mirror of
https://github.com/ZDoom/gzdoom.git
synced 2025-01-10 03:51:17 +00:00
596 lines
15 KiB
C++
596 lines
15 KiB
C++
/*
|
|
** p_slopes.cpp
|
|
** Slope creation
|
|
**
|
|
**---------------------------------------------------------------------------
|
|
** Copyright 1998-2008 Randy Heit
|
|
** All rights reserved.
|
|
**
|
|
** Redistribution and use in source and binary forms, with or without
|
|
** modification, are permitted provided that the following conditions
|
|
** are met:
|
|
**
|
|
** 1. Redistributions of source code must retain the above copyright
|
|
** notice, this list of conditions and the following disclaimer.
|
|
** 2. Redistributions in binary form must reproduce the above copyright
|
|
** notice, this list of conditions and the following disclaimer in the
|
|
** documentation and/or other materials provided with the distribution.
|
|
** 3. The name of the author may not be used to endorse or promote products
|
|
** derived from this software without specific prior written permission.
|
|
**
|
|
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
**---------------------------------------------------------------------------
|
|
**
|
|
*/
|
|
|
|
#include "doomtype.h"
|
|
#include "p_local.h"
|
|
#include "cmdlib.h"
|
|
#include "p_lnspec.h"
|
|
#include "p_maputl.h"
|
|
#include "p_spec.h"
|
|
#include "g_levellocals.h"
|
|
|
|
//===========================================================================
|
|
//
|
|
// P_SpawnSlopeMakers
|
|
//
|
|
//===========================================================================
|
|
|
|
static void P_SlopeLineToPoint (int lineid, const DVector3 &pos, bool slopeCeil)
|
|
{
|
|
int linenum;
|
|
|
|
FLineIdIterator itr(lineid);
|
|
while ((linenum = itr.Next()) >= 0)
|
|
{
|
|
const line_t *line = &level.lines[linenum];
|
|
sector_t *sec;
|
|
secplane_t *plane;
|
|
|
|
if (P_PointOnLineSidePrecise (pos, line) == 0)
|
|
{
|
|
sec = line->frontsector;
|
|
}
|
|
else
|
|
{
|
|
sec = line->backsector;
|
|
}
|
|
if (sec == NULL)
|
|
{
|
|
continue;
|
|
}
|
|
if (slopeCeil)
|
|
{
|
|
plane = &sec->ceilingplane;
|
|
}
|
|
else
|
|
{
|
|
plane = &sec->floorplane;
|
|
}
|
|
|
|
DVector3 p, v1, v2, cross;
|
|
|
|
p[0] = line->v1->fX();
|
|
p[1] = line->v1->fY();
|
|
p[2] = plane->ZatPoint (line->v1);
|
|
v1[0] = line->Delta().X;
|
|
v1[1] = line->Delta().Y;
|
|
v1[2] = plane->ZatPoint (line->v2) - p[2];
|
|
v2[0] = pos.X - p[0];
|
|
v2[1] = pos.Y - p[1];
|
|
v2[2] = pos.Z - p[2];
|
|
|
|
cross = v1 ^ v2;
|
|
double len = cross.Length();
|
|
if (len == 0)
|
|
{
|
|
Printf ("Slope thing at (%f,%f) lies directly on its target line.\n", pos.X, pos.Y);
|
|
return;
|
|
}
|
|
cross /= len;
|
|
// Fix backward normals
|
|
if ((cross.Z < 0 && !slopeCeil) || (cross.Z > 0 && slopeCeil))
|
|
{
|
|
cross = -cross;
|
|
}
|
|
|
|
double dist = -cross[0] * pos.X - cross[1] * pos.Y - cross[2] * pos.Z;
|
|
plane->set(cross[0], cross[1], cross[2], dist);
|
|
}
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
// P_CopyPlane
|
|
//
|
|
//===========================================================================
|
|
|
|
static void P_CopyPlane (int tag, sector_t *dest, bool copyCeil)
|
|
{
|
|
sector_t *source;
|
|
int secnum;
|
|
|
|
secnum = P_FindFirstSectorFromTag (tag);
|
|
if (secnum == -1)
|
|
{
|
|
return;
|
|
}
|
|
|
|
source = &level.sectors[secnum];
|
|
|
|
if (copyCeil)
|
|
{
|
|
dest->ceilingplane = source->ceilingplane;
|
|
}
|
|
else
|
|
{
|
|
dest->floorplane = source->floorplane;
|
|
}
|
|
}
|
|
|
|
static void P_CopyPlane (int tag, const DVector2 &pos, bool copyCeil)
|
|
{
|
|
sector_t *dest = P_PointInSector (pos);
|
|
P_CopyPlane(tag, dest, copyCeil);
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
// P_SetSlope
|
|
//
|
|
//===========================================================================
|
|
|
|
void P_SetSlope (secplane_t *plane, bool setCeil, int xyangi, int zangi, const DVector3 &pos)
|
|
{
|
|
DAngle xyang;
|
|
DAngle zang;
|
|
|
|
if (zangi >= 180)
|
|
{
|
|
zang = 179.;
|
|
}
|
|
else if (zangi <= 0)
|
|
{
|
|
zang = 1.;
|
|
}
|
|
else
|
|
{
|
|
zang = (double)zangi;
|
|
}
|
|
if (setCeil)
|
|
{
|
|
zang += 180.;
|
|
}
|
|
|
|
xyang = (double)xyangi;
|
|
|
|
DVector3 norm;
|
|
|
|
if (ib_compatflags & BCOMPATF_SETSLOPEOVERFLOW)
|
|
{
|
|
// We have to consider an integer multiplication overflow here.
