gzdoom/libraries/oplsynth/oplio.cpp

486 lines
16 KiB
C++

//-----------------------------------------------------------------------------
//
// Copyright 2002-2016 Randy Heit
// Copyright 2005-2014 Simon Howard
// Copyright 2017 Christoph Oelckers
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see http://www.gnu.org/licenses/
//
//-----------------------------------------------------------------------------
//
// OPL IO interface. Partly built from the non-MusLib code in the old version
// plus some additions from Chocolate Doom.
//
#include <math.h>
#include <assert.h>
#include <algorithm>
#include <string.h>
#include "genmidi.h"
#include "oplio.h"
#include "opl.h"
const double HALF_PI = (3.14159265358979323846 * 0.5);
OPLio::~OPLio()
{
}
void OPLio::SetClockRate(double samples_per_tick)
{
}
void OPLio::WriteDelay(int ticks)
{
}
//----------------------------------------------------------------------------
//
// Initialize OPL emulator
//
//----------------------------------------------------------------------------
int OPLio::Init(int core, uint32_t numchips, bool stereo, bool initopl3)
{
assert(numchips >= 1 && numchips <= OPL_NUM_VOICES);
uint32_t i;
IsOPL3 = (core == 1 || core == 2 || core == 3);
memset(chips, 0, sizeof(chips));
if (IsOPL3)
{
numchips = (numchips + 1) >> 1;
}
for (i = 0; i < numchips; ++i)
{
OPLEmul *chip = IsOPL3 ? (core == 1 ? DBOPLCreate(stereo) : (core == 2 ? JavaOPLCreate(stereo) : NukedOPL3Create(stereo))) : YM3812Create(stereo);
if (chip == NULL)
{
break;
}
chips[i] = chip;
}
NumChips = i;
NumChannels = i * (IsOPL3 ? OPL3_NUM_VOICES : OPL_NUM_VOICES);
WriteInitState(initopl3);
return i;
}
//----------------------------------------------------------------------------
//
//
//
//----------------------------------------------------------------------------
void OPLio::WriteInitState(bool initopl3)
{
for (uint32_t k = 0; k < NumChips; ++k)
{
int chip = k << (int)IsOPL3;
if (IsOPL3 && initopl3)
{
WriteRegister(chip, OPL_REG_OPL3_ENABLE, 1);
WriteRegister(chip, OPL_REG_4OPMODE_ENABLE, 0);
}
WriteRegister(chip, OPL_REG_WAVEFORM_ENABLE, WAVEFORM_ENABLED);
WriteRegister(chip, OPL_REG_PERCUSSION_MODE, 0); // should be the default, but cannot verify for some of the cores.
}
// Reset all channels.
for (uint32_t k = 0; k < NumChannels; k++)
{
MuteChannel(k);
WriteValue(OPL_REGS_FREQ_2, k, 0);
}
}
//----------------------------------------------------------------------------
//
// Deinitialize emulator before shutdown
//
//----------------------------------------------------------------------------
void OPLio::Reset(void)
{
for (auto &c : chips)
{
if (c != nullptr)
{
delete c;
c = nullptr;
}
}
}
//----------------------------------------------------------------------------
//
//
//
//----------------------------------------------------------------------------
void OPLio::WriteRegister(int chipnum, uint32_t reg, uint8_t data)
{
if (IsOPL3)
{
reg |= (chipnum & 1) << 8;
chipnum >>= 1;
}
if (chips[chipnum] != nullptr)
{
chips[chipnum]->WriteReg(reg, data);
}
}
//----------------------------------------------------------------------------
//
//
//
//----------------------------------------------------------------------------
void OPLio::WriteValue(uint32_t regbase, uint32_t channel, uint8_t value)
{
WriteRegister (channel / OPL_NUM_VOICES, regbase + (channel % OPL_NUM_VOICES), value);
}
//----------------------------------------------------------------------------
//
//
//
//----------------------------------------------------------------------------
static const int voice_operators[OPL_NUM_VOICES] = { 0x00, 0x01, 0x02, 0x08, 0x09, 0x0a, 0x10, 0x11, 0x12 };
void OPLio::WriteOperator(uint32_t regbase, uint32_t channel, int index, uint8_t data2)
{
WriteRegister(channel / OPL_NUM_VOICES, regbase + voice_operators[channel % OPL_NUM_VOICES] + 3*index, data2);
}
//----------------------------------------------------------------------------
//
// Write frequency/octave/keyon data to a channel
//
// [RH] This is totally different from the original MUS library code
// but matches exactly what DMX does. I haven't a clue why there are 284
// special bytes at the beginning of the table for the first few notes.
