gzdoom/src/r_walldraw.cpp

582 lines
No EOL
16 KiB
C++

/*
** Wall drawing stuff free of Build pollution
** Copyright (c) 2016 Magnus Norddahl
**
** This software is provided 'as-is', without any express or implied
** warranty. In no event will the authors be held liable for any damages
** arising from the use of this software.
**
** Permission is granted to anyone to use this software for any purpose,
** including commercial applications, and to alter it and redistribute it
** freely, subject to the following restrictions:
**
** 1. The origin of this software must not be misrepresented; you must not
** claim that you wrote the original software. If you use this software
** in a product, an acknowledgment in the product documentation would be
** appreciated but is not required.
** 2. Altered source versions must be plainly marked as such, and must not be
** misrepresented as being the original software.
** 3. This notice may not be removed or altered from any source distribution.
**
*/
#include <stdlib.h>
#include <stddef.h>
#include "doomdef.h"
#include "doomstat.h"
#include "doomdata.h"
#include "r_local.h"
#include "r_sky.h"
#include "v_video.h"
#include "m_swap.h"
#include "a_sharedglobal.h"
#include "d_net.h"
#include "g_level.h"
#include "r_draw.h"
#include "r_bsp.h"
#include "r_plane.h"
#include "r_segs.h"
#include "r_3dfloors.h"
#include "v_palette.h"
#include "r_data/colormaps.h"
namespace swrenderer
{
using namespace drawerargs;
extern FTexture *rw_pic;
extern int wallshade;
struct WallSampler
{
WallSampler() { }
WallSampler(int y1, float swal, double yrepeat, fixed_t xoffset, FTexture *texture, const BYTE*(*getcol)(FTexture *texture, int x));
uint32_t uv_pos;
uint32_t uv_step;
uint32_t uv_max;
const BYTE *source;
uint32_t height;
};
WallSampler::WallSampler(int y1, float swal, double yrepeat, fixed_t xoffset, FTexture *texture, const BYTE*(*getcol)(FTexture *texture, int x))
{
height = texture->GetHeight();
int uv_fracbits = 32 - texture->HeightBits;
if (uv_fracbits != 32)
{
uv_max = height << uv_fracbits;
// Find start uv in [0-base_height[ range.
// Not using xs_ToFixed because it rounds the result and we need something that always rounds down to stay within the range.
double uv_stepd = swal * yrepeat;
double v = (dc_texturemid + uv_stepd * (y1 - CenterY + 0.5)) / height;
v = v - floor(v);
v *= height;
v *= (1 << uv_fracbits);
uv_pos = (uint32_t)v;
uv_step = xs_ToFixed(uv_fracbits, uv_stepd);
if (uv_step == 0) // To prevent divide by zero elsewhere
uv_step = 1;
}
else
{ // Hack for one pixel tall textures
uv_pos = 0;
uv_step = 0;
uv_max = 1;
}
source = getcol(texture, xoffset >> FRACBITS);
}
// Draw a column with support for non-power-of-two ranges
static void Draw1Column(int x, int y1, int y2, WallSampler &sampler, void(*draw1column)())
{
if (sampler.uv_max == 0 || sampler.uv_step == 0) // power of two
{
int count = y2 - y1;
dc_source = sampler.source;
dc_dest = (ylookup[y1] + x) + dc_destorg;
dc_count = count;
dc_iscale = sampler.uv_step;
dc_texturefrac = sampler.uv_pos;
draw1column();
uint64_t step64 = sampler.uv_step;
uint64_t pos64 = sampler.uv_pos;
sampler.uv_pos = (uint32_t)(pos64 + step64 * count);