|
|
norm[0] = FixedToFloat(FloatToFixed(zang.Cos()) * FloatToFixed(xyang.Cos())) / 65536.;
|
|
norm[1] = FixedToFloat(FloatToFixed(zang.Cos()) * FloatToFixed(xyang.Sin())) / 65536.;
|
|
}
|
|
else
|
|
{
|
|
norm[0] = zang.Cos() * xyang.Cos();
|
|
norm[1] = zang.Cos() * xyang.Sin();
|
|
}
|
|
norm[2] = zang.Sin();
|
|
norm.MakeUnit();
|
|
double dist = -norm[0] * pos.X - norm[1] * pos.Y - norm[2] * pos.Z;
|
|
plane->set(norm[0], norm[1], norm[2], dist);
|
|
}
|
|
|
|
|
|
//===========================================================================
|
|
//
|
|
// P_VavoomSlope
|
|
//
|
|
//===========================================================================
|
|
|
|
void P_VavoomSlope(sector_t * sec, int id, const DVector3 &pos, int which)
|
|
{
|
|
for(auto l : sec->Lines)
|
|
{
|
|
if (l->args[0]==id)
|
|
{
|
|
DVector3 v1, v2, cross;
|
|
secplane_t *srcplane = (which == 0) ? &sec->floorplane : &sec->ceilingplane;
|
|
double srcheight = (which == 0) ? sec->GetPlaneTexZ(sector_t::floor) : sec->GetPlaneTexZ(sector_t::ceiling);
|
|
|
|
v1[0] = pos.X - l->v2->fX();
|
|
v1[1] = pos.Y - l->v2->fY();
|
|
v1[2] = pos.Z - srcheight;
|
|
|
|
v2[0] = pos.X - l->v1->fX();
|
|
v2[1] = pos.Y - l->v1->fY();
|
|
v2[2] = pos.Z - srcheight;
|
|
|
|
cross = v1 ^ v2;
|
|
double len = cross.Length();
|
|
if (len == 0)
|
|
{
|
|
Printf ("Slope thing at (%f,%f) lies directly on its target line.\n", pos.X, pos.Y);
|
|
return;
|
|
}
|
|
cross /= len;
|
|
|
|
// Fix backward normals
|
|
if ((cross.Z < 0 && which == 0) || (cross.Z > 0 && which == 1))
|
|
{
|
|
cross = -cross;
|
|
}
|
|
|
|
double dist = -cross[0] * pos.X - cross[1] * pos.Y - cross[2] * pos.Z;
|
|
srcplane->set(cross[0], cross[1], cross[2], dist);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// P_SetSlopesFromVertexHeights
|
|
//
|
|
//==========================================================================
|
|
|
|
static void P_SetSlopesFromVertexHeights(FMapThing *firstmt, FMapThing *lastmt, const int *oldvertextable)
|
|
{
|
|
TMap<int, double> vt_heights[2];
|
|
FMapThing *mt;
|
|
bool vt_found = false;
|
|
|
|
for (mt = firstmt; mt < lastmt; ++mt)
|
|
{
|
|
if (mt->info != NULL && mt->info->Type == NULL)
|
|
{
|
|
if (mt->info->Special == SMT_VertexFloorZ || mt->info->Special == SMT_VertexCeilingZ)
|
|
{
|
|
for (unsigned i = 0; i < level.vertexes.Size(); i++)
|
|
{
|
|
if (level.vertexes[i].fX() == mt->pos.X && level.vertexes[i].fY() == mt->pos.Y)
