volume + SLOT->tl;
|
|
}
|
|
|
|
/* check phase transition*/
|
|
if (SLOT->volume >= (INT32)(SLOT->sl))
|
|
SLOT->state = EG_SUS;
|
|
}
|
|
break;
|
|
|
|
case EG_SUS: /* sustain phase */
|
|
if (!(OPN->eg_cnt & ((1<<SLOT->eg_sh_d2r)-1)))
|
|
{
|
|
/* SSG EG type */
|
|
if (SLOT->ssg&0x08)
|
|
{
|
|
/* update attenuation level */
|
|
if (SLOT->volume < 0x200)
|
|
{
|
|
SLOT->volume += 4 * eg_inc[SLOT->eg_sel_d2r + ((OPN->eg_cnt>>SLOT->eg_sh_d2r)&7)];
|
|
|
|
/* recalculate EG output */
|
|
if (SLOT->ssgn ^ (SLOT->ssg&0x04)) /* SSG-EG Output Inversion */
|
|
SLOT->vol_out = ((UINT32)(0x200 - SLOT->volume) & MAX_ATT_INDEX) + SLOT->tl;
|
|
else
|
|
SLOT->vol_out = (UINT32)SLOT->volume + SLOT->tl;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* update attenuation level */
|
|
SLOT->volume += eg_inc[SLOT->eg_sel_d2r + ((OPN->eg_cnt>>SLOT->eg_sh_d2r)&7)];
|
|
|
|
/* check phase transition*/
|
|
if ( SLOT->volume >= MAX_ATT_INDEX )
|
|
SLOT->volume = MAX_ATT_INDEX;
|
|
/* do not change SLOT->state (verified on real chip) */
|
|
|
|
/* recalculate EG output */
|
|
SLOT->vol_out = (UINT32)SLOT->volume + SLOT->tl;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case EG_REL: /* release phase */
|
|
if (!(OPN->eg_cnt & ((1<<SLOT->eg_sh_rr)-1)))
|
|
{
|
|
/* SSG EG type */
|
|
if (SLOT->ssg&0x08)
|
|
{
|
|
/* update attenuation level */
|
|
if (SLOT->volume < 0x200)
|
|
SLOT->volume += 4 * eg_inc[SLOT->eg_sel_rr + ((OPN->eg_cnt>>SLOT->eg_sh_rr)&7)];
|
|
/* check phase transition */
|
|
if (SLOT->volume >= 0x200)
|
|
{
|
|
SLOT->volume = MAX_ATT_INDEX;
|
|
SLOT->state = EG_OFF;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* update attenuation level */
|
|
SLOT->volume += eg_inc[SLOT->eg_sel_rr + ((OPN->eg_cnt>>SLOT->eg_sh_rr)&7)];
|
|
|
|
/* check phase transition*/
|
|
if (SLOT->volume >= MAX_ATT_INDEX)
|
|
{
|
|
SLOT->volume = MAX_ATT_INDEX;
|
|
SLOT->state = EG_OFF;
|
|
}
|
|
}
|
|
|
|
/* recalculate EG output */
|
|
SLOT->vol_out = (UINT32)SLOT->volume + SLOT->tl;
|
|
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Valley Bell: These few lines are missing in Genesis Plus GX' ym2612 core file.
|
|
Disabling them fixes the SSG-EG.
|
|
Additional Note: Asterix and the Great Rescue: Level 1 sounds "better" with these lines,
|
|
but less accurate. */
|
|
#if 0
|
|
out = ((UINT32)SLOT->volume);
|
|
|
|
/* negate output (changes come from alternate bit, init comes from attack bit) */
|
|
if ((SLOT->ssg&0x08) && (SLOT->ssgn&2) && (SLOT->state > EG_REL))
|
|
out ^= MAX_ATT_INDEX;
|
|
|
|
/* we need to store the result here because we are going to change ssgn
|
|
in next instruction */
|
|
SLOT->vol_out = out + SLOT->tl;
|
|
#endif
|
|
|
|
SLOT++;
|
|
i--;
|
|
} while (i);
|
|
|
|
}
|
|
|
|
/* SSG-EG update process */
|
|
/* The behavior is based upon Nemesis tests on real hardware */
|
|
/* This is actually executed before each samples */
|
|
INLINE void update_ssg_eg_channel(FM_SLOT *SLOT)
|
|
{
|
|
unsigned int i = 4; /* four operators per channel */
|
|
|
|
do
|
|
{
|
|
/* detect SSG-EG transition */
|
|
/* this is not required during release phase as the attenuation has been forced to MAX and output invert flag is not used */
|
|
/* if an Attack Phase is programmed, inversion can occur on each sample */
|
|
if ((SLOT->ssg & 0x08) && (SLOT->volume >= 0x200) && (SLOT->state > EG_REL))
|
|
{
|
|
if (SLOT->ssg & 0x01) /* bit 0 = hold SSG-EG */
|
|
{
|
|
/* set inversion flag */
|
|
if (SLOT->ssg & 0x02)
|
|
SLOT->ssgn = 4;
|
|
|
|
/* force attenuation level during decay phases */
|
|
if ((SLOT->state != EG_ATT) && !(SLOT->ssgn ^ (SLOT->ssg & 0x04)))
|
|
SLOT->volume = MAX_ATT_INDEX;
|
|
}
|
|
else /* loop SSG-EG */
|
|
{
|
|
/* toggle output inversion flag or reset Phase Generator */
|
|
if (SLOT->ssg & 0x02)
|
|
SLOT->ssgn ^= 4;
|
|
else
|
|
SLOT->phase = 0;
|
|
|
|
/* same as Key ON */
|
|
if (SLOT->state != EG_ATT)
|
|
{
|
|
if ((SLOT->ar + SLOT->ksr) < 94 /*32+62*/)
|
|
{
|
|
SLOT->state = (SLOT->volume <= MIN_ATT_INDEX) ? ((SLOT->sl == MIN_ATT_INDEX) ? EG_SUS : EG_DEC) : EG_ATT;
|
|
}
|
|
else
|
|
{
|
|
/* Attack Rate is maximal: directly switch to Decay or Substain */
|
|
SLOT->volume = MIN_ATT_INDEX;
|
|
SLOT->state = (SLOT->sl == MIN_ATT_INDEX) ? EG_SUS : EG_DEC;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* recalculate EG output */
|
|
if (SLOT->ssgn ^ (SLOT->ssg&0x04))
|
|
SLOT->vol_out = ((UINT32)(0x200 - SLOT->volume) & MAX_ATT_INDEX) + SLOT->tl;
|
|
else
|
|
SLOT->vol_out = (UINT32)SLOT->volume + SLOT->tl;
|
|
}
|
|
|
|
/* next slot */
|
|
SLOT++;
|
|
i--;
|
|
} while (i);
|
|
}
|
|
|
|
|
|
INLINE void update_phase_lfo_slot(FM_OPN *OPN, FM_SLOT *SLOT, INT32 pms, UINT32 block_fnum)
|
|
{
|
|
UINT32 fnum_lfo = ((block_fnum & 0x7f0) >> 4) * 32 * 8;
|
|
INT32 lfo_fn_table_index_offset = lfo_pm_table[ fnum_lfo + pms + OPN->LFO_PM ];
|
|
|
|
block_fnum = block_fnum*2 + lfo_fn_table_index_offset;
|
|
|
|
if (lfo_fn_table_index_offset) /* LFO phase modulation active */
|
|
{
|
|
UINT8 blk = (block_fnum&0x7000) >> 12;
|
|
UINT32 fn = block_fnum & 0xfff;
|
|
|
|
/* recalculate keyscale code */
|
|
/*int kc = (blk<<2) | opn_fktable[fn >> 7];*/
|
|
/* This really stupid bug caused a read outside of the
|
|
array [size 0x10] and returned invalid values.
|
|
This caused an annoying vibrato for some notes.