// That last byte in the table doesn't look right, either, but that's what
// it really is.
//
//----------------------------------------------------------------------------
static const uint16_t frequencies[] = { // (this is the table from Chocolate Doom, which contains the same values as ZDoom's original one but is better formatted.
0x133, 0x133, 0x134, 0x134, 0x135, 0x136, 0x136, 0x137, // -1
0x137, 0x138, 0x138, 0x139, 0x139, 0x13a, 0x13b, 0x13b,
0x13c, 0x13c, 0x13d, 0x13d, 0x13e, 0x13f, 0x13f, 0x140,
0x140, 0x141, 0x142, 0x142, 0x143, 0x143, 0x144, 0x144,
0x145, 0x146, 0x146, 0x147, 0x147, 0x148, 0x149, 0x149, // -2
0x14a, 0x14a, 0x14b, 0x14c, 0x14c, 0x14d, 0x14d, 0x14e,
0x14f, 0x14f, 0x150, 0x150, 0x151, 0x152, 0x152, 0x153,
0x153, 0x154, 0x155, 0x155, 0x156, 0x157, 0x157, 0x158,
// These are used for the first seven MIDI note values:
0x158, 0x159, 0x15a, 0x15a, 0x15b, 0x15b, 0x15c, 0x15d, // 0
0x15d, 0x15e, 0x15f, 0x15f, 0x160, 0x161, 0x161, 0x162,
0x162, 0x163, 0x164, 0x164, 0x165, 0x166, 0x166, 0x167,
0x168, 0x168, 0x169, 0x16a, 0x16a, 0x16b, 0x16c, 0x16c,
0x16d, 0x16e, 0x16e, 0x16f, 0x170, 0x170, 0x171, 0x172, // 1
0x172, 0x173, 0x174, 0x174, 0x175, 0x176, 0x176, 0x177,
0x178, 0x178, 0x179, 0x17a, 0x17a, 0x17b, 0x17c, 0x17c,
0x17d, 0x17e, 0x17e, 0x17f, 0x180, 0x181, 0x181, 0x182,
0x183, 0x183, 0x184, 0x185, 0x185, 0x186, 0x187, 0x188, // 2
0x188, 0x189, 0x18a, 0x18a, 0x18b, 0x18c, 0x18d, 0x18d,
0x18e, 0x18f, 0x18f, 0x190, 0x191, 0x192, 0x192, 0x193,
0x194, 0x194, 0x195, 0x196, 0x197, 0x197, 0x198, 0x199,
0x19a, 0x19a, 0x19b, 0x19c, 0x19d, 0x19d, 0x19e, 0x19f, // 3
0x1a0, 0x1a0, 0x1a1, 0x1a2, 0x1a3, 0x1a3, 0x1a4, 0x1a5,
0x1a6, 0x1a6, 0x1a7, 0x1a8, 0x1a9, 0x1a9, 0x1aa, 0x1ab,
0x1ac, 0x1ad, 0x1ad, 0x1ae, 0x1af, 0x1b0, 0x1b0, 0x1b1,
0x1b2, 0x1b3, 0x1b4, 0x1b4, 0x1b5, 0x1b6, 0x1b7, 0x1b8, // 4
0x1b8, 0x1b9, 0x1ba, 0x1bb, 0x1bc, 0x1bc, 0x1bd, 0x1be,
0x1bf, 0x1c0, 0x1c0, 0x1c1, 0x1c2, 0x1c3, 0x1c4, 0x1c4,
0x1c5, 0x1c6, 0x1c7, 0x1c8, 0x1c9, 0x1c9, 0x1ca, 0x1cb,
0x1cc, 0x1cd, 0x1ce, 0x1ce, 0x1cf, 0x1d0, 0x1d1, 0x1d2, // 5
0x1d3, 0x1d3, 0x1d4, 0x1d5, 0x1d6, 0x1d7, 0x1d8, 0x1d8,
0x1d9, 0x1da, 0x1db, 0x1dc, 0x1dd, 0x1de, 0x1de, 0x1df,
0x1e0, 0x1e1, 0x1e2, 0x1e3, 0x1e4, 0x1e5, 0x1e5, 0x1e6,
0x1e7, 0x1e8, 0x1e9, 0x1ea, 0x1eb, 0x1ec, 0x1ed, 0x1ed, // 6
0x1ee, 0x1ef, 0x1f0, 0x1f1, 0x1f2, 0x1f3, 0x1f4, 0x1f5,
0x1f6, 0x1f6, 0x1f7, 0x1f8, 0x1f9, 0x1fa, 0x1fb, 0x1fc,
