mirror of
https://github.com/ZDoom/gzdoom.git
synced 2024-11-14 08:31:23 +00:00
7138ab86a8
SVN r40 (trunk)
430 lines
14 KiB
C
430 lines
14 KiB
C
/* libFLAC - Free Lossless Audio Codec library
|
|
* Copyright (C) 2000,2001,2002,2003,2004,2005 Josh Coalson
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* - Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* - Neither the name of the Xiph.org Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include "FLAC/assert.h"
|
|
#include "FLAC/format.h"
|
|
#include "private/bitmath.h"
|
|
#include "private/lpc.h"
|
|
#if defined DEBUG || defined FLAC__OVERFLOW_DETECT || defined FLAC__OVERFLOW_DETECT_VERBOSE
|
|
#include <stdio.h>
|
|
#endif
|
|
|
|
#ifndef FLAC__INTEGER_ONLY_LIBRARY
|
|
|
|
#ifndef M_LN2
|
|
/* math.h in VC++ doesn't seem to have this (how Microsoft is that?) */
|
|
#define M_LN2 0.69314718055994530942
|
|
#endif
|
|
|
|
void FLAC__lpc_compute_autocorrelation(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[])
|
|
{
|
|
/* a readable, but slower, version */
|
|
#if 0
|
|
FLAC__real d;
|
|
unsigned i;
|
|
|
|
FLAC__ASSERT(lag > 0);
|
|
FLAC__ASSERT(lag <= data_len);
|
|
|
|
while(lag--) {
|
|
for(i = lag, d = 0.0; i < data_len; i++)
|
|
d += data[i] * data[i - lag];
|
|
autoc[lag] = d;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* this version tends to run faster because of better data locality
|
|
* ('data_len' is usually much larger than 'lag')
|
|
*/
|
|
FLAC__real d;
|
|
unsigned sample, coeff;
|
|
const unsigned limit = data_len - lag;
|
|
|
|
FLAC__ASSERT(lag > 0);
|
|
FLAC__ASSERT(lag <= data_len);
|
|
|
|
for(coeff = 0; coeff < lag; coeff++)
|
|
autoc[coeff] = 0.0;
|
|
for(sample = 0; sample <= limit; sample++) {
|
|
d = data[sample];
|
|
for(coeff = 0; coeff < lag; coeff++)
|
|
autoc[coeff] += d * data[sample+coeff];
|
|
}
|
|
for(; sample < data_len; sample++) {
|
|
d = data[sample];
|
|
for(coeff = 0; coeff < data_len - sample; coeff++)
|
|
autoc[coeff] += d * data[sample+coeff];
|
|
}
|
|
}
|
|
|
|
void FLAC__lpc_compute_lp_coefficients(const FLAC__real autoc[], unsigned max_order, FLAC__real lp_coeff[][FLAC__MAX_LPC_ORDER], FLAC__double error[])
|
|
{
|
|
unsigned i, j;
|
|
FLAC__double r, err, ref[FLAC__MAX_LPC_ORDER], lpc[FLAC__MAX_LPC_ORDER];
|
|
|
|
FLAC__ASSERT(0 < max_order);
|
|
FLAC__ASSERT(max_order <= FLAC__MAX_LPC_ORDER);
|
|
FLAC__ASSERT(autoc[0] != 0.0);
|
|
|
|
err = autoc[0];
|
|
|
|
for(i = 0; i < max_order; i++) {
|
|
/* Sum up this iteration's reflection coefficient. */
|
|
r = -autoc[i+1];
|
|
for(j = 0; j < i; j++)
|
|
r -= lpc[j] * autoc[i-j];
|
|
ref[i] = (r/=err);
|
|
|
|
/* Update LPC coefficients and total error. */
|
|
lpc[i]=r;
|
|
for(j = 0; j < (i>>1); j++) {
|
|
FLAC__double tmp = lpc[j];
|
|
lpc[j] += r * lpc[i-1-j];
|
|
lpc[i-1-j] += r * tmp;
|
|
}
|
|
if(i & 1)
|
|
lpc[j] += lpc[j] * r;
|
|
|
|
err *= (1.0 - r * r);
|
|
|
|
/* save this order */
|
|
for(j = 0; j <= i; j++)
|
|
lp_coeff[i][j] = (FLAC__real)(-lpc[j]); /* negate FIR filter coeff to get predictor coeff */
|
|
error[i] = err;
|
|
}
|
|
}
|
|
|
|
int FLAC__lpc_quantize_coefficients(const FLAC__real lp_coeff[], unsigned order, unsigned precision, FLAC__int32 qlp_coeff[], int *shift)
|
|
{
|
|
unsigned i;
|
|
FLAC__double d, cmax = -1e32;
|
|
FLAC__int32 qmax, qmin;
|
|
const int max_shiftlimit = (1 << (FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN-1)) - 1;