|
|
(Note: seems to be a copy-and-paste from OPNWriteReg -> case 0xA0)
|
|
Why are MAME cores always SOO buggy ?! */
|
|
/* Oh, and before I forget: it's correct in fm.c */
|
|
int kc = (blk<<2) | opn_fktable[fn >> 8];
|
|
/* Thanks to Blargg - his patch that helped me to find this bug */
|
|
|
|
/* recalculate (frequency) phase increment counter */
|
|
int fc = (OPN->fn_table[fn]>>(7-blk)) + SLOT->DT[kc];
|
|
|
|
/* (frequency) phase overflow (credits to Nemesis) */
|
|
if (fc < 0) fc += OPN->fn_max;
|
|
|
|
/* update phase */
|
|
SLOT->phase += (fc * SLOT->mul) >> 1;
|
|
}
|
|
else /* LFO phase modulation = zero */
|
|
{
|
|
SLOT->phase += SLOT->Incr;
|
|
}
|
|
}
|
|
|
|
INLINE void update_phase_lfo_channel(FM_OPN *OPN, FM_CH *CH)
|
|
{
|
|
UINT32 block_fnum = CH->block_fnum;
|
|
|
|
UINT32 fnum_lfo = ((block_fnum & 0x7f0) >> 4) * 32 * 8;
|
|
INT32 lfo_fn_table_index_offset = lfo_pm_table[ fnum_lfo + CH->pms + OPN->LFO_PM ];
|
|
|
|
block_fnum = block_fnum*2 + lfo_fn_table_index_offset;
|
|
|
|
if (lfo_fn_table_index_offset) /* LFO phase modulation active */
|
|
{
|
|
UINT8 blk = (block_fnum&0x7000) >> 12;
|
|
UINT32 fn = block_fnum & 0xfff;
|
|
|
|
/* recalculate keyscale code */
|
|
/*int kc = (blk<<2) | opn_fktable[fn >> 7];*/
|
|
/* the same stupid bug as above */
|
|
int kc = (blk<<2) | opn_fktable[fn >> 8];
|
|
|
|
/* recalculate (frequency) phase increment counter */
|
|
int fc = (OPN->fn_table[fn]>>(7-blk));
|
|
|
|
/* (frequency) phase overflow (credits to Nemesis) */
|
|
int finc = fc + CH->SLOT[SLOT1].DT[kc];
|
|
if (finc < 0) finc += OPN->fn_max;
|
|
CH->SLOT[SLOT1].phase += (finc*CH->SLOT[SLOT1].mul) >> 1;
|
|
|
|
finc = fc + CH->SLOT[SLOT2].DT[kc];
|
|
if (finc < 0) finc += OPN->fn_max;
|
|
CH->SLOT[SLOT2].phase += (finc*CH->SLOT[SLOT2].mul) >> 1;
|
|
|
|
finc = fc + CH->SLOT[SLOT3].DT[kc];
|
|
if (finc < 0) finc += OPN->fn_max;
|
|
CH->SLOT[SLOT3].phase += (finc*CH->SLOT[SLOT3].mul) >> 1;
|
|
|
|
finc = fc + CH->SLOT[SLOT4].DT[kc];
|
|
if (finc < 0) finc += OPN->fn_max;
|
|
CH->SLOT[SLOT4].phase += (finc*CH->SLOT[SLOT4].mul) >> 1;
|
|
}
|
|
else /* LFO phase modulation = zero */
|
|
{
|
|
CH->SLOT[SLOT1].phase += CH->SLOT[SLOT1].Incr;
|
|
CH->SLOT[SLOT2].phase += CH->SLOT[SLOT2].Incr;
|
|
CH->SLOT[SLOT3].phase += CH->SLOT[SLOT3].Incr;
|
|
CH->SLOT[SLOT4].phase += CH->SLOT[SLOT4].Incr;
|
|
}
|
|
}
|
|
|
|
/* update phase increment and envelope generator */
|
|
INLINE void refresh_fc_eg_slot(FM_OPN *OPN, FM_SLOT *SLOT , int fc , int kc )
|
|
{
|
|
int ksr = kc >> SLOT->KSR;
|
|
|
|
fc += SLOT->DT[kc];
|
|
|
|
/* detects frequency overflow (credits to Nemesis) */
|
|
if (fc < 0) fc += OPN->fn_max;
|
|
|
|
/* (frequency) phase increment counter */
|
|
SLOT->Incr = (fc * SLOT->mul) >> 1;
|
|
|
|
if( SLOT->ksr != ksr )
|
|
{
|
|
SLOT->ksr = ksr;
|
|
|
|
/* calculate envelope generator rates */
|
|
if ((SLOT->ar + SLOT->ksr) < 32+62)
|
|
{
|
|
SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
|
|
SLOT->eg_sel_ar = eg_rate_select2612[SLOT->ar + SLOT->ksr ];
|
|
}
|
|
else
|
|
{
|
|
SLOT->eg_sh_ar = 0;
|
|
SLOT->eg_sel_ar = 18*RATE_STEPS; /* verified by Nemesis on real hardware (Attack phase is blocked) */
|
|
}
|
|
|
|
SLOT->eg_sh_d1r = eg_rate_shift [SLOT->d1r + SLOT->ksr];
|
|
SLOT->eg_sh_d2r = eg_rate_shift [SLOT->d2r + SLOT->ksr];
|
|
SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr];
|
|
|
|
SLOT->eg_sel_d1r= eg_rate_select2612[SLOT->d1r + SLOT->ksr];
|
|
SLOT->eg_sel_d2r= eg_rate_select2612[SLOT->d2r + SLOT->ksr];
|
|
SLOT->eg_sel_rr = eg_rate_select2612[SLOT->rr + SLOT->ksr];
|
|
}
|
|
}
|
|
|
|
/* update phase increment counters */
|
|
INLINE void refresh_fc_eg_chan(FM_OPN *OPN, FM_CH *CH )
|
|
{
|
|
if( CH->SLOT[SLOT1].Incr==-1)
|
|
{
|
|
int fc = CH->fc;
|
|
int kc = CH->kcode;
|
|
refresh_fc_eg_slot(OPN, &CH->SLOT[SLOT1] , fc , kc );
|
|
refresh_fc_eg_slot(OPN, &CH->SLOT[SLOT2] , fc , kc );
|
|
refresh_fc_eg_slot(OPN, &CH->SLOT[SLOT3] , fc , kc );
|
|
refresh_fc_eg_slot(OPN, &CH->SLOT[SLOT4] , fc , kc );
|
|
}
|
|
}
|
|
|
|
#define volume_calc(OP) ((OP)->vol_out + (AM & (OP)->AMmask))
|
|
|
|
INLINE signed int op_calc(UINT32 phase, unsigned int env, signed int pm)
|
|
{
|
|
UINT32 p;
|
|
|
|
p = (env<<3) + sin_tab[ ( ((signed int)((phase & ~FREQ_MASK) + (pm<<15))) >> FREQ_SH ) & SIN_MASK ];
|
|
|
|
if (p >= TL_TAB_LEN)
|
|
return 0;
|
|
return tl_tab[p];
|
|
}
|
|
|
|
INLINE signed int op_calc1(UINT32 phase, unsigned int env, signed int pm)
|
|
{
|
|
UINT32 p = (env<<3) + sin_tab[ ( ((signed int)((phase & ~FREQ_MASK) + pm )) >> FREQ_SH ) & SIN_MASK ];
|
|
if (p >= TL_TAB_LEN)
|
|
return 0;
|
|
return tl_tab[p];
|
|
}
|
|
|
|
INLINE void chan_calc(YM2612 *F2612, FM_OPN *OPN, FM_CH *CH)
|
|
{
|
|
UINT32 AM = OPN->LFO_AM >> CH->ams;
|
|
unsigned int eg_out;
|
|
|
|
if (CH->Muted)
|
|
return;
|
|
|
|
OPN->m2 = OPN->c1 = OPN->c2 = OPN->mem = 0;
|
|
|
|
*CH->mem_connect = CH->mem_value; /* restore delayed sample (MEM) value to m2 or c2 */
|
|
|
|
eg_out = volume_calc(&CH->SLOT[SLOT1]);
|
|
{
|
|
INT32 out = CH->op1_out[0] + CH->op1_out[1];
|
|
CH->op1_out[0] = CH->op1_out[1];
|
|
|
|
if( !CH->connect1 )
|
|
{
|
|
/* algorithm 5 */
|
|
OPN->mem = OPN->c1 = OPN->c2 = CH->op1_out[0];
|
|
}
|
|
else
|
|
{
|
|
/* other algorithms */
|
|
*CH->connect1 += CH->op1_out[0];
|
|
}
|
|
|
|
|
|
CH->op1_out[1] = 0;
|
|
if( eg_out < ENV_QUIET ) /* SLOT 1 */
|
|
{
|
|
if (!CH->FB)
|
|
out=0;
|
|
|
|
CH->op1_out[1] = op_calc1(CH->SLOT[SLOT1].phase, eg_out, (out<<CH->FB) );
|
|
}
|
|
}
|
|
|
|
eg_out = volume_calc(&CH->SLOT[SLOT3]);
|
|
if( eg_out < ENV_QUIET ) /* SLOT 3 */
|
|
*CH->connect3 += op_calc(CH->SLOT[SLOT3].phase, eg_out, OPN->m2);
|
|
|
|
eg_out = volume_calc(&CH->SLOT[SLOT2]);
|
|
if( eg_out < ENV_QUIET ) /* SLOT 2 */
|
|
*CH->connect2 += op_calc(CH->SLOT[SLOT2].phase, eg_out, OPN->c1);
|
|
|
|
eg_out = volume_calc(&CH->SLOT[SLOT4]);
|
|
if( eg_out < ENV_QUIET ) /* SLOT 4 */
|
|
*CH->connect4 += op_calc(CH->SLOT[SLOT4].phase, eg_out, OPN->c2);
|
|
|
|
|
|
/* store current MEM */
|
|
CH->mem_value = OPN->mem;
|
|
|
|
/* update phase counters AFTER output calculations */
|
|
if(CH->pms)
|
|
{
|
|
/* add support for 3 slot mode */