0x1fd, 0x1fe, 0x1ff, 0x200, 0x201, 0x201, 0x202, 0x203,
// First note of looped range used for all octaves:
0x204, 0x205, 0x206, 0x207, 0x208, 0x209, 0x20a, 0x20b, // 7
0x20c, 0x20d, 0x20e, 0x20f, 0x210, 0x210, 0x211, 0x212,
0x213, 0x214, 0x215, 0x216, 0x217, 0x218, 0x219, 0x21a,
0x21b, 0x21c, 0x21d, 0x21e, 0x21f, 0x220, 0x221, 0x222,
0x223, 0x224, 0x225, 0x226, 0x227, 0x228, 0x229, 0x22a, // 8
0x22b, 0x22c, 0x22d, 0x22e, 0x22f, 0x230, 0x231, 0x232,
0x233, 0x234, 0x235, 0x236, 0x237, 0x238, 0x239, 0x23a,
0x23b, 0x23c, 0x23d, 0x23e, 0x23f, 0x240, 0x241, 0x242,
0x244, 0x245, 0x246, 0x247, 0x248, 0x249, 0x24a, 0x24b, // 9
0x24c, 0x24d, 0x24e, 0x24f, 0x250, 0x251, 0x252, 0x253,
0x254, 0x256, 0x257, 0x258, 0x259, 0x25a, 0x25b, 0x25c,
0x25d, 0x25e, 0x25f, 0x260, 0x262, 0x263, 0x264, 0x265,
0x266, 0x267, 0x268, 0x269, 0x26a, 0x26c, 0x26d, 0x26e, // 10
0x26f, 0x270, 0x271, 0x272, 0x273, 0x275, 0x276, 0x277,
0x278, 0x279, 0x27a, 0x27b, 0x27d, 0x27e, 0x27f, 0x280,
0x281, 0x282, 0x284, 0x285, 0x286, 0x287, 0x288, 0x289,
0x28b, 0x28c, 0x28d, 0x28e, 0x28f, 0x290, 0x292, 0x293, // 11
0x294, 0x295, 0x296, 0x298, 0x299, 0x29a, 0x29b, 0x29c,
0x29e, 0x29f, 0x2a0, 0x2a1, 0x2a2, 0x2a4, 0x2a5, 0x2a6,
0x2a7, 0x2a9, 0x2aa, 0x2ab, 0x2ac, 0x2ae, 0x2af, 0x2b0,
0x2b1, 0x2b2, 0x2b4, 0x2b5, 0x2b6, 0x2b7, 0x2b9, 0x2ba, // 12
0x2bb, 0x2bd, 0x2be, 0x2bf, 0x2c0, 0x2c2, 0x2c3, 0x2c4,
0x2c5, 0x2c7, 0x2c8, 0x2c9, 0x2cb, 0x2cc, 0x2cd, 0x2ce,
0x2d0, 0x2d1, 0x2d2, 0x2d4, 0x2d5, 0x2d6, 0x2d8, 0x2d9,
0x2da, 0x2dc, 0x2dd, 0x2de, 0x2e0, 0x2e1, 0x2e2, 0x2e4, // 13
0x2e5, 0x2e6, 0x2e8, 0x2e9, 0x2ea, 0x2ec, 0x2ed, 0x2ee,
0x2f0, 0x2f1, 0x2f2, 0x2f4, 0x2f5, 0x2f6, 0x2f8, 0x2f9,
0x2fb, 0x2fc, 0x2fd, 0x2ff, 0x300, 0x302, 0x303, 0x304,
0x306, 0x307, 0x309, 0x30a, 0x30b, 0x30d, 0x30e, 0x310, // 14
0x311, 0x312, 0x314, 0x315, 0x317, 0x318, 0x31a, 0x31b,
0x31c, 0x31e, 0x31f, 0x321, 0x322, 0x324, 0x325, 0x327,
0x328, 0x329, 0x32b, 0x32c, 0x32e, 0x32f, 0x331, 0x332,
0x334, 0x335, 0x337, 0x338, 0x33a, 0x33b, 0x33d, 0x33e, // 15
0x340, 0x341, 0x343, 0x344, 0x346, 0x347, 0x349, 0x34a,
0x34c, 0x34d, 0x34f, 0x350, 0x352, 0x353, 0x355, 0x357,
0x358, 0x35a, 0x35b, 0x35d, 0x35e, 0x360, 0x361, 0x363,
0x365, 0x366, 0x368, 0x369, 0x36b, 0x36c, 0x36e, 0x370, // 16
0x371, 0x373, 0x374, 0x376, 0x378, 0x379, 0x37b, 0x37c,
0x37e, 0x380, 0x381, 0x383, 0x384, 0x386, 0x388, 0x389,
0x38b, 0x38d, 0x38e, 0x390, 0x392, 0x393, 0x395, 0x397,