}
else
{
uint32_t uv_pos = sampler.uv_pos;
uint32_t left = y2 - y1;
while (left > 0)
{
uint32_t available = sampler.uv_max - uv_pos;
uint32_t next_uv_wrap = available / sampler.uv_step;
if (available % sampler.uv_step != 0)
next_uv_wrap++;
uint32_t count = MIN(left, next_uv_wrap);
dc_source = sampler.source;
dc_dest = (ylookup[y1] + x) + dc_destorg;
dc_count = count;
dc_iscale = sampler.uv_step;
dc_texturefrac = uv_pos;
draw1column();
left -= count;
uv_pos += sampler.uv_step * count;
if (uv_pos >= sampler.uv_max)
uv_pos -= sampler.uv_max;
}
sampler.uv_pos = uv_pos;
}
}
// Draw four columns with support for non-power-of-two ranges
static void Draw4Columns(int x, int y1, int y2, WallSampler *sampler, void(*draw4columns)())
{
if (sampler[0].uv_max == 0 || sampler[0].uv_step == 0) // power of two, no wrap handling needed
{
int count = y2 - y1;
for (int i = 0; i < 4; i++)
{
dc_wall_source[i] = sampler[i].source;
dc_wall_texturefrac[i] = sampler[i].uv_pos;
dc_wall_iscale[i] = sampler[i].uv_step;
uint64_t step64 = sampler[i].uv_step;
uint64_t pos64 = sampler[i].uv_pos;
sampler[i].uv_pos = (uint32_t)(pos64 + step64 * count);
}
dc_dest = (ylookup[y1] + x) + dc_destorg;
dc_count = count;
draw4columns();
}
else
{
dc_dest = (ylookup[y1] + x) + dc_destorg;
for (int i = 0; i < 4; i++)
{
dc_wall_source[i] = sampler[i].source;
}
uint32_t left = y2 - y1;
while (left > 0)
{
// Find which column wraps first
uint32_t count = left;
for (int i = 0; i < 4; i++)
{
uint32_t available = sampler[i].uv_max - sampler[i].uv_pos;
uint32_t next_uv_wrap = available / sampler[i].uv_step;
if (available % sampler[i].uv_step != 0)
next_uv_wrap++;
count = MIN(next_uv_wrap, count);
}
// Draw until that column wraps
for (int i = 0; i < 4; i++)
{
dc_wall_texturefrac[i] = sampler[i].uv_pos;
dc_wall_iscale[i] = sampler[i].uv_step;
}
dc_count = count;
draw4columns();
// Wrap the uv position
for (int i = 0; i < 4; i++)
{
sampler[i].uv_pos += sampler[i].uv_step * count;
if (sampler[i].uv_pos >= sampler[i].uv_max)
sampler[i].uv_pos -= sampler[i].uv_max;
}
left -= count;
}
}
}
typedef void(*DrawColumnFuncPtr)();
static void ProcessWallWorker(
int x1, int x2, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat,
const BYTE *(*getcol)(FTexture *tex, int x), DrawColumnFuncPtr draw1column, DrawColumnFuncPtr draw4columns)
{
if (rw_pic->UseType == FTexture::TEX_Null)
return;
fixed_t xoffset = rw_offset;
int fracbits = 32 - rw_pic->HeightBits;
if (fracbits == 32)
{ // Hack for one pixel tall textures
fracbits = 0;
yrepeat = 0;
dc_texturemid = 0;
}
dc_wall_fracbits = fracbits;
bool fixed = (fixedcolormap != NULL || fixedlightlev >= 0);
if (fixed)
{
dc_wall_colormap[0] = dc_colormap;
dc_wall_colormap[1] = dc_colormap;
dc_wall_colormap[2] = dc_colormap;
dc_wall_colormap[3] = dc_colormap;
}
if (fixedcolormap)
dc_colormap = fixedcolormap;
else
dc_colormap = basecolormap->Maps;
float light = rw_light;
// Calculate where 4 column alignment begins and ends:
int aligned_x1 = clamp((x1 + 3) / 4 * 4, x1, x2);
int aligned_x2 = clamp(x2 / 4 * 4, x1, x2);
// First unaligned columns:
for (int x = x1; x < aligned_x1; x++, light += rw_lightstep)
{
int y1 = uwal[x];
int y2 = dwal[x];