|
|
if ((OPN->ST.mode & 0xC0) && (CH == &F2612->CH[2]))
|
|
{
|
|
update_phase_lfo_slot(OPN, &CH->SLOT[SLOT1], CH->pms, OPN->SL3.block_fnum[1]);
|
|
update_phase_lfo_slot(OPN, &CH->SLOT[SLOT2], CH->pms, OPN->SL3.block_fnum[2]);
|
|
update_phase_lfo_slot(OPN, &CH->SLOT[SLOT3], CH->pms, OPN->SL3.block_fnum[0]);
|
|
update_phase_lfo_slot(OPN, &CH->SLOT[SLOT4], CH->pms, CH->block_fnum);
|
|
}
|
|
else update_phase_lfo_channel(OPN, CH);
|
|
}
|
|
else /* no LFO phase modulation */
|
|
{
|
|
CH->SLOT[SLOT1].phase += CH->SLOT[SLOT1].Incr;
|
|
CH->SLOT[SLOT2].phase += CH->SLOT[SLOT2].Incr;
|
|
CH->SLOT[SLOT3].phase += CH->SLOT[SLOT3].Incr;
|
|
CH->SLOT[SLOT4].phase += CH->SLOT[SLOT4].Incr;
|
|
}
|
|
}
|
|
|
|
static void FMCloseTable( void )
|
|
{
|
|
#ifdef SAVE_SAMPLE
|
|
fclose(sample[0]);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
|
|
/* CSM Key Controll */
|
|
INLINE void CSMKeyControll(FM_OPN *OPN, FM_CH *CH)
|
|
{
|
|
/* all key ON (verified by Nemesis on real hardware) */
|
|
FM_KEYON_CSM(OPN,CH,SLOT1);
|
|
FM_KEYON_CSM(OPN,CH,SLOT2);
|
|
FM_KEYON_CSM(OPN,CH,SLOT3);
|
|
FM_KEYON_CSM(OPN,CH,SLOT4);
|
|
OPN->SL3.key_csm = 1;
|
|
}
|
|
|
|
#ifdef __STATE_H__
|
|
/* FM channel save , internal state only */
|
|
static void FMsave_state_channel(running_device *device,FM_CH *CH,int num_ch)
|
|
{
|
|
int slot , ch;
|
|
|
|
for(ch=0;ch<num_ch;ch++,CH++)
|
|
{
|
|
/* channel */
|
|
state_save_register_device_item_array(device, ch, CH->op1_out);
|
|
state_save_register_device_item(device, ch, CH->fc);
|
|
/* slots */
|
|
for(slot=0;slot<4;slot++)
|
|
{
|
|
FM_SLOT *SLOT = &CH->SLOT[slot];
|
|
state_save_register_device_item(device, ch * 4 + slot, SLOT->phase);
|
|
state_save_register_device_item(device, ch * 4 + slot, SLOT->state);
|
|
state_save_register_device_item(device, ch * 4 + slot, SLOT->volume);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void FMsave_state_st(running_device *device,FM_ST *ST)
|
|
{
|
|
#if FM_BUSY_FLAG_SUPPORT
|
|
state_save_register_device_item(device, 0, ST->busy_expiry_time.seconds );
|
|
state_save_register_device_item(device, 0, ST->busy_expiry_time.attoseconds );
|
|
#endif
|
|
state_save_register_device_item(device, 0, ST->address );
|
|
state_save_register_device_item(device, 0, ST->irq );
|
|
state_save_register_device_item(device, 0, ST->irqmask );
|
|
state_save_register_device_item(device, 0, ST->status );
|
|
state_save_register_device_item(device, 0, ST->mode );
|
|
state_save_register_device_item(device, 0, ST->prescaler_sel );
|
|
state_save_register_device_item(device, 0, ST->fn_h );
|
|
state_save_register_device_item(device, 0, ST->TA );
|
|
state_save_register_device_item(device, 0, ST->TAC );
|
|
state_save_register_device_item(device, 0, ST->TB );
|
|
state_save_register_device_item(device, 0, ST->TBC );
|
|
}
|
|
#endif /* _STATE_H */
|
|
|
|
#if BUILD_OPN
|
|
/* write a OPN mode register 0x20-0x2f */
|
|
static void OPNWriteMode(FM_OPN *OPN, int r, int v)
|
|
{
|
|
UINT8 c;
|
|
FM_CH *CH;
|
|
|
|
switch(r)
|
|
{
|
|
case 0x21: /* Test */
|
|
break;
|
|
case 0x22: /* LFO FREQ (YM2608/YM2610/YM2610B/YM2612) */
|
|
if (v&8) /* LFO enabled ? */
|
|
{
|
|
#if 0
|
|
if (!OPN->lfo_timer_overflow)
|
|
{
|
|
/* restart LFO */
|
|
OPN->lfo_cnt = 0;
|
|
OPN->lfo_timer = 0;
|
|
OPN->LFO_AM = 0;
|
|
OPN->LFO_PM = 0;
|
|
}
|
|
#endif
|
|
|
|
OPN->lfo_timer_overflow = lfo_samples_per_step[v&7] << LFO_SH;
|
|
}
|
|
else
|
|
{
|
|
/* Valley Bell: Ported from Genesis Plus GX 1.71
|
|
hold LFO waveform in reset state */
|
|
OPN->lfo_timer_overflow = 0;
|
|
OPN->lfo_timer = 0;
|
|
OPN->lfo_cnt = 0;
|
|
|
|
|
|
OPN->LFO_PM = 0;
|
|
OPN->LFO_AM = 126;
|
|
/* OPN->lfo_timer_overflow = 0; */
|
|
}
|
|
break;
|
|
case 0x24: /* timer A High 8*/
|
|
OPN->ST.TA = (OPN->ST.TA & 0x03)|(((int)v)<<2);
|
|
break;
|
|
case 0x25: /* timer A Low 2*/
|
|
OPN->ST.TA = (OPN->ST.TA & 0x3fc)|(v&3);
|
|
break;
|
|
case 0x26: /* timer B */
|
|
OPN->ST.TB = (UINT8)v;
|
|
break;
|
|
case 0x27: /* mode, timer control */
|
|
set_timers( OPN, &(OPN->ST),OPN->ST.param,v );
|
|
break;
|
|
case 0x28: /* key on / off */
|
|
c = v & 0x03;
|
|
if( c == 3 ) break;
|
|
if( (v&0x04) && (OPN->type & TYPE_6CH) ) c+=3;
|
|
CH = OPN->P_CH;
|
|
CH = &CH[c];
|
|
if(v&0x10) FM_KEYON(OPN,CH,SLOT1); else FM_KEYOFF(OPN,CH,SLOT1);
|
|
if(v&0x20) FM_KEYON(OPN,CH,SLOT2); else FM_KEYOFF(OPN,CH,SLOT2);
|
|
if(v&0x40) FM_KEYON(OPN,CH,SLOT3); else FM_KEYOFF(OPN,CH,SLOT3);
|
|
if(v&0x80) FM_KEYON(OPN,CH,SLOT4); else FM_KEYOFF(OPN,CH,SLOT4);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* write a OPN register (0x30-0xff) */
|
|
static void OPNWriteReg(FM_OPN *OPN, int r, int v)
|
|
{
|
|
FM_CH *CH;
|
|
FM_SLOT *SLOT;
|
|
|
|
UINT8 c = OPN_CHAN(r);
|
|
|
|
if (c == 3) return; /* 0xX3,0xX7,0xXB,0xXF */
|
|
|
|
if (r >= 0x100) c+=3;
|
|
|
|
CH = OPN->P_CH;
|
|
CH = &CH[c];
|
|
|
|
SLOT = &(CH->SLOT[OPN_SLOT(r)]);
|
|
|
|
switch( r & 0xf0 ) {
|
|
case 0x30: /* DET , MUL */
|
|
set_det_mul(&OPN->ST,CH,SLOT,v);
|
|
break;
|
|
|
|
case 0x40: /* TL */
|
|
set_tl(CH,SLOT,v);
|
|
break;
|
|
|
|
case 0x50: /* KS, AR */
|
|
set_ar_ksr(OPN->type,CH,SLOT,v);
|
|
break;
|
|
|
|
case 0x60: /* bit7 = AM ENABLE, DR */
|
|
set_dr(OPN->type, SLOT,v);
|
|
|
|
if(OPN->type & TYPE_LFOPAN) /* YM2608/2610/2610B/2612 */
|
|
{
|
|
SLOT->AMmask = (v&0x80) ? ~0 : 0;
|
|
}
|
|
break;
|
|
|
|
case 0x70: /* SR */
|
|
set_sr(OPN->type,SLOT,v);
|
|
break;
|
|
|
|
case 0x80: /* SL, RR */
|
|
set_sl_rr(OPN->type,SLOT,v);
|
|
break;
|
|
|
|
case 0x90: /* SSG-EG */
|
|
SLOT->ssg = v&0x0f;
|
|
|
|
/* recalculate EG output */
|
|
if (SLOT->state > EG_REL)
|
|
{
|
|
if ((SLOT->ssg&0x08) && (SLOT->ssgn ^ (SLOT->ssg&0x04)))
|
|
SLOT->vol_out = ((UINT32)(0x200 - SLOT->volume) & MAX_ATT_INDEX) + SLOT->tl;
|
|
else
|
|
SLOT->vol_out = (UINT32)SLOT->volume + SLOT->tl;
|
|
}
|
|
|
|
/* SSG-EG envelope shapes :
|
|
|
|
E AtAlH
|
|
1 0 0 0 \\\\
|
|
|
|
1 0 0 1 \___
|
|
|
|
1 0 1 0 \/\/
|
|
___
|
|
1 0 1 1 \
|
|
|
|
1 1 0 0 ////
|
|
___
|
|
1 1 0 1 /
|
|
|
|
1 1 1 0 /\/\
|
|
|
|
1 1 1 1 /___
|
|
|
|
|
|
E = SSG-EG enable
|
|
|
|
|
|
The shapes are generated using Attack, Decay and Sustain phases.