|
|
const int min_shiftlimit = -max_shiftlimit - 1;
|
|
|
|
FLAC__ASSERT(precision > 0);
|
|
FLAC__ASSERT(precision >= FLAC__MIN_QLP_COEFF_PRECISION);
|
|
|
|
/* drop one bit for the sign; from here on out we consider only |lp_coeff[i]| */
|
|
precision--;
|
|
qmax = 1 << precision;
|
|
qmin = -qmax;
|
|
qmax--;
|
|
|
|
for(i = 0; i < order; i++) {
|
|
if(lp_coeff[i] == 0.0)
|
|
continue;
|
|
d = fabs(lp_coeff[i]);
|
|
if(d > cmax)
|
|
cmax = d;
|
|
}
|
|
redo_it:
|
|
if(cmax <= 0.0) {
|
|
/* => coefficients are all 0, which means our constant-detect didn't work */
|
|
return 2;
|
|
}
|
|
else {
|
|
int log2cmax;
|
|
|
|
(void)frexp(cmax, &log2cmax);
|
|
log2cmax--;
|
|
*shift = (int)precision - log2cmax - 1;
|
|
|
|
if(*shift < min_shiftlimit || *shift > max_shiftlimit) {
|
|
#if 0
|
|
/*@@@ this does not seem to help at all, but was not extensively tested either: */
|
|
if(*shift > max_shiftlimit)
|
|
*shift = max_shiftlimit;
|
|
else
|
|
#endif
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if(*shift >= 0) {
|
|
for(i = 0; i < order; i++) {
|
|
qlp_coeff[i] = (FLAC__int32)floor((FLAC__double)lp_coeff[i] * (FLAC__double)(1 << *shift));
|
|
|
|
/* double-check the result */
|
|
if(qlp_coeff[i] > qmax || qlp_coeff[i] < qmin) {
|
|
#ifdef FLAC__OVERFLOW_DETECT
|
|
fprintf(stderr,"FLAC__lpc_quantize_coefficients: compensating for overflow, qlp_coeff[%u]=%d, lp_coeff[%u]=%f, cmax=%f, precision=%u, shift=%d, q=%f, f(q)=%f\n", i, qlp_coeff[i], i, lp_coeff[i], cmax, precision, *shift, (FLAC__double)lp_coeff[i] * (FLAC__double)(1 << *shift), floor((FLAC__double)lp_coeff[i] * (FLAC__double)(1 << *shift)));
|
|
#endif
|
|
cmax *= 2.0;
|
|
goto redo_it;
|
|
}
|
|
}
|
|
}
|
|
else { /* (*shift < 0) */
|
|
const int nshift = -(*shift);
|
|
#ifdef DEBUG
|
|
fprintf(stderr,"FLAC__lpc_quantize_coefficients: negative shift = %d\n", *shift);
|
|
#endif
|
|
for(i = 0; i < order; i++) {
|
|
qlp_coeff[i] = (FLAC__int32)floor((FLAC__double)lp_coeff[i] / (FLAC__double)(1 << nshift));
|
|
|
|
/* double-check the result */
|
|
if(qlp_coeff[i] > qmax || qlp_coeff[i] < qmin) {
|
|
#ifdef FLAC__OVERFLOW_DETECT
|
|
fprintf(stderr,"FLAC__lpc_quantize_coefficients: compensating for overflow, qlp_coeff[%u]=%d, lp_coeff[%u]=%f, cmax=%f, precision=%u, shift=%d, q=%f, f(q)=%f\n", i, qlp_coeff[i], i, lp_coeff[i], cmax, precision, *shift, (FLAC__double)lp_coeff[i] / (FLAC__double)(1 << nshift), floor((FLAC__double)lp_coeff[i] / (FLAC__double)(1 << nshift)));
|
|
#endif
|
|
cmax *= 2.0;
|
|
goto redo_it;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void FLAC__lpc_compute_residual_from_qlp_coefficients(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[])
|
|
{
|
|
#ifdef FLAC__OVERFLOW_DETECT
|
|
FLAC__int64 sumo;
|
|
#endif
|
|
unsigned i, j;
|
|
FLAC__int32 sum;
|
|
const FLAC__int32 *history;
|
|
|
|
#ifdef FLAC__OVERFLOW_DETECT_VERBOSE
|
|
fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
|
|
for(i=0;i<order;i++)
|
|
fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
|
|
fprintf(stderr,"\n");
|
|
#endif
|
|
FLAC__ASSERT(order > 0);
|
|
|
|
for(i = 0; i < data_len; i++) {
|
|
#ifdef FLAC__OVERFLOW_DETECT
|
|
sumo = 0;
|
|
#endif
|
|
sum = 0;
|
|
history = data;
|
|
for(j = 0; j < order; j++) {
|
|
sum += qlp_coeff[j] * (*(--history));
|
|
#ifdef FLAC__OVERFLOW_DETECT
|
|
sumo += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*history);
