gzdoom/src/nodebuild_utility.cpp
Christoph Oelckers 19003a7973 - fixed: The node builder's FindMapBounds function included all vertices generated by the node builder.
This could cause problems on maps with bogus nodes so it's better to only check vertices that are referenced by a linedef.
2016-05-27 09:38:33 +02:00

788 lines
20 KiB
C++

/*
** nodebuild_utility.cpp
**
** Miscellaneous node builder utility functions.
**
**---------------------------------------------------------------------------
** Copyright 2002-2006 Randy Heit
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
** 4. When not used as part of ZDoom or a ZDoom derivative, this code will be
** covered by the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or (at
** your option) any later version.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#include <stdlib.h>
#ifdef _MSC_VER
#include <malloc.h>
#endif
#include <string.h>
#include <stdio.h>
#include "nodebuild.h"
#include "templates.h"
#include "m_bbox.h"
#include "i_system.h"
#include "po_man.h"
#include "r_state.h"
#include "math/cmath.h"
static const int PO_LINE_START = 1;
static const int PO_LINE_EXPLICIT = 5;
#if 0
#define D(x) x
#else
#define D(x) do{}while(0)
#endif
#if 0
#define P(x) x
#else
#define P(x) do{}while(0)
#endif
angle_t FNodeBuilder::PointToAngle (fixed_t x, fixed_t y)
{
const double rad2bam = double(1<<30) / M_PI;
#if defined __APPLE__ && !defined __llvm__
// Work-around for vectorization issue in Apple's GCC 4.x
// See https://gcc.gnu.org/wiki/Math_Optimization_Flags for details
long double ang = atan2l (double(y), double(x));
#else // !__APPLE__ || __llvm__
double ang = g_atan2 (double(y), double(x));
#endif // __APPLE__ && !__llvm__
// Convert to signed first since negative double to unsigned is undefined.
return angle_t(int(ang * rad2bam)) << 1;
}
void FNodeBuilder::FindUsedVertices (vertex_t *oldverts, int max)
{
int *map = new int[max];
int i;
FPrivVert newvert;
memset (&map[0], -1, sizeof(int)*max);
for (i = 0; i < Level.NumLines; ++i)
{
ptrdiff_t v1 = Level.Lines[i].v1 - oldverts;
ptrdiff_t v2 = Level.Lines[i].v2 - oldverts;
if (map[v1] == -1)
{
newvert.x = oldverts[v1].fixX();
newvert.y = oldverts[v1].fixY();
map[v1] = VertexMap->SelectVertexExact (newvert);
}
if (map[v2] == -1)
{
newvert.x = oldverts[v2].fixX();
newvert.y = oldverts[v2].fixY();
map[v2] = VertexMap->SelectVertexExact (newvert);
}
Level.Lines[i].v1 = (vertex_t *)(size_t)map[v1];
Level.Lines[i].v2 = (vertex_t *)(size_t)map[v2];
}
OldVertexTable = map;
}
// Retrieves the original vertex -> current vertex table.
// Doing so prevents the node builder from freeing it.
const int *FNodeBuilder::GetOldVertexTable()
{
int *table = OldVertexTable;
OldVertexTable = NULL;
return table;
}
// For every sidedef in the map, create a corresponding seg.