|
|
|
|
Each single character in the diagrams above represents this whole
|
|
sequence:
|
|
|
|
- when KEY-ON = 1, normal Attack phase is generated (*without* any
|
|
difference when compared to normal mode),
|
|
|
|
- later, when envelope level reaches minimum level (max volume),
|
|
the EG switches to Decay phase (which works with bigger steps
|
|
when compared to normal mode - see below),
|
|
|
|
- later when envelope level passes the SL level,
|
|
the EG swithes to Sustain phase (which works with bigger steps
|
|
when compared to normal mode - see below),
|
|
|
|
- finally when envelope level reaches maximum level (min volume),
|
|
the EG switches to Attack phase again (depends on actual waveform).
|
|
|
|
Important is that when switch to Attack phase occurs, the phase counter
|
|
of that operator will be zeroed-out (as in normal KEY-ON) but not always.
|
|
(I havent found the rule for that - perhaps only when the output level is low)
|
|
|
|
The difference (when compared to normal Envelope Generator mode) is
|
|
that the resolution in Decay and Sustain phases is 4 times lower;
|
|
this results in only 256 steps instead of normal 1024.
|
|
In other words:
|
|
when SSG-EG is disabled, the step inside of the EG is one,
|
|
when SSG-EG is enabled, the step is four (in Decay and Sustain phases).
|
|
|
|
Times between the level changes are the same in both modes.
|
|
|
|
|
|
Important:
|
|
Decay 1 Level (so called SL) is compared to actual SSG-EG output, so
|
|
it is the same in both SSG and no-SSG modes, with this exception:
|
|
|
|
when the SSG-EG is enabled and is generating raising levels
|
|
(when the EG output is inverted) the SL will be found at wrong level !!!
|
|
For example, when SL=02:
|
|
0 -6 = -6dB in non-inverted EG output
|
|
96-6 = -90dB in inverted EG output
|
|
Which means that EG compares its level to SL as usual, and that the
|
|
output is simply inverted afterall.
|
|
|
|
|
|
The Yamaha's manuals say that AR should be set to 0x1f (max speed).
|
|
That is not necessary, but then EG will be generating Attack phase.
|
|
|
|
*/
|
|
|
|
|
|
break;
|
|
|
|
case 0xa0:
|
|
switch( OPN_SLOT(r) )
|
|
{
|
|
case 0: /* 0xa0-0xa2 : FNUM1 */
|
|
#ifdef USE_VGM_INIT_SWITCH
|
|
if (IsVGMInit)
|
|
OPN->ST.fn_h = CH->block_fnum >> 8;
|
|
#endif
|
|
{
|
|
UINT32 fn = (((UINT32)( (OPN->ST.fn_h)&7))<<8) + v;
|
|
UINT8 blk = OPN->ST.fn_h>>3;
|
|
/* keyscale code */
|
|
CH->kcode = (blk<<2) | opn_fktable[fn >> 7];
|
|
/* phase increment counter */
|
|
CH->fc = OPN->fn_table[fn*2]>>(7-blk);
|
|
|
|
/* store fnum in clear form for LFO PM calculations */
|
|
CH->block_fnum = (blk<<11) | fn;
|
|
|
|
CH->SLOT[SLOT1].Incr=-1;
|
|
}
|
|
break;
|
|
case 1: /* 0xa4-0xa6 : FNUM2,BLK */
|
|
OPN->ST.fn_h = v&0x3f;
|
|
#ifdef USE_VGM_INIT_SWITCH
|
|
if (IsVGMInit) // workaround for stupid Kega Fusion init block
|
|
CH->block_fnum = (OPN->ST.fn_h << 8) | (CH->block_fnum & 0xFF);
|
|
#endif
|
|
break;
|
|
case 2: /* 0xa8-0xaa : 3CH FNUM1 */
|
|
#ifdef USE_VGM_INIT_SWITCH
|
|
if (IsVGMInit)
|
|
OPN->SL3.fn_h = OPN->SL3.block_fnum[c] >> 8;
|
|
#endif
|
|
if(r < 0x100)
|
|
{
|
|
UINT32 fn = (((UINT32)(OPN->SL3.fn_h&7))<<8) + v;
|
|
UINT8 blk = OPN->SL3.fn_h>>3;
|
|
/* keyscale code */
|
|
OPN->SL3.kcode[c]= (blk<<2) | opn_fktable[fn >> 7];
|
|
/* phase increment counter */
|
|
OPN->SL3.fc[c] = OPN->fn_table[fn*2]>>(7-blk);
|
|
OPN->SL3.block_fnum[c] = (blk<<11) | fn;
|
|
(OPN->P_CH)[2].SLOT[SLOT1].Incr=-1;
|
|
}
|
|
break;
|
|
case 3: /* 0xac-0xae : 3CH FNUM2,BLK */
|
|
if(r < 0x100)
|
|
{
|
|
OPN->SL3.fn_h = v&0x3f;
|
|
#ifdef USE_VGM_INIT_SWITCH
|
|
if (IsVGMInit)
|
|
OPN->SL3.block_fnum[c] = (OPN->SL3.fn_h << 8) | (OPN->SL3.block_fnum[c] & 0xFF);
|
|
#endif
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case 0xb0:
|
|
switch( OPN_SLOT(r) )
|
|
{
|
|
case 0: /* 0xb0-0xb2 : FB,ALGO */
|
|
{
|
|
unsigned char feedback = ((v>>3)&7);
|
|
CH->ALGO = v&7;
|
|
CH->FB = feedback ? feedback + 6 : 0;
|
|
setup_connection( OPN, CH, c );
|
|
}
|
|
break;
|
|
case 1: /* 0xb4-0xb6 : L , R , AMS , PMS (YM2612/YM2610B/YM2610/YM2608) */
|
|
if( OPN->type & TYPE_LFOPAN)
|
|
{
|
|
/* b0-2 PMS */
|
|
CH->pms = (v & 7) * 32; /* CH->pms = PM depth * 32 (index in lfo_pm_table) */
|
|
|
|
/* b4-5 AMS */
|
|
CH->ams = lfo_ams_depth_shift[(v>>4) & 0x03];
|
|
|
|
/* PAN : b7 = L, b6 = R */
|
|
OPN->pan[ c*2 ] = (v & 0x80) ? ~0 : 0;
|
|
OPN->pan[ c*2+1 ] = (v & 0x40) ? ~0 : 0;
|
|
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* initialize time tables */
|
|
static void init_timetables(FM_OPN *OPN, double freqbase)
|
|
{
|
|
int i,d;
|
|
double rate;
|
|
|
|
/* DeTune table */
|
|
for (d = 0;d <= 3;d++)
|
|
{
|
|
for (i = 0;i <= 31;i++)
|
|
{
|
|
rate = ((double)dt_tab[d*32 + i]) * freqbase * (1<<(FREQ_SH-10)); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */
|
|
OPN->ST.dt_tab[d][i] = (INT32) rate;
|
|
OPN->ST.dt_tab[d+4][i] = -OPN->ST.dt_tab[d][i];
|
|
}
|
|
}
|
|
|
|
/* there are 2048 FNUMs that can be generated using FNUM/BLK registers
|
|
but LFO works with one more bit of a precision so we really need 4096 elements */
|
|
/* calculate fnumber -> increment counter table */
|
|
for(i = 0; i < 4096; i++)
|
|
{
|
|
/* freq table for octave 7 */
|
|
/* OPN phase increment counter = 20bit */
|
|
/* the correct formula is : F-Number = (144 * fnote * 2^20 / M) / 2^(B-1) */
|
|
/* where sample clock is M/144 */
|
|
/* this means the increment value for one clock sample is FNUM * 2^(B-1) = FNUM * 64 for octave 7 */
|
|
/* we also need to handle the ratio between the chip frequency and the emulated frequency (can be 1.0) */
|
|