|
|
{
|
|
if (mt->info->Special == SMT_VertexFloorZ)
|
|
{
|
|
vt_heights[0][i] = mt->pos.Z;
|
|
}
|
|
else
|
|
{
|
|
vt_heights[1][i] = mt->pos.Z;
|
|
}
|
|
vt_found = true;
|
|
}
|
|
}
|
|
mt->EdNum = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
for(unsigned i = 0; i < vertexdatas.Size(); i++)
|
|
{
|
|
int ii = oldvertextable == NULL ? i : oldvertextable[i];
|
|
|
|
if (vertexdatas[i].flags & VERTEXFLAG_ZCeilingEnabled)
|
|
{
|
|
vt_heights[1][ii] = vertexdatas[i].zCeiling;
|
|
vt_found = true;
|
|
}
|
|
|
|
if (vertexdatas[i].flags & VERTEXFLAG_ZFloorEnabled)
|
|
{
|
|
vt_heights[0][ii] = vertexdatas[i].zFloor;
|
|
vt_found = true;
|
|
}
|
|
}
|
|
|
|
// If vertexdata_t is ever extended for non-slope usage, this will obviously have to be deferred or removed.
|
|
vertexdatas.Clear();
|
|
vertexdatas.ShrinkToFit();
|
|
|
|
if (vt_found)
|
|
{
|
|
for (auto &sec : level.sectors)
|
|
{
|
|
if (sec.Lines.Size() != 3) continue; // only works with triangular sectors
|
|
|
|
DVector3 vt1, vt2, vt3, cross;
|
|
DVector3 vec1, vec2;
|
|
int vi1, vi2, vi3;
|
|
|
|
vi1 = sec.Lines[0]->v1->Index();
|
|
vi2 = sec.Lines[0]->v2->Index();
|
|
vi3 = (sec.Lines[1]->v1 == sec.Lines[0]->v1 || sec.Lines[1]->v1 == sec.Lines[0]->v2)?
|
|
sec.Lines[1]->v2->Index() : sec.Lines[1]->v1->Index();
|
|
|
|
vt1 = DVector3(level.vertexes[vi1].fPos(), 0);
|
|
vt2 = DVector3(level.vertexes[vi2].fPos(), 0);
|
|
vt3 = DVector3(level.vertexes[vi3].fPos(), 0);
|
|
|
|
for(int j=0; j<2; j++)
|
|
{
|
|
double *h1 = vt_heights[j].CheckKey(vi1);
|
|
double *h2 = vt_heights[j].CheckKey(vi2);
|
|
double *h3 = vt_heights[j].CheckKey(vi3);
|
|
if (h1 == NULL && h2 == NULL && h3 == NULL) continue;
|
|
|
|
vt1.Z = h1? *h1 : j==0? sec.GetPlaneTexZ(sector_t::floor) : sec.GetPlaneTexZ(sector_t::ceiling);
|
|
vt2.Z = h2? *h2 : j==0? sec.GetPlaneTexZ(sector_t::floor) : sec.GetPlaneTexZ(sector_t::ceiling);
|
|
vt3.Z = h3? *h3 : j==0? sec.GetPlaneTexZ(sector_t::floor) : sec.GetPlaneTexZ(sector_t::ceiling);
|
|
|
|
if (P_PointOnLineSidePrecise(level.vertexes[vi3].fX(), level.vertexes[vi3].fY(), sec.Lines[0]) == 0)
|
|
{
|
|
vec1 = vt2 - vt3;
|
|
vec2 = vt1 - vt3;
|
|
}
|
|
else
|
|
{
|
|
vec1 = vt1 - vt3;
|
|
vec2 = vt2 - vt3;
|
|
}
|
|
|
|
DVector3 cross = vec1 ^ vec2;
|
|
|
|
double len = cross.Length();
|
|
if (len == 0)
|
|
{
|
|
// Only happens when all vertices in this sector are on the same line.
|
|
// Let's just ignore this case.