0x398, 0x39a, 0x39c, 0x39d, 0x39f, 0x3a1, 0x3a2, 0x3a4, // 17
0x3a6, 0x3a7, 0x3a9, 0x3ab, 0x3ac, 0x3ae, 0x3b0, 0x3b1,
0x3b3, 0x3b5, 0x3b7, 0x3b8, 0x3ba, 0x3bc, 0x3bd, 0x3bf,
0x3c1, 0x3c3, 0x3c4, 0x3c6, 0x3c8, 0x3ca, 0x3cb, 0x3cd,
// The last note has an incomplete range, and loops round back to
// the start. Note that the last value is actually a buffer overrun
// and does not fit with the other values.
0x3cf, 0x3d1, 0x3d2, 0x3d4, 0x3d6, 0x3d8, 0x3da, 0x3db, // 18
0x3dd, 0x3df, 0x3e1, 0x3e3, 0x3e4, 0x3e6, 0x3e8, 0x3ea,
0x3ec, 0x3ed, 0x3ef, 0x3f1, 0x3f3, 0x3f5, 0x3f6, 0x3f8,
0x3fa, 0x3fc, 0x3fe, 0x36c,
};
void OPLio::WriteFrequency(uint32_t channel, uint32_t note, uint32_t pitch, uint32_t keyon)
{
int octave = 0;
int j = (note << 5) + pitch;
if (j < 0)
{
j = 0;
}
else if (j >= 284)
{
j -= 284;
octave = j / (32*12);
if (octave > 7)
{
octave = 7;
}
j = (j % (32*12)) + 284;
}
int i = frequencies[j] | (octave << 10);
WriteValue (OPL_REGS_FREQ_1, channel, (uint8_t)i);
WriteValue (OPL_REGS_FREQ_2, channel, (uint8_t)(i>>8)|(keyon<<5));
}
//----------------------------------------------------------------------------
//
//
//
//----------------------------------------------------------------------------
static uint8_t volumetable[128] = {
0, 1, 3, 5, 6, 8, 10, 11,
13, 14, 16, 17, 19, 20, 22, 23,
25, 26, 27, 29, 30, 32, 33, 34,
36, 37, 39, 41, 43, 45, 47, 49,
50, 52, 54, 55, 57, 59, 60, 61,
63, 64, 66, 67, 68, 69, 71, 72,
73, 74, 75, 76, 77, 79, 80, 81,
82, 83, 84, 84, 85, 86, 87, 88,
89, 90, 91, 92, 92, 93, 94, 95,
96, 96, 97, 98, 99, 99, 100, 101,
101, 102, 103, 103, 104, 105, 105, 106,
107, 107, 108, 109, 109, 110, 110, 111,
112, 112, 113, 113, 114, 114, 115, 115,
116, 117, 117, 118, 118, 119, 119, 120,
120, 121, 121, 122, 122, 123, 123, 123,
124, 124, 125, 125, 126, 126, 127, 127};
void OPLio::WriteVolume(uint32_t channel, struct GenMidiVoice *voice, uint32_t vol1, uint32_t vol2, uint32_t vol3)
{
if (voice != nullptr)
{
uint32_t full_volume = volumetable[std::min<uint32_t>(127, (uint32_t)((uint64_t)vol1*vol2*vol3) / (127 * 127))];
int reg_volume2 = ((0x3f - voice->carrier.level) * full_volume) / 128;
reg_volume2 = (0x3f - reg_volume2) | voice->carrier.scale;
WriteOperator(OPL_REGS_LEVEL, channel, 1, reg_volume2);
int reg_volume1;
if (voice->feedback & 0x01)
{
// Chocolate Doom says:
// If we are using non-modulated feedback mode, we must set the
// volume for both voices.