void FNodeBuilder::MakeSegsFromSides ()
{
int i, j;
if (Level.NumLines == 0)
{
I_Error ("Map is empty.\n");
}
for (i = 0; i < Level.NumLines; ++i)
{
if (Level.Lines[i].sidedef[0] != NULL)
{
CreateSeg (i, 0);
}
else
{
Printf ("Linedef %d does not have a front side.\n", i);
}
if (Level.Lines[i].sidedef[1] != NULL)
{
j = CreateSeg (i, 1);
if (Level.Lines[i].sidedef[0] != NULL)
{
Segs[j-1].partner = j;
Segs[j].partner = j-1;
}
}
}
}
int FNodeBuilder::CreateSeg (int linenum, int sidenum)
{
FPrivSeg seg;
int segnum;
seg.next = DWORD_MAX;
seg.loopnum = 0;
seg.partner = DWORD_MAX;
seg.hashnext = NULL;
seg.planefront = false;
seg.planenum = DWORD_MAX;
seg.storedseg = DWORD_MAX;
if (sidenum == 0)
{ // front
seg.frontsector = Level.Lines[linenum].frontsector;
seg.backsector = Level.Lines[linenum].backsector;
seg.v1 = (int)(size_t)Level.Lines[linenum].v1;
seg.v2 = (int)(size_t)Level.Lines[linenum].v2;
}
else
{ // back
seg.frontsector = Level.Lines[linenum].backsector;
seg.backsector = Level.Lines[linenum].frontsector;
seg.v2 = (int)(size_t)Level.Lines[linenum].v1;
seg.v1 = (int)(size_t)Level.Lines[linenum].v2;
}
seg.linedef = linenum;
side_t *sd = Level.Lines[linenum].sidedef[sidenum];
seg.sidedef = sd != NULL? int(sd - sides) : int(NO_SIDE);
seg.nextforvert = Vertices[seg.v1].segs;
seg.nextforvert2 = Vertices[seg.v2].segs2;
segnum = (int)Segs.Push (seg);
Vertices[seg.v1].segs = segnum;
Vertices[seg.v2].segs2 = segnum;
D(Printf(PRINT_LOG, "Seg %4d: From line %d, side %s (%5d,%5d)-(%5d,%5d) [%08x,%08x]-[%08x,%08x]\n", segnum, linenum, sidenum ? "back " : "front",
Vertices[seg.v1].x>>16, Vertices[seg.v1].y>>16, Vertices[seg.v2].x>>16, Vertices[seg.v2].y>>16,
Vertices[seg.v1].x, Vertices[seg.v1].y, Vertices[seg.v2].x, Vertices[seg.v2].y));
return segnum;
}
// For every seg, create FPrivSegs and FPrivVerts.
void FNodeBuilder::AddSegs(seg_t *segs, int numsegs)
{
assert(numsegs > 0);
for (int i = 0; i < numsegs; ++i)
{
FPrivSeg seg;
FPrivVert vert;
int segnum;
seg.next = DWORD_MAX;
seg.loopnum = 0;
seg.partner = DWORD_MAX;
seg.hashnext = NULL;
seg.planefront = false;
seg.planenum = DWORD_MAX;
seg.storedseg = DWORD_MAX;
seg.frontsector = segs[i].frontsector;
seg.backsector = segs[i].backsector;
vert.x = segs[i].v1->fixX();
vert.y = segs[i].v1->fixY();
seg.v1 = VertexMap->SelectVertexExact(vert);
vert.x = segs[i].v2->fixX();
vert.y = segs[i].v2->fixY();
seg.v2 = VertexMap->SelectVertexExact(vert);
seg.linedef = int(segs[i].linedef - Level.Lines);
seg.sidedef = segs[i].sidedef != NULL ? int(segs[i].sidedef - Level.Sides) : int(NO_SIDE);
seg.nextforvert = Vertices[seg.v1].segs;
seg.nextforvert2 = Vertices[seg.v2].segs2;
segnum = (int)Segs.Push(seg);
Vertices[seg.v1].segs = segnum;
Vertices[seg.v2].segs2 = segnum;
}
}
void FNodeBuilder::AddPolySegs(FPolySeg *segs, int numsegs)
{
assert(numsegs > 0);
for (int i = 0; i < numsegs; ++i)
{
FPrivSeg seg;
FPrivVert vert;
int segnum;
seg.next = DWORD_MAX;
seg.loopnum = 0;
seg.partner = DWORD_MAX;
seg.hashnext = NULL;
seg.planefront = false;
seg.planenum = DWORD_MAX;
seg.storedseg = DWORD_MAX;
side_t *side = segs[i].wall;
assert(side != NULL);
seg.frontsector = side->sector;
seg.backsector = side->linedef->frontsector == side->sector ? side->linedef->backsector : side->linedef->frontsector;
vert.x = FLOAT2FIXED(segs[i].v1.pos.X);
vert.y = FLOAT2FIXED(segs[i].v1.pos.Y);
seg.v1 = VertexMap->SelectVertexExact(vert);
vert.x = FLOAT2FIXED(segs[i].v2.pos.X);
vert.y = FLOAT2FIXED(segs[i].v2.pos.Y);
seg.v2 = VertexMap->SelectVertexExact(vert);
seg.linedef = int(side->linedef - Level.Lines);
seg.sidedef = int(side - Level.Sides);
seg.nextforvert = Vertices[seg.v1].segs;
seg.nextforvert2 = Vertices[seg.v2].segs2;
segnum = (int)Segs.Push(seg);
Vertices[seg.v1].segs = segnum;
Vertices[seg.v2].segs2 = segnum;
}
}
// Group colinear segs together so that only one seg per line needs to be checked
// by SelectSplitter().