|
|
continue;
|
|
}
|
|
cross /= len;
|
|
|
|
// Fix backward normals
|
|
if ((cross.Z < 0 && j == 0) || (cross.Z > 0 && j == 1))
|
|
{
|
|
cross = -cross;
|
|
}
|
|
|
|
secplane_t *plane = j==0? &sec.floorplane : &sec.ceilingplane;
|
|
|
|
double dist = -cross[0] * level.vertexes[vi3].fX() - cross[1] * level.vertexes[vi3].fY() - cross[2] * vt3.Z;
|
|
plane->set(cross[0], cross[1], cross[2], dist);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
// P_SpawnSlopeMakers
|
|
//
|
|
//===========================================================================
|
|
|
|
void P_SpawnSlopeMakers (FMapThing *firstmt, FMapThing *lastmt, const int *oldvertextable)
|
|
{
|
|
FMapThing *mt;
|
|
|
|
for (mt = firstmt; mt < lastmt; ++mt)
|
|
{
|
|
if (mt->info != NULL && mt->info->Type == NULL &&
|
|
(mt->info->Special >= SMT_SlopeFloorPointLine && mt->info->Special <= SMT_VavoomCeiling))
|
|
{
|
|
DVector3 pos = mt->pos;
|
|
secplane_t *refplane;
|
|
sector_t *sec;
|
|
bool ceiling;
|
|
|
|
sec = P_PointInSector (mt->pos);
|
|
if (mt->info->Special == SMT_SlopeCeilingPointLine || mt->info->Special == SMT_VavoomCeiling || mt->info->Special == SMT_SetCeilingSlope)
|
|
{
|
|
refplane = &sec->ceilingplane;
|
|
ceiling = true;
|
|
}
|
|
else
|
|
{
|
|
refplane = &sec->floorplane;
|
|
ceiling = false;
|
|
}
|
|
pos.Z = refplane->ZatPoint (mt->pos) + mt->pos.Z;
|
|
|
|
if (mt->info->Special <= SMT_SlopeCeilingPointLine)
|
|
{ // SlopeFloorPointLine and SlopCeilingPointLine
|
|
P_SlopeLineToPoint (mt->args[0], pos, ceiling);
|
|
}
|
|
else if (mt->info->Special <= SMT_SetCeilingSlope)
|
|
{ // SetFloorSlope and SetCeilingSlope
|
|
P_SetSlope (refplane, ceiling, mt->angle, mt->args[0], pos);
|
|
}
|
|
else
|
|
{ // VavoomFloor and VavoomCeiling (these do not perform any sector height adjustment - z is absolute)
|
|
P_VavoomSlope(sec, mt->thingid, mt->pos, ceiling);
|
|
}
|
|
mt->EdNum = 0;
|
|
}
|
|
}
|
|
|
|
for (mt = firstmt; mt < lastmt; ++mt)
|
|
{
|
|
if (mt->info != NULL && mt->info->Type == NULL &&
|
|
(mt->info->Special == SMT_CopyFloorPlane || mt->info->Special == SMT_CopyCeilingPlane))
|
|
{
|
|
P_CopyPlane (mt->args[0], mt->pos, mt->info->Special == SMT_CopyCeilingPlane);
|
|
mt->EdNum = 0;
|
|
}
|
|
}
|
|
|
|
P_SetSlopesFromVertexHeights(firstmt, lastmt, oldvertextable);
|
|
}
|
|
|
|
|
|
//===========================================================================
|
|
//
|
|
// [RH] Set slopes for sectors, based on line specials
|
|
//
|
|
// P_AlignPlane
|
|
//
|
|
// Aligns the floor or ceiling of a sector to the corresponding plane
|
|
// on the other side of the reference line. (By definition, line must be
|
|
// two-sided.)
|
|
//
|
|
// If (which & 1), sets floor.
|
|
// If (which & 2), sets ceiling.
|
|
//
|
|
//===========================================================================
|
|
|
|
static void P_AlignPlane(sector_t *sec, line_t *line, int which)
|
|
{
|
|
sector_t *refsec;
|
|
double bestdist;
|
|
vertex_t *refvert = sec->Lines[0]->v1; // Shut up, GCC
|
|
|
|
if (line->backsector == NULL)
|
|
return;
|
|
|
|
// Find furthest vertex from the reference line. It, along with the two ends
|
|
// of the line, will define the plane.