// Note that the same register volume value is written for
// both voices, always calculated from the carrier's level
// value.
// But Muslib does it differently than the comment above states. Which one is correct?
reg_volume1 = ((0x3f - voice->modulator.level) * full_volume) / 128;
reg_volume1 = (0x3f - reg_volume1) | voice->modulator.scale;
}
else
{
reg_volume1 = voice->modulator.level | voice->modulator.scale;
}
WriteOperator(OPL_REGS_LEVEL, channel, 0,reg_volume1);
}
}
//----------------------------------------------------------------------------
//
//
//
//----------------------------------------------------------------------------
void OPLio::WritePan(uint32_t channel, struct GenMidiVoice *voice, int pan)
{
if (voice != 0)
{
WriteValue(OPL_REGS_FEEDBACK, channel, voice->feedback | (pan >= 28 ? 0x20 : 0) | (pan <= 100 ? 0x10 : 0));
// Set real panning if we're using emulated chips.
int chanper = IsOPL3 ? OPL3_NUM_VOICES : OPL_NUM_VOICES;
int which = channel / chanper;
if (chips[which] != NULL)
{
// This is the MIDI-recommended pan formula. 0 and 1 are
// both hard left so that 64 can be perfectly center.
double level = (pan <= 1) ? 0 : (pan - 1) / 126.0;
chips[which]->SetPanning(channel % chanper,
(float)cos(HALF_PI * level), (float)sin(HALF_PI * level));
}
}
}
//----------------------------------------------------------------------------
//
//
//
//----------------------------------------------------------------------------
void OPLio::WriteTremolo(uint32_t channel, struct GenMidiVoice *voice, bool vibrato)
{
int val1 = voice->modulator.tremolo, val2 = voice->carrier.tremolo;
if (vibrato)
{
if (voice->feedback & 1) val1 |= 0x40;
val2 |= 0x40;
}
WriteOperator(OPL_REGS_TREMOLO, channel, 1, val2);
WriteOperator(OPL_REGS_TREMOLO, channel, 0, val1);
}
//----------------------------------------------------------------------------
//
//
//
//----------------------------------------------------------------------------
void OPLio::MuteChannel(uint32_t channel)
{
WriteOperator(OPL_REGS_LEVEL, channel, 1, NO_VOLUME);
WriteOperator(OPL_REGS_ATTACK, channel, 1, MAX_ATTACK_DECAY);
WriteOperator(OPL_REGS_SUSTAIN, channel, 1, NO_SUSTAIN_MAX_RELEASE);
WriteOperator(OPL_REGS_LEVEL, channel, 0, NO_VOLUME);
WriteOperator(OPL_REGS_ATTACK, channel, 0, MAX_ATTACK_DECAY);
WriteOperator(OPL_REGS_SUSTAIN, channel, 0, NO_SUSTAIN_MAX_RELEASE);
}
//----------------------------------------------------------------------------
//
//
//
//----------------------------------------------------------------------------
void OPLio::LoadOperatorData(uint32_t channel, int op_index, genmidi_op_t *data, bool max_level, bool vibrato)
{
// The scale and level fields must be combined for the level register.
// For the carrier wave we always set the maximum level.
int level = data->scale;
if (max_level) level |= 0x3f;
else level |= data->level;
int tremolo = data->tremolo;
if (vibrato) tremolo |= 0x40;
WriteOperator(OPL_REGS_LEVEL, channel, op_index, level);
WriteOperator(OPL_REGS_TREMOLO, channel, op_index, tremolo);
WriteOperator(OPL_REGS_ATTACK, channel, op_index, data->attack);
WriteOperator(OPL_REGS_SUSTAIN, channel, op_index, data->sustain);
WriteOperator(OPL_REGS_WAVEFORM, channel, op_index, data->waveform);
}
//----------------------------------------------------------------------------
//
//
//
//----------------------------------------------------------------------------
void OPLio::WriteInstrument(uint32_t channel, struct GenMidiVoice *voice, bool vibrato)
{
bool modulating = (voice->feedback & 0x01) == 0;
// Doom loads the second operator first, then the first.
// The carrier is set to minimum volume until the voice volume
// is set later. If we are not using modulating mode, we must set both to minimum volume.
LoadOperatorData(channel, 1, &voice->carrier, true, vibrato);
LoadOperatorData(channel, 0, &voice->modulator, !modulating, vibrato && modulating);
// The feedback register is written by the calling code.
}