OPN->fn_table[i] = (UINT32)( (double)i * 32 * freqbase * (1<<(FREQ_SH-10)) ); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */
|
|
}
|
|
|
|
/* maximal frequency is required for Phase overflow calculation, register size is 17 bits (Nemesis) */
|
|
OPN->fn_max = (UINT32)( (double)0x20000 * freqbase * (1<<(FREQ_SH-10)) );
|
|
}
|
|
|
|
/* prescaler set (and make time tables) */
|
|
static void OPNSetPres(FM_OPN *OPN, int pres, int timer_prescaler, int SSGpres)
|
|
{
|
|
/* frequency base */
|
|
OPN->ST.freqbase = (OPN->ST.rate) ? ((double)OPN->ST.clock / OPN->ST.rate) / pres : 0;
|
|
|
|
/* EG is updated every 3 samples */
|
|
OPN->eg_timer_add = (UINT32)((1<<EG_SH) * OPN->ST.freqbase);
|
|
OPN->eg_timer_overflow = ( 3 ) * (1<<EG_SH);
|
|
|
|
/* LFO timer increment (every samples) */
|
|
OPN->lfo_timer_add = (UINT32)((1<<LFO_SH) * OPN->ST.freqbase);
|
|
|
|
/* Timer base time */
|
|
OPN->ST.timer_prescaler = timer_prescaler;
|
|
|
|
/* SSG part prescaler set */
|
|
if( SSGpres ) (*OPN->ST.SSG->set_clock)( OPN->ST.param, OPN->ST.clock * 2 / SSGpres );
|
|
|
|
/* make time tables */
|
|
init_timetables(OPN, OPN->ST.freqbase);
|
|
}
|
|
|
|
static void reset_channels( FM_ST *ST , FM_CH *CH , int num )
|
|
{
|
|
int c,s;
|
|
(void)ST;
|
|
|
|
for( c = 0 ; c < num ; c++ )
|
|
{
|
|
/* memset(&CH[c], 0x00, sizeof(FM_CH)); */
|
|
CH[c].mem_value = 0;
|
|
CH[c].op1_out[0] = 0;
|
|
CH[c].op1_out[1] = 0;
|
|
CH[c].fc = 0;
|
|
for(s = 0 ; s < 4 ; s++ )
|
|
{
|
|
/* memset(&CH[c].SLOT[s], 0x00, sizeof(FM_SLOT)); */
|
|
CH[c].SLOT[s].Incr = -1;
|
|
CH[c].SLOT[s].key = 0;
|
|
CH[c].SLOT[s].phase = 0;
|
|
CH[c].SLOT[s].ssg = 0;
|
|
CH[c].SLOT[s].ssgn = 0;
|
|
CH[c].SLOT[s].state= EG_OFF;
|
|
CH[c].SLOT[s].volume = MAX_ATT_INDEX;
|
|
CH[c].SLOT[s].vol_out= MAX_ATT_INDEX;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* initialize generic tables */
|
|
static void init_tables(void)
|
|
{
|
|
signed int i,x;
|
|
signed int n;
|
|
double o,m;
|
|
|
|
/* build Linear Power Table */
|
|
for (x=0; x<TL_RES_LEN; x++)
|
|
{
|
|
m = (1<<16) / pow(2, (x+1) * (ENV_STEP/4.0) / 8.0);
|
|
m = floor(m);
|
|
|
|
/* we never reach (1<<16) here due to the (x+1) */
|
|
/* result fits within 16 bits at maximum */
|
|
|
|
n = (int)m; /* 16 bits here */
|
|
n >>= 4; /* 12 bits here */
|
|
if (n&1) /* round to nearest */
|
|
n = (n>>1)+1;
|
|
else
|
|
n = n>>1;
|
|
/* 11 bits here (rounded) */
|
|
n <<= 2; /* 13 bits here (as in real chip) */
|
|
|
|
|
|
/* 14 bits (with sign bit) */
|
|
tl_tab[ x*2 + 0 ] = n;
|
|
tl_tab[ x*2 + 1 ] = -tl_tab[ x*2 + 0 ];
|
|
|
|
/* one entry in the 'Power' table use the following format, xxxxxyyyyyyyys with: */
|
|
/* s = sign bit */
|
|
/* yyyyyyyy = 8-bits decimal part (0-TL_RES_LEN) */
|
|
/* xxxxx = 5-bits integer 'shift' value (0-31) but, since Power table output is 13 bits, */
|
|
/* any value above 13 (included) would be discarded. */
|
|
for (i=1; i<13; i++)
|
|
{
|
|
tl_tab[ x*2+0 + i*2*TL_RES_LEN ] = tl_tab[ x*2+0 ]>>i;
|
|
tl_tab[ x*2+1 + i*2*TL_RES_LEN ] = -tl_tab[ x*2+0 + i*2*TL_RES_LEN ];
|
|
}
|
|
}
|
|
|
|
/* build Logarithmic Sinus table */
|
|
for (i=0; i<SIN_LEN; i++)
|
|
{
|
|
/* non-standard sinus */
|
|
m = sin( ((i*2)+1) * M_PI / SIN_LEN ); /* checked against the real chip */
|
|
/* we never reach zero here due to ((i*2)+1) */
|
|
|
|
if (m>0.0)
|
|
o = 8*log(1.0/m)/log(2.0); /* convert to 'decibels' */
|
|
else
|
|
o = 8*log(-1.0/m)/log(2.0); /* convert to 'decibels' */
|
|
|
|
o = o / (ENV_STEP/4);
|
|
|
|
n = (int)(2.0*o);
|
|
if (n&1) /* round to nearest */
|
|
n = (n>>1)+1;
|
|
else
|
|
n = n>>1;
|
|
|
|
/* 13-bits (8.5) value is formatted for above 'Power' table */
|
|
sin_tab[ i ] = n*2 + (m>=0.0? 0: 1 );
|
|
}
|
|
|
|
/* build LFO PM modulation table */
|
|
for(i = 0; i < 8; i++) /* 8 PM depths */
|
|
{
|
|
UINT8 fnum;
|
|
for (fnum=0; fnum<128; fnum++) /* 7 bits meaningful of F-NUMBER */
|
|
{
|
|
UINT8 value;
|
|
UINT8 step;
|
|
UINT32 offset_depth = i;
|
|
UINT32 offset_fnum_bit;
|
|
UINT32 bit_tmp;
|
|
|
|
for (step=0; step<8; step++)
|
|
{
|
|
value = 0;
|
|
for (bit_tmp=0; bit_tmp<7; bit_tmp++) /* 7 bits */
|
|
{
|
|
if (fnum & (1<<bit_tmp)) /* only if bit "bit_tmp" is set */
|
|
{
|
|
offset_fnum_bit = bit_tmp * 8;
|
|
value += lfo_pm_output[offset_fnum_bit + offset_depth][step];
|
|
}
|
|
}
|
|
/* 32 steps for LFO PM (sinus) */
|
|
lfo_pm_table[(fnum*32*8) + (i*32) + step + 0] = value;
|
|
lfo_pm_table[(fnum*32*8) + (i*32) +(step^7)+ 8] = value;
|
|
lfo_pm_table[(fnum*32*8) + (i*32) + step +16] = -value;
|
|
lfo_pm_table[(fnum*32*8) + (i*32) +(step^7)+24] = -value;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
#ifdef SAVE_SAMPLE
|
|
sample[0]=fopen("sampsum.pcm","wb");
|
|
#endif
|
|
}
|
|
|
|
#endif /* BUILD_OPN */
|
|
|
|
|
|
/*******************************************************************************/
|
|
/* YM2612 local section */
|
|
/*******************************************************************************/
|
|
|
|
static void ym2612_generate(void *chip, FMSAMPLE *buffer, int frames, int mix)
|
|
{
|
|
YM2612 *F2612 = (YM2612 *)chip;
|
|
FM_CH *cch = F2612->CH;
|
|
FMSAMPLE *bufOut = buffer;
|
|
int i;
|
|
#if !RSM_ENABLE
|
|
FMSAMPLE bufTmp[2];
|
|
#endif
|
|
|
|
ym2612_pre_generate(chip);
|
|
|
|
if (!frames)
|
|
{
|
|
update_ssg_eg_channel(&cch[0].SLOT[SLOT1]);
|
|
update_ssg_eg_channel(&cch[1].SLOT[SLOT1]);
|
|
update_ssg_eg_channel(&cch[2].SLOT[SLOT1]);
|
|
update_ssg_eg_channel(&cch[3].SLOT[SLOT1]);
|
|
update_ssg_eg_channel(&cch[4].SLOT[SLOT1]);
|
|
update_ssg_eg_channel(&cch[5].SLOT[SLOT1]);
|
|
}
|
|
|
|
/* buffering */
|
|
for(i=0 ; i < frames ; i++)
|
|
{
|
|
#if RSM_ENABLE
|
|
while(F2612->OPN.ST.framecnt >= F2612->OPN.ST.rateratio)/* Copy-Pasta from Nuked */