|
|
bestdist = 0;
|
|
for (auto ln : sec->Lines)
|
|
{
|
|
for (int i = 0; i < 2; i++)
|
|
{
|
|
double dist;
|
|
vertex_t *vert;
|
|
|
|
vert = i == 0 ? ln->v1 : ln->v2;
|
|
dist = fabs((line->v1->fY() - vert->fY()) * line->Delta().X -
|
|
(line->v1->fX() - vert->fX()) * line->Delta().Y);
|
|
|
|
if (dist > bestdist)
|
|
{
|
|
bestdist = dist;
|
|
refvert = vert;
|
|
}
|
|
}
|
|
}
|
|
|
|
refsec = line->frontsector == sec ? line->backsector : line->frontsector;
|
|
|
|
DVector3 p, v1, v2, cross;
|
|
|
|
secplane_t *srcplane;
|
|
double srcheight, destheight;
|
|
|
|
srcplane = (which == 0) ? &sec->floorplane : &sec->ceilingplane;
|
|
srcheight = (which == 0) ? sec->GetPlaneTexZ(sector_t::floor) : sec->GetPlaneTexZ(sector_t::ceiling);
|
|
destheight = (which == 0) ? refsec->GetPlaneTexZ(sector_t::floor) : refsec->GetPlaneTexZ(sector_t::ceiling);
|
|
|
|
p[0] = line->v1->fX();
|
|
p[1] = line->v1->fY();
|
|
p[2] = destheight;
|
|
v1[0] = line->Delta().X;
|
|
v1[1] = line->Delta().Y;
|
|
v1[2] = 0;
|
|
v2[0] = refvert->fX() - line->v1->fX();
|
|
v2[1] = refvert->fY() - line->v1->fY();
|
|
v2[2] = srcheight - destheight;
|
|
|
|
cross = (v1 ^ v2).Unit();
|
|
|
|
// Fix backward normals
|
|
if ((cross.Z < 0 && which == 0) || (cross.Z > 0 && which == 1))
|
|
{
|
|
cross = -cross;
|
|
}
|
|
|
|
double dist = -cross[0] * line->v1->fX() - cross[1] * line->v1->fY() - cross[2] * destheight;
|
|
srcplane->set(cross[0], cross[1], cross[2], dist);
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
// P_SetSlopes
|
|
//
|
|
//===========================================================================
|
|
|
|
void P_SetSlopes ()
|
|
{
|
|
int s;
|
|
|
|
for (auto &line : level.lines)
|
|
{
|
|
if (line.special == Plane_Align)
|
|
{
|
|
line.special = 0;
|
|
if (line.backsector != nullptr)
|
|
{
|
|
// args[0] is for floor, args[1] is for ceiling
|
|
//
|
|
// As a special case, if args[1] is 0,
|
|
// then args[0], bits 2-3 are for ceiling.
|
|
for (s = 0; s < 2; s++)
|
|
{
|
|
int bits = line.args[s] & 3;
|
|
|
|
if (s == 1 && bits == 0)
|
|
bits = (line.args[0] >> 2) & 3;
|
|
|
|
if (bits == 1) // align front side to back
|
|
P_AlignPlane (line.frontsector, &line, s);
|
|
else if (bits == 2) // align back side to front
|
|
P_AlignPlane (line.backsector, &line, s);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
// P_CopySlopes
|
|
//
|
|
//===========================================================================
|
|
|
|
void P_CopySlopes()
|
|
{
|
|
for (auto &line : level.lines)
|
|
{
|
|
if (line.special == Plane_Copy)
|
|
{
|
|
// The args are used for the tags of sectors to copy:
|
|
// args[0]: front floor
|
|
// args[1]: front ceiling
|
|
// args[2]: back floor
|
|
// args[3]: back ceiling
|
|
// args[4]: copy slopes from one side of the line to the other.
|
|
line.special = 0;
|
|
for (int s = 0; s < (line.backsector ? 4 : 2); s++)
|
|
{
|
|
if (line.args[s])
|
|
P_CopyPlane(line.args[s],
|
|
(s & 2 ? line.backsector : line.frontsector), s & 1);
|
|
}
|
|
|
|
if (line.backsector != NULL)
|
|
{
|
|
if ((line.args[4] & 3) == 1)
|
|
{
|
|
line.backsector->floorplane = line.frontsector->floorplane;
|
|
}
|
|
else if ((line.args[4] & 3) == 2)
|
|
{
|
|
line.frontsector->floorplane = line.backsector->floorplane;
|
|
}
|
|
if ((line.args[4] & 12) == 4)
|
|
{
|
|
line.backsector->ceilingplane = line.frontsector->ceilingplane;
|
|
}
|
|
else if ((line.args[4] & 12) == 8)
|
|
{
|
|
line.frontsector->ceilingplane = line.backsector->ceilingplane;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|