void FNodeBuilder::GroupSegPlanes ()
{
const int bucketbits = 12;
FPrivSeg *buckets[1<<bucketbits] = { 0 };
int i, planenum;
for (i = 0; i < (int)Segs.Size(); ++i)
{
FPrivSeg *seg = &Segs[i];
seg->next = i+1;
seg->hashnext = NULL;
}
Segs[Segs.Size()-1].next = DWORD_MAX;
for (i = planenum = 0; i < (int)Segs.Size(); ++i)
{
FPrivSeg *seg = &Segs[i];
fixed_t x1 = Vertices[seg->v1].x;
fixed_t y1 = Vertices[seg->v1].y;
fixed_t x2 = Vertices[seg->v2].x;
fixed_t y2 = Vertices[seg->v2].y;
angle_t ang = PointToAngle (x2 - x1, y2 - y1);
if (ang >= 1u<<31)
ang += 1u<<31;
FPrivSeg *check = buckets[ang >>= 31-bucketbits];
while (check != NULL)
{
fixed_t cx1 = Vertices[check->v1].x;
fixed_t cy1 = Vertices[check->v1].y;
fixed_t cdx = Vertices[check->v2].x - cx1;
fixed_t cdy = Vertices[check->v2].y - cy1;
if (PointOnSide (x1, y1, cx1, cy1, cdx, cdy) == 0 &&
PointOnSide (x2, y2, cx1, cy1, cdx, cdy) == 0)
{
break;
}
check = check->hashnext;
}
if (check != NULL)
{
seg->planenum = check->planenum;
const FSimpleLine *line = &Planes[seg->planenum];
if (line->dx != 0)
{
if ((line->dx > 0 && x2 > x1) || (line->dx < 0 && x2 < x1))
{
seg->planefront = true;
}
else
{
seg->planefront = false;
}
}
else
{
if ((line->dy > 0 && y2 > y1) || (line->dy < 0 && y2 < y1))
{
seg->planefront = true;
}
else
{
seg->planefront = false;
}
}
}
else
{
seg->hashnext = buckets[ang];
buckets[ang] = seg;
seg->planenum = planenum++;
seg->planefront = true;
FSimpleLine pline = { Vertices[seg->v1].x,
Vertices[seg->v1].y,
Vertices[seg->v2].x - Vertices[seg->v1].x,
Vertices[seg->v2].y - Vertices[seg->v1].y };
Planes.Push (pline);
}
}
D(Printf ("%d planes from %d segs\n", planenum, Segs.Size()));
PlaneChecked.Reserve ((planenum + 7) / 8);
}
// Just create one plane per seg. Should be good enough for mini BSPs.
void FNodeBuilder::GroupSegPlanesSimple()
{
Planes.Resize(Segs.Size());
for (int i = 0; i < (int)Segs.Size(); ++i)
{
FPrivSeg *seg = &Segs[i];
FSimpleLine *pline = &Planes[i];
seg->next = i+1;
seg->hashnext = NULL;
seg->planenum = i;
seg->planefront = true;
pline->x = Vertices[seg->v1].x;
pline->y = Vertices[seg->v1].y;
pline->dx = Vertices[seg->v2].x - Vertices[seg->v1].x;
pline->dy = Vertices[seg->v2].y - Vertices[seg->v1].y;
}
Segs.Last().next = DWORD_MAX;
PlaneChecked.Reserve((Segs.Size() + 7) / 8);
}
// Find "loops" of segs surrounding polyobject's origin. Note that a polyobject's origin
// is not solely defined by the polyobject's anchor, but also by the polyobject itself.
// For the split avoidance to work properly, you must have a convex, complete loop of
// segs surrounding the polyobject origin. All the maps in hexen.wad have complete loops of
// segs around their polyobjects, but they are not all convex: The doors at the start of MAP01
// and some of the pillars in MAP02 that surround the entrance to MAP06 are not convex.