|
|
{
|
|
/* Copy-Pasta from Nuked */
|
|
F2612->OPN.ST.prev_sample[0] = F2612->OPN.ST.cur_sample[0];
|
|
F2612->OPN.ST.prev_sample[1] = F2612->OPN.ST.cur_sample[1];
|
|
ym2612_generate_one_native(chip, F2612->OPN.ST.cur_sample);
|
|
F2612->OPN.ST.framecnt -= F2612->OPN.ST.rateratio;
|
|
/* Copy-Pasta from Nuked */
|
|
}
|
|
if (mix)
|
|
{
|
|
*bufOut++ += (FMSAMPLE)((F2612->OPN.ST.prev_sample[0] * (F2612->OPN.ST.rateratio - F2612->OPN.ST.framecnt)
|
|
+ F2612->OPN.ST.cur_sample[0] * F2612->OPN.ST.framecnt) / F2612->OPN.ST.rateratio);
|
|
*bufOut++ += (FMSAMPLE)((F2612->OPN.ST.prev_sample[1] * (F2612->OPN.ST.rateratio - F2612->OPN.ST.framecnt)
|
|
+ F2612->OPN.ST.cur_sample[1] * F2612->OPN.ST.framecnt) / F2612->OPN.ST.rateratio);
|
|
} else {
|
|
*bufOut++ = (FMSAMPLE)((F2612->OPN.ST.prev_sample[0] * (F2612->OPN.ST.rateratio - F2612->OPN.ST.framecnt)
|
|
+ F2612->OPN.ST.cur_sample[0] * F2612->OPN.ST.framecnt) / F2612->OPN.ST.rateratio);
|
|
*bufOut++ = (FMSAMPLE)((F2612->OPN.ST.prev_sample[1] * (F2612->OPN.ST.rateratio - F2612->OPN.ST.framecnt)
|
|
+ F2612->OPN.ST.cur_sample[1] * F2612->OPN.ST.framecnt) / F2612->OPN.ST.rateratio);
|
|
}
|
|
F2612->OPN.ST.framecnt += 1 << RSM_FRAC;
|
|
#else
|
|
if (mix)
|
|
{
|
|
ym2612_generate_one_native(chip, bufTmp);
|
|
bufOut[0] += bufTmp[0];
|
|
bufOut[1] += bufTmp[1];
|
|
}
|
|
else
|
|
{
|
|
ym2612_generate_one_native(chip, bufOut);
|
|
}
|
|
bufOut += 2;
|
|
#endif
|
|
}
|
|
/* ym2612_post_generate(chip, frames); */
|
|
}
|
|
|
|
void ym2612_pre_generate(void *chip)
|
|
{
|
|
YM2612 *F2612 = (YM2612 *)chip;
|
|
FM_OPN *OPN = &F2612->OPN;
|
|
FM_CH *cch = F2612->CH;
|
|
|
|
/* refresh PG and EG */
|
|
refresh_fc_eg_chan( OPN, &cch[0] );
|
|
refresh_fc_eg_chan( OPN, &cch[1] );
|
|
if( (OPN->ST.mode & 0xc0) )
|
|
{
|
|
/* 3SLOT MODE */
|
|
if( cch[2].SLOT[SLOT1].Incr==-1)
|
|
{
|
|
refresh_fc_eg_slot(OPN, &cch[2].SLOT[SLOT1] , OPN->SL3.fc[1] , OPN->SL3.kcode[1] );
|
|
refresh_fc_eg_slot(OPN, &cch[2].SLOT[SLOT2] , OPN->SL3.fc[2] , OPN->SL3.kcode[2] );
|
|
refresh_fc_eg_slot(OPN, &cch[2].SLOT[SLOT3] , OPN->SL3.fc[0] , OPN->SL3.kcode[0] );
|
|
refresh_fc_eg_slot(OPN, &cch[2].SLOT[SLOT4] , cch[2].fc , cch[2].kcode );
|
|
}
|
|
} else
|
|
refresh_fc_eg_chan( OPN, &cch[2] );
|
|
refresh_fc_eg_chan( OPN, &cch[3] );
|
|
refresh_fc_eg_chan( OPN, &cch[4] );
|
|
refresh_fc_eg_chan( OPN, &cch[5] );
|
|
}
|
|
|
|
void ym2612_generate_one_native(void *chip, FMSAMPLE buffer[])
|
|
{
|
|
YM2612 *F2612 = (YM2612 *)chip;
|
|
FM_OPN *OPN = &F2612->OPN;
|
|
INT32 *out_fm = OPN->out_fm;
|
|
FM_CH *cch = F2612->CH;
|
|
INT32 dacout;
|
|
int lt,rt;
|
|
|
|
if (! F2612->MuteDAC)
|
|
dacout = F2612->dacout;
|
|
else
|
|
dacout = 0;
|
|
|
|
/* clear outputs */
|
|
out_fm[0] = 0;
|
|
out_fm[1] = 0;
|
|
out_fm[2] = 0;
|
|
out_fm[3] = 0;
|
|
out_fm[4] = 0;
|
|
out_fm[5] = 0;
|
|
|
|
/* update SSG-EG output */
|
|
update_ssg_eg_channel(&cch[0].SLOT[SLOT1]);
|
|
update_ssg_eg_channel(&cch[1].SLOT[SLOT1]);
|
|
update_ssg_eg_channel(&cch[2].SLOT[SLOT1]);
|
|
update_ssg_eg_channel(&cch[3].SLOT[SLOT1]);
|
|
update_ssg_eg_channel(&cch[4].SLOT[SLOT1]);
|
|
update_ssg_eg_channel(&cch[5].SLOT[SLOT1]);
|
|
|
|
/* calculate FM */
|
|
if (! F2612->dac_test)
|
|
{
|
|
chan_calc(F2612, OPN, &cch[0]);
|
|
chan_calc(F2612, OPN, &cch[1]);
|
|
chan_calc(F2612, OPN, &cch[2]);
|
|
chan_calc(F2612, OPN, &cch[3]);
|
|
chan_calc(F2612, OPN, &cch[4]);
|
|
if( F2612->dacen )
|
|
cch[5].connect4 += dacout;
|
|
else
|
|
chan_calc(F2612, OPN, &cch[5]);
|
|
}
|
|
else
|
|
{
|
|
out_fm[0] = out_fm[1] = dacout;
|
|
out_fm[2] = out_fm[3] = dacout;
|
|
out_fm[5] = dacout;
|
|
}
|
|
|
|
/* advance LFO */
|
|
advance_lfo(OPN);
|
|
|
|
/* advance envelope generator */
|
|
OPN->eg_timer += OPN->eg_timer_add;
|
|
while (OPN->eg_timer >= OPN->eg_timer_overflow)
|
|
{
|
|
/* reset EG timer */
|
|
OPN->eg_timer -= OPN->eg_timer_overflow;
|
|
/* increment EG counter */
|
|
OPN->eg_cnt++;
|
|
/* EG counter is 12-bit only and zero value is skipped (verified on real hardware) */
|
|
if (OPN->eg_cnt == 4096)
|
|
OPN->eg_cnt = 1;
|
|
|
|
/* advance envelope generator */
|
|
advance_eg_channel(OPN, &cch[0].SLOT[SLOT1]);
|
|
advance_eg_channel(OPN, &cch[1].SLOT[SLOT1]);
|
|
advance_eg_channel(OPN, &cch[2].SLOT[SLOT1]);
|
|
advance_eg_channel(OPN, &cch[3].SLOT[SLOT1]);
|
|
advance_eg_channel(OPN, &cch[4].SLOT[SLOT1]);
|
|
advance_eg_channel(OPN, &cch[5].SLOT[SLOT1]);
|
|
}
|
|
|
|
/*fprintf(hFile, "%u", FileSample, out_fm[0]);
|
|
for (lt = 0; lt < 6; lt ++)
|
|
fprintf(hFile, "\t%d", out_fm[lt]);
|
|
fprintf(hFile, "\n");
|
|
FileSample ++;*/
|
|
|
|
if (out_fm[0] > 8192) out_fm[0] = 8192;
|
|
else if (out_fm[0] < -8192) out_fm[0] = -8192;
|
|
if (out_fm[1] > 8192) out_fm[1] = 8192;
|
|
else if (out_fm[1] < -8192) out_fm[1] = -8192;
|
|
if (out_fm[2] > 8192) out_fm[2] = 8192;
|
|
else if (out_fm[2] < -8192) out_fm[2] = -8192;
|
|
if (out_fm[3] > 8192) out_fm[3] = 8192;
|
|
else if (out_fm[3] < -8192) out_fm[3] = -8192;
|
|
if (out_fm[4] > 8192) out_fm[4] = 8192;
|
|
else if (out_fm[4] < -8192) out_fm[4] = -8192;
|
|
if (out_fm[5] > 8192) out_fm[5] = 8192;
|
|
else if (out_fm[5] < -8192) out_fm[5] = -8192;
|
|
|
|
/* 6-channels mixing */
|
|
lt = ((out_fm[0]>>0) & OPN->pan[0]);
|
|
rt = ((out_fm[0]>>0) & OPN->pan[1]);
|
|
lt += ((out_fm[1]>>0) & OPN->pan[2]);
|
|
rt += ((out_fm[1]>>0) & OPN->pan[3]);
|
|
lt += ((out_fm[2]>>0) & OPN->pan[4]);
|
|
rt += ((out_fm[2]>>0) & OPN->pan[5]);
|
|
lt += ((out_fm[3]>>0) & OPN->pan[6]);
|
|
rt += ((out_fm[3]>>0) & OPN->pan[7]);
|
|
if (! F2612->dac_test)
|
|
{
|
|
lt += ((out_fm[4]>>0) & OPN->pan[8]);
|
|
rt += ((out_fm[4]>>0) & OPN->pan[9]);