if (y2 <= y1)
continue;
if (!fixed)
dc_colormap = basecolormap->Maps + (GETPALOOKUP(light, wallshade) << COLORMAPSHIFT);
WallSampler sampler(y1, swal[x], yrepeat, lwal[x] + xoffset, rw_pic, getcol);
Draw1Column(x, y1, y2, sampler, draw1column);
}
// The aligned columns
for (int x = aligned_x1; x < aligned_x2; x += 4)
{
// Find y1, y2, light and uv values for four columns:
int y1[4] = { uwal[x], uwal[x + 1], uwal[x + 2], uwal[x + 3] };
int y2[4] = { dwal[x], dwal[x + 1], dwal[x + 2], dwal[x + 3] };
float lights[4];
for (int i = 0; i < 4; i++)
{
lights[i] = light;
light += rw_lightstep;
}
WallSampler sampler[4];
for (int i = 0; i < 4; i++)
sampler[i] = WallSampler(y1[i], swal[x + i], yrepeat, lwal[x + i] + xoffset, rw_pic, getcol);
// Figure out where we vertically can start and stop drawing 4 columns in one go
int middle_y1 = y1[0];
int middle_y2 = y2[0];
for (int i = 1; i < 4; i++)
{
middle_y1 = MAX(y1[i], middle_y1);
middle_y2 = MIN(y2[i], middle_y2);
}
// If we got an empty column in our set we cannot draw 4 columns in one go:
bool empty_column_in_set = false;
for (int i = 0; i < 4; i++)
{
if (y2[i] <= y1[i])
empty_column_in_set = true;
}
if (empty_column_in_set || middle_y2 <= middle_y1)
{
for (int i = 0; i < 4; i++)
{
if (y2[i] <= y1[i])
continue;
if (!fixed)
dc_colormap = basecolormap->Maps + (GETPALOOKUP(lights[i], wallshade) << COLORMAPSHIFT);
Draw1Column(x + i, y1[i], y2[i], sampler[i], draw1column);
}
continue;
}
// Draw the first rows where not all 4 columns are active
for (int i = 0; i < 4; i++)
{
if (!fixed)
dc_colormap = basecolormap->Maps + (GETPALOOKUP(lights[i], wallshade) << COLORMAPSHIFT);
if (y1[i] < middle_y1)
Draw1Column(x + i, y1[i], middle_y1, sampler[i], draw1column);
}
// Draw the area where all 4 columns are active
if (!fixed)
{
for (int i = 0; i < 4; i++)
{
dc_wall_colormap[i] = basecolormap->Maps + (GETPALOOKUP(lights[i], wallshade) << COLORMAPSHIFT);
}
}
Draw4Columns(x, middle_y1, middle_y2, sampler, draw4columns);
// Draw the last rows where not all 4 columns are active
for (int i = 0; i < 4; i++)
{
if (!fixed)
dc_colormap = basecolormap->Maps + (GETPALOOKUP(lights[i], wallshade) << COLORMAPSHIFT);
if (middle_y2 < y2[i])
Draw1Column(x + i, middle_y2, y2[i], sampler[i], draw1column);
}
}
// The last unaligned columns:
for (int x = aligned_x2; x < x2; x++, light += rw_lightstep)
{
int y1 = uwal[x];
int y2 = dwal[x];
if (y2 <= y1)
continue;
if (!fixed)
dc_colormap = basecolormap->Maps + (GETPALOOKUP(light, wallshade) << COLORMAPSHIFT);
WallSampler sampler(y1, swal[x], yrepeat, lwal[x] + xoffset, rw_pic, getcol);
Draw1Column(x, y1, y2, sampler, draw1column);
}
NetUpdate();
}
static void ProcessNormalWall(int x1, int x2, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat, const BYTE *(*getcol)(FTexture *tex, int x) = R_GetColumn)
{
ProcessWallWorker(x1, x2, uwal, dwal, swal, lwal, yrepeat, getcol, R_DrawWallCol1, R_DrawWallCol4);
}
static void ProcessMaskedWall(int x1, int x2, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat, const BYTE *(*getcol)(FTexture *tex, int x) = R_GetColumn)
{
if (!rw_pic->bMasked) // Textures that aren't masked can use the faster ProcessNormalWall.