// Heuristic() uses some special weighting to make these cases work properly.
void FNodeBuilder::FindPolyContainers (TArray<FPolyStart> &spots, TArray<FPolyStart> &anchors)
{
int loop = 1;
for (unsigned int i = 0; i < spots.Size(); ++i)
{
FPolyStart *spot = &spots[i];
fixed_t bbox[4];
if (GetPolyExtents (spot->polynum, bbox))
{
FPolyStart *anchor = NULL;
unsigned int j;
for (j = 0; j < anchors.Size(); ++j)
{
anchor = &anchors[j];
if (anchor->polynum == spot->polynum)
{
break;
}
}
if (j < anchors.Size())
{
vertex_t mid;
vertex_t center;
mid.set(bbox[BOXLEFT] + (bbox[BOXRIGHT]-bbox[BOXLEFT])/2,
bbox[BOXBOTTOM] + (bbox[BOXTOP]-bbox[BOXBOTTOM])/2);
center.set(mid.fixX() - anchor->x + spot->x,
mid.fixY() - anchor->y + spot->y);
// Scan right for the seg closest to the polyobject's center after it
// gets moved to its start spot.
fixed_t closestdist = FIXED_MAX;
unsigned int closestseg = UINT_MAX;
P(Printf ("start %d,%d -- center %d, %d\n", spot->x>>16, spot->y>>16, center.fixX()>>16, center.fixY()>>16));
for (unsigned int j = 0; j < Segs.Size(); ++j)
{
FPrivSeg *seg = &Segs[j];
FPrivVert *v1 = &Vertices[seg->v1];
FPrivVert *v2 = &Vertices[seg->v2];
fixed_t dy = v2->y - v1->y;
if (dy == 0)
{ // Horizontal, so skip it
continue;
}
if ((v1->y < center.fixY() && v2->y < center.fixY()) || (v1->y > center.fixY() && v2->y > center.fixY()))
{ // Not crossed
continue;
}
fixed_t dx = v2->x - v1->x;
if (PointOnSide (center.fixX(), center.fixY(), v1->x, v1->y, dx, dy) <= 0)
{
fixed_t t = DivScale30 (center.fixY() - v1->y, dy);
fixed_t sx = v1->x + MulScale30 (dx, t);
fixed_t dist = sx - spot->x;
if (dist < closestdist && dist >= 0)
{
closestdist = dist;
closestseg = (long)j;
}
}
}
if (closestseg != UINT_MAX)
{
loop = MarkLoop (closestseg, loop);
P(Printf ("Found polyobj in sector %d (loop %d)\n", Segs[closestseg].frontsector,
Segs[closestseg].loopnum));
}
}
}
}
}
int FNodeBuilder::MarkLoop (DWORD firstseg, int loopnum)
{
DWORD seg;
sector_t *sec = Segs[firstseg].frontsector;
if (Segs[firstseg].loopnum != 0)
{ // already marked
return loopnum;
}
seg = firstseg;
do
{
FPrivSeg *s1 = &Segs[seg];
s1->loopnum = loopnum;
P(Printf ("Mark seg %d (%d,%d)-(%d,%d)\n", seg,
Vertices[s1->v1].x>>16, Vertices[s1->v1].y>>16,
Vertices[s1->v2].x>>16, Vertices[s1->v2].y>>16));
DWORD bestseg = DWORD_MAX;
DWORD tryseg = Vertices[s1->v2].segs;
angle_t bestang = ANGLE_MAX;
angle_t ang1 = PointToAngle (Vertices[s1->v2].x - Vertices[s1->v1].x,
Vertices[s1->v2].y - Vertices[s1->v1].y);
while (tryseg != DWORD_MAX)
{
FPrivSeg *s2 = &Segs[tryseg];
if (s2->frontsector == sec)
{
angle_t ang2 = PointToAngle (Vertices[s2->v1].x - Vertices[s2->v2].x,
Vertices[s2->v1].y - Vertices[s2->v2].y);
angle_t angdiff = ang2 - ang1;
if (angdiff < bestang && angdiff > 0)
{
bestang = angdiff;
bestseg = tryseg;
}
}
tryseg = s2->nextforvert;
}
seg = bestseg;
} while (seg != DWORD_MAX && Segs[seg].loopnum == 0);
return loopnum + 1;
}
// Find the bounding box for a specific polyobject.