|
|
#if defined _MSC_VER
|
|
if(sumo > 2147483647I64 || sumo < -2147483648I64)
|
|
fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%I64d\n",i,j,qlp_coeff[j],*history,sumo);
|
|
#else
|
|
if(sumo > 2147483647ll || sumo < -2147483648ll)
|
|
fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%lld\n",i,j,qlp_coeff[j],*history,sumo);
|
|
#endif
|
|
#endif
|
|
}
|
|
*(residual++) = *(data++) - (sum >> lp_quantization);
|
|
}
|
|
|
|
/* Here's a slower but clearer version:
|
|
for(i = 0; i < data_len; i++) {
|
|
sum = 0;
|
|
for(j = 0; j < order; j++)
|
|
sum += qlp_coeff[j] * data[i-j-1];
|
|
residual[i] = data[i] - (sum >> lp_quantization);
|
|
}
|
|
*/
|
|
}
|
|
|
|
void FLAC__lpc_compute_residual_from_qlp_coefficients_wide(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[])
|
|
{
|
|
unsigned i, j;
|
|
FLAC__int64 sum;
|
|
const FLAC__int32 *history;
|
|
|
|
#ifdef FLAC__OVERFLOW_DETECT_VERBOSE
|
|
fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
|
|
for(i=0;i<order;i++)
|
|
fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
|
|
fprintf(stderr,"\n");
|
|
#endif
|
|
FLAC__ASSERT(order > 0);
|
|
|
|
for(i = 0; i < data_len; i++) {
|
|
sum = 0;
|
|
history = data;
|
|
for(j = 0; j < order; j++)
|
|
sum += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*(--history));
|
|
#ifdef FLAC__OVERFLOW_DETECT
|
|
if(FLAC__bitmath_silog2_wide(sum >> lp_quantization) > 32) {
|
|
fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, sum=%lld\n", i, sum >> lp_quantization);
|
|
break;
|
|
}
|
|
if(FLAC__bitmath_silog2_wide((FLAC__int64)(*data) - (sum >> lp_quantization)) > 32) {
|
|
fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, data=%d, sum=%lld, residual=%lld\n", i, *data, sum >> lp_quantization, (FLAC__int64)(*data) - (sum >> lp_quantization));
|
|
break;
|
|
}
|
|
#endif
|
|
*(residual++) = *(data++) - (FLAC__int32)(sum >> lp_quantization);
|
|
}
|
|
}
|
|
|
|
#endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */
|
|
|
|
void FLAC__lpc_restore_signal(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[])
|
|
{
|
|
#ifdef FLAC__OVERFLOW_DETECT
|
|
FLAC__int64 sumo;
|
|
#endif
|
|
unsigned i, j;
|
|
FLAC__int32 sum;
|
|
const FLAC__int32 *history;
|
|
|
|
#ifdef FLAC__OVERFLOW_DETECT_VERBOSE
|
|
fprintf(stderr,"FLAC__lpc_restore_signal: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
|
|
for(i=0;i<order;i++)
|
|
fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
|
|
fprintf(stderr,"\n");
|
|
#endif
|
|
FLAC__ASSERT(order > 0);
|
|
|
|
for(i = 0; i < data_len; i++) {
|
|
#ifdef FLAC__OVERFLOW_DETECT
|
|
sumo = 0;
|
|
#endif
|
|
sum = 0;
|
|
history = data;
|
|
for(j = 0; j < order; j++) {
|
|
sum += qlp_coeff[j] * (*(--history));
|
|
#ifdef FLAC__OVERFLOW_DETECT
|
|
sumo += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*history);
|
|
#if defined _MSC_VER
|
|
if(sumo > 2147483647I64 || sumo < -2147483648I64)
|
|
fprintf(stderr,"FLAC__lpc_restore_signal: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%I64d\n",i,j,qlp_coeff[j],*history,sumo);
|
|
#else
|
|
if(sumo > 2147483647ll || sumo < -2147483648ll)
|
|
fprintf(stderr,"FLAC__lpc_restore_signal: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%lld\n",i,j,qlp_coeff[j],*history,sumo);
|
|
#endif
|
|
#endif
|
|
}
|
|
*(data++) = *(residual++) + (sum >> lp_quantization);
|
|
}
|
|
|
|
/* Here's a slower but clearer version:
|
|