{
ProcessNormalWall(x1, x2, uwal, dwal, swal, lwal, yrepeat, getcol);
}
else
{
ProcessWallWorker(x1, x2, uwal, dwal, swal, lwal, yrepeat, getcol, R_DrawWallMaskedCol1, R_DrawWallMaskedCol4);
}
}
static void ProcessTranslucentWall(int x1, int x2, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat, const BYTE *(*getcol)(FTexture *tex, int x) = R_GetColumn)
{
void (*drawcol1)();
void (*drawcol4)();
if (!R_GetTransMaskDrawers(&drawcol1, &drawcol4))
{
// The current translucency is unsupported, so draw with regular ProcessMaskedWall instead.
ProcessMaskedWall(x1, x2, uwal, dwal, swal, lwal, yrepeat, getcol);
}
else
{
ProcessWallWorker(x1, x2, uwal, dwal, swal, lwal, yrepeat, getcol, drawcol1, drawcol4);
}
}
static void ProcessStripedWall(int x1, int x2, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat)
{
FDynamicColormap *startcolormap = basecolormap;
int startshade = wallshade;
bool fogginess = foggy;
short most1[MAXWIDTH], most2[MAXWIDTH], most3[MAXWIDTH];
short *up, *down;
up = uwal;
down = most1;
assert(WallC.sx1 <= x1);
assert(WallC.sx2 >= x2);
// kg3D - fake floors instead of zdoom light list
for (unsigned int i = 0; i < frontsector->e->XFloor.lightlist.Size(); i++)
{
int j = R_CreateWallSegmentYSloped (most3, frontsector->e->XFloor.lightlist[i].plane, &WallC);
if (j != 3)
{
for (int j = x1; j < x2; ++j)
{
down[j] = clamp (most3[j], up[j], dwal[j]);
}
ProcessNormalWall (x1, x2, up, down, swal, lwal, yrepeat);
up = down;
down = (down == most1) ? most2 : most1;
}
lightlist_t *lit = &frontsector->e->XFloor.lightlist[i];
basecolormap = lit->extra_colormap;
wallshade = LIGHT2SHADE(curline->sidedef->GetLightLevel(fogginess,
*lit->p_lightlevel, lit->lightsource != NULL) + r_actualextralight);
}
ProcessNormalWall (x1, x2, up, dwal, swal, lwal, yrepeat);
basecolormap = startcolormap;
wallshade = startshade;
}
static void ProcessWall(int x1, int x2, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat, bool mask)
{
if (mask)
{
if (colfunc == basecolfunc)
{
ProcessMaskedWall(x1, x2, uwal, dwal, swal, lwal, yrepeat);
}
else
{
ProcessTranslucentWall(x1, x2, uwal, dwal, swal, lwal, yrepeat);
}
}
else
{
if (fixedcolormap != NULL || fixedlightlev >= 0 || !(frontsector->e && frontsector->e->XFloor.lightlist.Size()))
{
ProcessNormalWall(x1, x2, uwal, dwal, swal, lwal, yrepeat);
}
else
{
ProcessStripedWall(x1, x2, uwal, dwal, swal, lwal, yrepeat);
}
}
}
//=============================================================================
//
// ProcessWallNP2
//
// This is a wrapper around ProcessWall that helps it tile textures whose heights
// are not powers of 2. It divides the wall into texture-sized strips and calls
// ProcessNormalWall for each of those. Since only one repetition of the texture fits
// in each strip, ProcessWall will not tile.