|
|
}
|
|
else
|
|
{
|
|
lt += dacout;
|
|
lt += dacout;
|
|
}
|
|
lt += ((out_fm[5]>>0) & OPN->pan[10]);
|
|
rt += ((out_fm[5]>>0) & OPN->pan[11]);
|
|
|
|
/* Limit( lt, MAXOUT, MINOUT ); */
|
|
/* Limit( rt, MAXOUT, MINOUT ); */
|
|
|
|
#ifdef SAVE_SAMPLE
|
|
SAVE_ALL_CHANNELS
|
|
#endif
|
|
|
|
/* buffering */
|
|
if (F2612->WaveOutMode & 0x01)
|
|
F2612->WaveL = lt;
|
|
if (F2612->WaveOutMode & 0x02)
|
|
F2612->WaveR = rt;
|
|
if (F2612->WaveOutMode ^ 0x03)
|
|
F2612->WaveOutMode ^= 0x03;
|
|
|
|
buffer[0] = (FMSAMPLE)(F2612->WaveL / 2);
|
|
buffer[1] = (FMSAMPLE)(F2612->WaveR / 2);
|
|
|
|
/* CSM mode: if CSM Key ON has occured, CSM Key OFF need to be sent */
|
|
/* only if Timer A does not overflow again (i.e CSM Key ON not set again) */
|
|
OPN->SL3.key_csm <<= 1;
|
|
|
|
/* timer A control */
|
|
/* INTERNAL_TIMER_A( &OPN->ST , cch[2] ) */
|
|
{
|
|
if( OPN->ST.TAC && (OPN->ST.timer_handler==0) )
|
|
if( (OPN->ST.TAC -= (int)(OPN->ST.freqbase*4096)) <= 0 )
|
|
{
|
|
TimerAOver( &OPN->ST );
|
|
/* CSM mode total level latch and auto key on */
|
|
if( OPN->ST.mode & 0x80 )
|
|
CSMKeyControll( OPN, &cch[2] );
|
|
}
|
|
}
|
|
|
|
/* CSM Mode Key ON still disabled */
|
|
if (OPN->SL3.key_csm & 2)
|
|
{
|
|
/* CSM Mode Key OFF (verified by Nemesis on real hardware) */
|
|
FM_KEYOFF_CSM(&cch[2],SLOT1);
|
|
FM_KEYOFF_CSM(&cch[2],SLOT2);
|
|
FM_KEYOFF_CSM(&cch[2],SLOT3);
|
|
FM_KEYOFF_CSM(&cch[2],SLOT4);
|
|
OPN->SL3.key_csm = 0;
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
void ym2612_post_generate(void *chip, int length)
|
|
{
|
|
YM2612 *F2612 = (YM2612 *)chip;
|
|
/* timer B control */
|
|
INTERNAL_TIMER_B(&F2612->OPN.ST, length);
|
|
}
|
|
#endif
|
|
|
|
#ifdef __STATE_H__
|
|
void ym2612_postload(void *chip)
|
|
{
|
|
if (chip)
|
|
{
|
|
YM2612 *F2612 = (YM2612 *)chip;
|
|
int r;
|
|
|
|
/* DAC data & port */
|
|
F2612->dacout = ((int)F2612->REGS[0x2a] - 0x80) << 6; /* level unknown */
|
|
F2612->dacen = F2612->REGS[0x2d] & 0x80;
|
|
/* OPN registers */
|
|
/* DT / MULTI , TL , KS / AR , AMON / DR , SR , SL / RR , SSG-EG */
|
|
for(r=0x30;r<0x9e;r++)
|
|
if((r&3) != 3)
|
|
{
|
|
OPNWriteReg(&F2612->OPN,r,F2612->REGS[r]);
|
|
OPNWriteReg(&F2612->OPN,r|0x100,F2612->REGS[r|0x100]);
|
|
}
|
|
/* FB / CONNECT , L / R / AMS / PMS */
|
|
for(r=0xb0;r<0xb6;r++)
|
|
if((r&3) != 3)
|
|
{
|
|
OPNWriteReg(&F2612->OPN,r,F2612->REGS[r]);
|
|
OPNWriteReg(&F2612->OPN,r|0x100,F2612->REGS[r|0x100]);
|
|
}
|
|
/* channels */
|
|
/*FM_channel_postload(F2612->CH,6);*/
|
|
}
|
|
}
|
|
|
|
static void YM2612_save_state(YM2612 *F2612, running_device *device)
|
|
{
|
|
state_save_register_device_item_array(device, 0, F2612->REGS);
|
|
FMsave_state_st(device,&F2612->OPN.ST);
|
|
FMsave_state_channel(device,F2612->CH,6);
|
|
/* 3slots */
|
|
state_save_register_device_item_array(device, 0, F2612->OPN.SL3.fc);
|
|
state_save_register_device_item(device, 0, F2612->OPN.SL3.fn_h);
|
|
state_save_register_device_item_array(device, 0, F2612->OPN.SL3.kcode);
|
|
/* address register1 */
|
|
state_save_register_device_item(device, 0, F2612->addr_A1);
|
|
}
|
|
#endif /* _STATE_H */
|
|
|
|
/* initialize YM2612 emulator(s) */
|
|
static void * ym2612_init(void *param, int clock, int rate,
|
|
FM_TIMERHANDLER timer_handler,FM_IRQHANDLER IRQHandler)
|
|
{
|
|
YM2612 *F2612;
|
|
|
|
if (clock <= 0 || rate <= 0)
|
|
return NULL; /* Forbid zero clock and sample rate */
|
|
|
|
/* allocate extend state space */
|
|
/* F2612 = auto_alloc_clear(device->machine, YM2612); */
|
|
F2612 = (YM2612 *)malloc(sizeof(YM2612));
|
|
if (F2612 == NULL)
|
|
return NULL;
|
|
memset(F2612, 0x00, sizeof(YM2612));
|
|
/* allocate total level table (128kb space) */
|
|
init_tables();
|
|
|
|
F2612->OPN.ST.param = param;
|
|
F2612->OPN.type = TYPE_YM2612;
|
|
F2612->OPN.P_CH = F2612->CH;
|
|
/* F2612->OPN.ST.device = device; */
|
|
F2612->OPN.ST.clock = clock;
|
|
#if RSM_ENABLE
|
|
F2612->OPN.ST.rate = 53267;
|
|
F2612->OPN.ST.rateratio = (INT32)(UINT32)((((UINT64)144 * rate) << RSM_FRAC) / clock);
|
|
F2612->OPN.ST.framecnt = 1 << RSM_FRAC;
|
|
memset(&(F2612->OPN.ST.cur_sample), 0x00, sizeof(FMSAMPLE) * 2);
|
|
memset(&(F2612->OPN.ST.prev_sample), 0x00, sizeof(FMSAMPLE) * 2);
|
|
#else
|
|
F2612->OPN.ST.rate = rate;
|
|
#endif
|
|
/* F2612->OPN.ST.irq = 0; */
|
|
/* F2612->OPN.ST.status = 0; */
|
|
/* Extend handler */
|
|
F2612->OPN.ST.timer_handler = timer_handler;
|
|
F2612->OPN.ST.IRQ_Handler = IRQHandler;
|
|
|
|
if (PseudoSt)
|
|
F2612->WaveOutMode = 0x01;
|
|
else
|
|
F2612->WaveOutMode = 0x03;
|
|
/*hFile = fopen("YM2612.log", "wt");
|
|
fprintf(hFile, "Clock: %d, Sample Rate: %d\n", clock, rate);
|
|
fprintf(hFile, "Sample\tCh 0\tCh 1\tCh 2\tCh 3\tCh 4\tCh 5\n");
|
|
FileSample = 0;*/
|
|
|
|
#ifdef __STATE_H__
|
|
YM2612_save_state(F2612, device);
|
|
#endif
|
|
return F2612;
|
|
}
|
|
|
|
/* shut down emulator */
|
|
static void ym2612_shutdown(void *chip)
|
|
{
|
|
YM2612 *F2612 = (YM2612 *)chip;
|
|
/* fclose(hFile); */
|
|
|
|
FMCloseTable();
|
|
/* auto_free(F2612->OPN.ST.device->machine, F2612); */
|
|
free(F2612);
|
|
}
|
|
|
|
/* reset one of chip */
|
|
static void ym2612_reset_chip(void *chip)
|
|
{
|
|
int i;
|
|
YM2612 *F2612 = (YM2612 *)chip;
|
|
FM_OPN *OPN = &F2612->OPN;
|
|
|
|
OPNSetPres( OPN, 6*24, 6*24, 0);
|
|
/* status clear */
|
|
FM_IRQMASK_SET(&OPN->ST,0x03);
|
|
FM_BUSY_CLEAR(&OPN->ST);
|
|
/* OPNWriteMode(OPN,0x27,0x30); */ /* mode 0 , timer reset */
|
|
|
|
#if RSM_ENABLE
|
|
/* Resampler's state */
|
|
F2612->OPN.ST.framecnt = 1 << RSM_FRAC;
|
|
memset(&(F2612->OPN.ST.cur_sample), 0x00, sizeof(FMSAMPLE) * 2);
|
|
memset(&(F2612->OPN.ST.prev_sample), 0x00, sizeof(FMSAMPLE) * 2);