for(i = 0; i < data_len; i++) {
|
|
sum = 0;
|
|
for(j = 0; j < order; j++)
|
|
sum += qlp_coeff[j] * data[i-j-1];
|
|
data[i] = residual[i] + (sum >> lp_quantization);
|
|
}
|
|
*/
|
|
}
|
|
|
|
void FLAC__lpc_restore_signal_wide(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[])
|
|
{
|
|
unsigned i, j;
|
|
FLAC__int64 sum;
|
|
const FLAC__int32 *history;
|
|
|
|
#ifdef FLAC__OVERFLOW_DETECT_VERBOSE
|
|
fprintf(stderr,"FLAC__lpc_restore_signal_wide: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
|
|
for(i=0;i<order;i++)
|
|
fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
|
|
fprintf(stderr,"\n");
|
|
#endif
|
|
FLAC__ASSERT(order > 0);
|
|
|
|
for(i = 0; i < data_len; i++) {
|
|
sum = 0;
|
|
history = data;
|
|
for(j = 0; j < order; j++)
|
|
sum += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*(--history));
|
|
#ifdef FLAC__OVERFLOW_DETECT
|
|
if(FLAC__bitmath_silog2_wide(sum >> lp_quantization) > 32) {
|
|
fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, sum=%lld\n", i, sum >> lp_quantization);
|
|
break;
|
|
}
|
|
if(FLAC__bitmath_silog2_wide((FLAC__int64)(*residual) + (sum >> lp_quantization)) > 32) {
|
|
fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, residual=%d, sum=%lld, data=%lld\n", i, *residual, sum >> lp_quantization, (FLAC__int64)(*residual) + (sum >> lp_quantization));
|
|
break;
|
|
}
|
|
#endif
|
|
*(data++) = *(residual++) + (FLAC__int32)(sum >> lp_quantization);
|
|
}
|
|
}
|
|
|
|
#ifndef FLAC__INTEGER_ONLY_LIBRARY
|
|
|
|
FLAC__double FLAC__lpc_compute_expected_bits_per_residual_sample(FLAC__double lpc_error, unsigned total_samples)
|
|
{
|
|
FLAC__double error_scale;
|
|
|
|
FLAC__ASSERT(total_samples > 0);
|
|
|
|
error_scale = 0.5 * M_LN2 * M_LN2 / (FLAC__double)total_samples;
|
|
|
|
return FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(lpc_error, error_scale);
|
|
}
|
|
|
|
FLAC__double FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(FLAC__double lpc_error, FLAC__double error_scale)
|
|
{
|
|
if(lpc_error > 0.0) {
|
|
FLAC__double bps = (FLAC__double)0.5 * log(error_scale * lpc_error) / M_LN2;
|
|
if(bps >= 0.0)
|
|
return bps;
|
|
else
|
|
return 0.0;
|
|
}
|
|
else if(lpc_error < 0.0) { /* error should not be negative but can happen due to inadequate floating-point resolution */
|
|
return 1e32;
|
|
}
|
|
else {
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
unsigned FLAC__lpc_compute_best_order(const FLAC__double lpc_error[], unsigned max_order, unsigned total_samples, unsigned bits_per_signal_sample)
|
|
{
|
|
unsigned order, best_order;
|
|
FLAC__double best_bits, tmp_bits, error_scale;
|
|
|
|
FLAC__ASSERT(max_order > 0);
|
|
FLAC__ASSERT(total_samples > 0);
|
|
|
|
error_scale = 0.5 * M_LN2 * M_LN2 / (FLAC__double)total_samples;
|
|
|
|
best_order = 0;
|
|
best_bits = FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(lpc_error[0], error_scale) * (FLAC__double)total_samples;
|
|
|
|
for(order = 1; order < max_order; order++) {
|
|
tmp_bits = FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(lpc_error[order], error_scale) * (FLAC__double)(total_samples - order) + (FLAC__double)(order * bits_per_signal_sample);
|
|
if(tmp_bits < best_bits) {
|
|
best_order = order;
|
|
best_bits = tmp_bits;
|
|
}
|
|
}
|
|
|
|
return best_order+1; /* +1 since index of lpc_error[] is order-1 */
|
|
}
|
|
|
|
#endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */
|