//
//=============================================================================
static void ProcessWallNP2(int x1, int x2, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat, double top, double bot, bool mask)
{
short most1[MAXWIDTH], most2[MAXWIDTH], most3[MAXWIDTH];
short *up, *down;
double texheight = rw_pic->GetHeight();
double partition;
double scaledtexheight = texheight / yrepeat;
if (yrepeat >= 0)
{ // normal orientation: draw strips from top to bottom
partition = top - fmod(top - dc_texturemid / yrepeat - ViewPos.Z, scaledtexheight);
if (partition == top)
{
partition -= scaledtexheight;
}
up = uwal;
down = most1;
dc_texturemid = (partition - ViewPos.Z) * yrepeat + texheight;
while (partition > bot)
{
int j = R_CreateWallSegmentY(most3, partition - ViewPos.Z, &WallC);
if (j != 3)
{
for (int j = x1; j < x2; ++j)
{
down[j] = clamp(most3[j], up[j], dwal[j]);
}
ProcessWall(x1, x2, up, down, swal, lwal, yrepeat, mask);
up = down;
down = (down == most1) ? most2 : most1;
}
partition -= scaledtexheight;
dc_texturemid -= texheight;
}
ProcessWall(x1, x2, up, dwal, swal, lwal, yrepeat, mask);
}
else
{ // upside down: draw strips from bottom to top
partition = bot - fmod(bot - dc_texturemid / yrepeat - ViewPos.Z, scaledtexheight);
up = most1;
down = dwal;
dc_texturemid = (partition - ViewPos.Z) * yrepeat + texheight;
while (partition < top)
{
int j = R_CreateWallSegmentY(most3, partition - ViewPos.Z, &WallC);
if (j != 12)
{
for (int j = x1; j < x2; ++j)
{
up[j] = clamp(most3[j], uwal[j], down[j]);
}
ProcessWall(x1, x2, up, down, swal, lwal, yrepeat, mask);
down = up;
up = (up == most1) ? most2 : most1;
}
partition -= scaledtexheight;
dc_texturemid -= texheight;
}
ProcessWall(x1, x2, uwal, down, swal, lwal, yrepeat, mask);
}
}
void R_DrawDrawSeg(drawseg_t *ds, int x1, int x2, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat)
{
if (rw_pic->GetHeight() != 1 << rw_pic->HeightBits)
{
double frontcz1 = ds->curline->frontsector->ceilingplane.ZatPoint(ds->curline->v1);
double frontfz1 = ds->curline->frontsector->floorplane.ZatPoint(ds->curline->v1);
double frontcz2 = ds->curline->frontsector->ceilingplane.ZatPoint(ds->curline->v2);
double frontfz2 = ds->curline->frontsector->floorplane.ZatPoint(ds->curline->v2);
double top = MAX(frontcz1, frontcz2);
double bot = MIN(frontfz1, frontfz2);
if (fake3D & FAKE3D_CLIPTOP)
{
top = MIN(top, sclipTop);
}
if (fake3D & FAKE3D_CLIPBOTTOM)
{
bot = MAX(bot, sclipBottom);
}
ProcessWallNP2(x1, x2, uwal, dwal, swal, lwal, yrepeat, top, bot, true);
}
else
{
ProcessWall(x1, x2, uwal, dwal, swal, lwal, yrepeat, true);
}
}
void R_DrawWallSegment(FTexture *rw_pic, int x1, int x2, short *walltop, short *wallbottom, float *swall, fixed_t *lwall, double yscale, double top, double bottom, bool mask)
{
if (rw_pic->GetHeight() != 1 << rw_pic->HeightBits)
{
ProcessWallNP2(x1, x2, walltop, wallbottom, swall, lwall, yscale, top, bottom, false);
}
else
{
ProcessWall(x1, x2, walltop, wallbottom, swall, lwall, yscale, false);
}
}
void R_DrawSkySegment(visplane_t *pl, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat, const BYTE *(*getcol)(FTexture *tex, int x))
{
ProcessNormalWall(pl->left, pl->right, uwal, dwal, swal, lwal, yrepeat, getcol);
}
}