|
|
#endif
|
|
|
|
OPN->eg_timer = 0;
|
|
OPN->eg_cnt = 0;
|
|
|
|
OPN->lfo_timer = 0;
|
|
OPN->lfo_cnt = 0;
|
|
OPN->LFO_AM = 126;
|
|
OPN->LFO_PM = 0;
|
|
|
|
OPN->ST.TAC = 0;
|
|
OPN->ST.TBC = 0;
|
|
|
|
OPN->SL3.key_csm = 0;
|
|
|
|
OPN->ST.status = 0;
|
|
OPN->ST.mode = 0;
|
|
|
|
memset(F2612->REGS, 0x00, sizeof(UINT8) * 512);
|
|
|
|
OPNWriteMode(OPN,0x22,0x00);
|
|
|
|
OPNWriteMode(OPN,0x27,0x30);
|
|
OPNWriteMode(OPN,0x26,0x00);
|
|
OPNWriteMode(OPN,0x25,0x00);
|
|
OPNWriteMode(OPN,0x24,0x00);
|
|
|
|
reset_channels( &OPN->ST , &F2612->CH[0] , 6 );
|
|
|
|
for(i = 0xb6 ; i >= 0xb4 ; i-- )
|
|
{
|
|
OPNWriteReg(OPN,i ,0xc0);
|
|
OPNWriteReg(OPN,i|0x100,0xc0);
|
|
}
|
|
for(i = 0xb2 ; i >= 0x30 ; i-- )
|
|
{
|
|
OPNWriteReg(OPN,i ,0);
|
|
OPNWriteReg(OPN,i|0x100,0);
|
|
}
|
|
|
|
/* DAC mode clear */
|
|
F2612->dacen = 0;
|
|
F2612->dac_test = 0;
|
|
F2612->dacout = 0;
|
|
|
|
if (F2612->WaveOutMode == 0x02)
|
|
F2612->WaveOutMode >>= 1;
|
|
}
|
|
|
|
/* YM2612 write */
|
|
/* n = number */
|
|
/* a = address */
|
|
/* v = value */
|
|
static int ym2612_write(void *chip, int a, UINT8 v)
|
|
{
|
|
YM2612 *F2612 = (YM2612 *)chip;
|
|
int addr;
|
|
|
|
v &= 0xff; /* adjust to 8 bit bus */
|
|
|
|
switch( a&3)
|
|
{
|
|
case 0: /* address port 0 */
|
|
F2612->OPN.ST.address = v;
|
|
F2612->addr_A1 = 0;
|
|
break;
|
|
|
|
case 1: /* data port 0 */
|
|
if (F2612->addr_A1 != 0)
|
|
break; /* verified on real YM2608 */
|
|
|
|
addr = F2612->OPN.ST.address;
|
|
F2612->REGS[addr] = v;
|
|
switch( addr & 0xf0 )
|
|
{
|
|
case 0x20: /* 0x20-0x2f Mode */
|
|
switch( addr )
|
|
{
|
|
case 0x2a: /* DAC data (YM2612) */
|
|
ym2612_update_one(chip, DUMMYBUF, 0);
|
|
F2612->dacout = ((int)v - 0x80) << 6; /* level unknown */
|
|
break;
|
|
case 0x2b: /* DAC Sel (YM2612) */
|
|
/* b7 = dac enable */
|
|
F2612->dacen = v & 0x80;
|
|
break;
|
|
case 0x2C: /* undocumented: DAC Test Reg */
|
|
/* b5 = volume enable */
|
|
F2612->dac_test = v & 0x20;
|
|
break;
|
|
default: /* OPN section */
|
|
/* ym2612_update_req(F2612->OPN.ST.param); */
|
|
ym2612_update_one(chip, DUMMYBUF, 0);
|
|
/* write register */
|
|
OPNWriteMode(&(F2612->OPN),addr,v);
|
|
}
|
|
break;
|
|
default: /* 0x30-0xff OPN section */
|
|
ym2612_update_one(chip, DUMMYBUF, 0);
|
|
/* write register */
|
|
OPNWriteReg(&(F2612->OPN),addr,v);
|
|
}
|
|
break;
|
|
|
|
case 2: /* address port 1 */
|
|
F2612->OPN.ST.address = v;
|
|
F2612->addr_A1 = 1;
|
|
break;
|
|
|
|
case 3: /* data port 1 */
|
|
if (F2612->addr_A1 != 1)
|
|
break; /* verified on real YM2608 */
|
|
|
|
addr = F2612->OPN.ST.address;
|
|
F2612->REGS[addr | 0x100] = v;
|
|
ym2612_update_one(chip, DUMMYBUF, 0);
|
|
OPNWriteReg(&(F2612->OPN),addr | 0x100,v);
|
|
break;
|
|
}
|
|
return F2612->OPN.ST.irq;
|
|
}
|
|
|
|
#if 0
|
|
static UINT8 ym2612_read(void *chip,int a)
|
|
{
|
|
YM2612 *F2612 = (YM2612 *)chip;
|
|
|
|
switch( a&3)
|
|
{
|
|
case 0: /* status 0 */
|
|
return FM_STATUS_FLAG(&F2612->OPN.ST);
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
/* LOG(LOG_WAR,("YM2612 #%p:A=%d read unmapped area\n",F2612->OPN.ST.param,a)); */
|
|
return FM_STATUS_FLAG(&F2612->OPN.ST);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ym2612_timer_over(void *chip,int c)
|
|
{
|
|
YM2612 *F2612 = (YM2612 *)chip;
|
|
|
|
if( c )
|
|
{ /* Timer B */
|
|
TimerBOver( &(F2612->OPN.ST) );
|
|
}
|
|
else
|
|
{ /* Timer A */
|
|
ym2612_update_one(chip, DUMMYBUF, 0);
|
|
/* timer update */
|
|
TimerAOver( &(F2612->OPN.ST) );
|
|
/* CSM mode key,TL controll */
|
|
if ((F2612->OPN.ST.mode & 0xc0) == 0x80)
|
|
{ /* CSM mode total level latch and auto key on */
|
|
CSMKeyControll( &F2612->OPN, &(F2612->CH[2]) );
|
|
}
|
|
}
|
|
return F2612->OPN.ST.irq;
|
|
}
|
|
#endif
|
|
|
|
static void ym2612_set_mutemask(void *chip, UINT32 MuteMask)
|
|
{
|
|
YM2612 *F2612 = (YM2612 *)chip;
|
|
UINT8 CurChn;
|
|
|
|
for (CurChn = 0; CurChn < 6; CurChn ++)
|
|
F2612->CH[CurChn].Muted = (MuteMask >> CurChn) & 0x01;
|
|
F2612->MuteDAC = (MuteMask >> 6) & 0x01;
|
|
|
|
return;
|
|
}
|
|
#if 0
|
|
static void ym2612_setoptions(UINT8 Flags)
|
|
{
|
|
PseudoSt = (Flags >> 2) & 0x01;
|
|
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
} // Ym2612_MameImpl
|
|
|
|
|
|
Ym2612_MAME_Emu::Ym2612_MAME_Emu() { impl = 0; }
|
|
|
|
Ym2612_MAME_Emu::~Ym2612_MAME_Emu()
|
|
{
|
|
if ( impl ) Ym2612_MameImpl::ym2612_shutdown( impl );
|
|
}
|
|
|
|
const char *Ym2612_MAME_Emu::set_rate(double sample_rate, double clock_rate)
|
|
{
|
|
if ( impl ) Ym2612_MameImpl::ym2612_shutdown( impl );
|
|
impl = Ym2612_MameImpl::ym2612_init( NULL, static_cast<int>(clock_rate), static_cast<int>(sample_rate), NULL, NULL );
|
|
if ( !impl )
|
|
return "Out of memory";
|
|
return 0;
|
|
}
|
|
|
|
void Ym2612_MAME_Emu::reset()
|
|
{
|
|
if ( impl ) Ym2612_MameImpl::ym2612_reset_chip( impl );
|
|
}
|
|
|
|
void Ym2612_MAME_Emu::mute_voices(int mask)
|
|
{
|
|
if ( impl ) Ym2612_MameImpl::ym2612_set_mutemask( impl, mask );
|
|
}
|
|
|
|
void Ym2612_MAME_Emu::write0(int addr, int data)
|
|
{
|
|
if ( !impl ) return;
|
|
Ym2612_MameImpl::ym2612_write( impl, 0, static_cast<uint8_t>(addr) );
|
|
Ym2612_MameImpl::ym2612_write( impl, 1, static_cast<uint8_t>(data) );
|
|
}
|
|
|
|
void Ym2612_MAME_Emu::write1(int addr, int data)
|
|
{
|
|
if ( !impl ) return;
|
|
Ym2612_MameImpl::ym2612_write( impl, 0 + 2, static_cast<uint8_t>(addr) );
|
|
Ym2612_MameImpl::ym2612_write( impl, 1 + 2, static_cast<uint8_t>(data) );
|
|
}
|
|
|
|
void Ym2612_MAME_Emu::run(int pair_count, Ym2612_MAME_Emu::sample_t *out)
|
|
{
|
|
if ( impl ) Ym2612_MameImpl::ym2612_generate( impl, out, pair_count, 0);
|
|
}
|