bool FNodeBuilder::GetPolyExtents (int polynum, fixed_t bbox[4])
{
unsigned int i;
bbox[BOXLEFT] = bbox[BOXBOTTOM] = FIXED_MAX;
bbox[BOXRIGHT] = bbox[BOXTOP] = FIXED_MIN;
// Try to find a polyobj marked with a start line
for (i = 0; i < Segs.Size(); ++i)
{
if (Level.Lines[Segs[i].linedef].special == PO_LINE_START &&
Level.Lines[Segs[i].linedef].args[0] == polynum)
{
break;
}
}
if (i < Segs.Size())
{
vertex_t start;
unsigned int vert;
unsigned int count = 0;
vert = Segs[i].v1;
start.set(Vertices[vert].x, Vertices[vert].y);
do
{
AddSegToBBox (bbox, &Segs[i]);
vert = Segs[i].v2;
i = Vertices[vert].segs;
count++; // to prevent endless loops. Stop when this reaches the number of segs.
} while (i != DWORD_MAX && (Vertices[vert].x != start.fixX() || Vertices[vert].y != start.fixY()) && count < Segs.Size());
return true;
}
// Try to find a polyobj marked with explicit lines
bool found = false;
for (i = 0; i < Segs.Size(); ++i)
{
if (Level.Lines[Segs[i].linedef].special == PO_LINE_EXPLICIT &&
Level.Lines[Segs[i].linedef].args[0] == polynum)
{
AddSegToBBox (bbox, &Segs[i]);
found = true;
}
}
return found;
}
void FNodeBuilder::AddSegToBBox (fixed_t bbox[4], const FPrivSeg *seg)
{
FPrivVert *v1 = &Vertices[seg->v1];
FPrivVert *v2 = &Vertices[seg->v2];
if (v1->x < bbox[BOXLEFT]) bbox[BOXLEFT] = v1->x;
if (v1->x > bbox[BOXRIGHT]) bbox[BOXRIGHT] = v1->x;
if (v1->y < bbox[BOXBOTTOM]) bbox[BOXBOTTOM] = v1->y;
if (v1->y > bbox[BOXTOP]) bbox[BOXTOP] = v1->y;
if (v2->x < bbox[BOXLEFT]) bbox[BOXLEFT] = v2->x;
if (v2->x > bbox[BOXRIGHT]) bbox[BOXRIGHT] = v2->x;
if (v2->y < bbox[BOXBOTTOM]) bbox[BOXBOTTOM] = v2->y;
if (v2->y > bbox[BOXTOP]) bbox[BOXTOP] = v2->y;
}
void FNodeBuilder::FLevel::FindMapBounds()
{
double minx, maxx, miny, maxy;
minx = maxx = Vertices[0].fX();
miny = maxy = Vertices[0].fY();
for (int i = 1; i < NumLines; ++i)
{
for (int j = 0; j < 2; j++)
{
vertex_t *v = (j == 0 ? Lines[i].v1 : Lines[i].v2);
if (v->fX() < minx) minx = v->fX();
else if (v->fX() > maxx) maxx = v->fX();
if (v->fY() < miny) miny = v->fY();
else if (v->fY() > maxy) maxy = v->fY();
}
}
MinX = FLOAT2FIXED(minx);
MinY = FLOAT2FIXED(miny);
MaxX = FLOAT2FIXED(maxx);
MaxY = FLOAT2FIXED(maxy);
}
FNodeBuilder::IVertexMap::~IVertexMap()
{
}
FNodeBuilder::FVertexMap::FVertexMap (FNodeBuilder &builder,
fixed_t minx, fixed_t miny, fixed_t maxx, fixed_t maxy)
: MyBuilder(builder)
{
MinX = minx;
MinY = miny;
BlocksWide = int(((double(maxx) - minx + 1) + (BLOCK_SIZE - 1)) / BLOCK_SIZE);
BlocksTall = int(((double(maxy) - miny + 1) + (BLOCK_SIZE - 1)) / BLOCK_SIZE);
MaxX = MinX + BlocksWide * BLOCK_SIZE - 1;
MaxY = MinY + BlocksTall * BLOCK_SIZE - 1;
VertexGrid = new TArray<int>[BlocksWide * BlocksTall];
}
FNodeBuilder::FVertexMap::~FVertexMap ()
{
delete[] VertexGrid;
}
int FNodeBuilder::FVertexMap::SelectVertexExact (FNodeBuilder::FPrivVert &vert)
{
TArray<int> &block = VertexGrid[GetBlock (vert.x, vert.y)];
FPrivVert *vertices = &MyBuilder.Vertices[0];
unsigned int i;
for (i = 0; i < block.Size(); ++i)
{
if (vertices[block[i]].x == vert.x && vertices[block[i]].y == vert.y)
{
return block[i];
}
}
// Not present: add it!
return InsertVertex (vert);
}
int FNodeBuilder::FVertexMap::SelectVertexClose (FNodeBuilder::FPrivVert &vert)
{
TArray<int> &block = VertexGrid[GetBlock (vert.x, vert.y)];
FPrivVert *vertices = &MyBuilder.Vertices[0];
unsigned int i;
for (i = 0; i < block.Size(); ++i)
{
#if VERTEX_EPSILON <= 1
if (vertices[block[i]].x == vert.x && vertices[block[i]].y == vert.y)
#else
if (abs(vertices[block[i]].x - vert.x) < VERTEX_EPSILON &&
abs(vertices[block[i]].y - vert.y) < VERTEX_EPSILON)
#endif
{
return block[i];
}
}
// Not present: add it!
return InsertVertex (vert);
}
int FNodeBuilder::FVertexMap::InsertVertex (FNodeBuilder::FPrivVert &vert)
{
int vertnum;
vert.segs = DWORD_MAX;
vert.segs2 = DWORD_MAX;
vertnum = (int)MyBuilder.Vertices.Push (vert);
// If a vertex is near a block boundary, then it will be inserted on
// both sides of the boundary so that SelectVertexClose can find
// it by checking in only one block.
fixed_t minx = MAX (MinX, vert.x - VERTEX_EPSILON);
fixed_t maxx = MIN (MaxX, vert.x + VERTEX_EPSILON);
fixed_t miny = MAX (MinY, vert.y - VERTEX_EPSILON);
fixed_t maxy = MIN (MaxY, vert.y + VERTEX_EPSILON);
int blk[4] =
{
GetBlock (minx, miny),
GetBlock (maxx, miny),
GetBlock (minx, maxy),
GetBlock (maxx, maxy)
};
unsigned int blkcount[4] =
{
VertexGrid[blk[0]].Size(),
VertexGrid[blk[1]].Size(),
VertexGrid[blk[2]].Size(),
VertexGrid[blk[3]].Size()
};
for (int i = 0; i < 4; ++i)
{
if (VertexGrid[blk[i]].Size() == blkcount[i])
{
VertexGrid[blk[i]].Push (vertnum);
}
}
return vertnum;
}
FNodeBuilder::FVertexMapSimple::FVertexMapSimple(FNodeBuilder &builder)
: MyBuilder(builder)
{
}
int FNodeBuilder::FVertexMapSimple::SelectVertexExact(FNodeBuilder::FPrivVert &vert)
{
FPrivVert *verts = &MyBuilder.Vertices[0];
unsigned int stop = MyBuilder.Vertices.Size();
for (unsigned int i = 0; i < stop; ++i)
{
if (verts[i].x == vert.x && verts[i].y == vert.y)
{
return i;
}
}
// Not present: add it!
return InsertVertex(vert);
}
int FNodeBuilder::FVertexMapSimple::SelectVertexClose(FNodeBuilder::FPrivVert &vert)
{
FPrivVert *verts = &MyBuilder.Vertices[0];
unsigned int stop = MyBuilder.Vertices.Size();
for (unsigned int i = 0; i < stop; ++i)
{
#if VERTEX_EPSILON <= 1
if (verts[i].x == vert.x && verts[i].y == y)
#else
if (abs(verts[i].x - vert.x) < VERTEX_EPSILON &&
abs(verts[i].y - vert.y) < VERTEX_EPSILON)
#endif
{
return i;
}
}
// Not present: add it!
return InsertVertex (vert);
}
int FNodeBuilder::FVertexMapSimple::InsertVertex (FNodeBuilder::FPrivVert &vert)
{
vert.segs = DWORD_MAX;
vert.segs2 = DWORD_MAX;
return (int)MyBuilder.Vertices.Push (vert);
}