mirror of
https://github.com/ZDoom/gzdoom.git
synced 2025-01-18 15:42:34 +00:00
91207ed3f4
- Add a missing check for out-of-memory in the lemon code generator. - Fix a total unimportant file descriptor leak in lemon. This is to silence warning messages. - Fix a bug in lemon in computation of which non-terminals can generate an empty string. This bug and the fix make absolutely no difference for the grammar used by SQLite, but it can make a difference when lemon is used in other grammars. - In Lemon, when comparing the output to the *.h file to see if it has changed, make sure that the proposed new output and the preexisting output are the same size before deciding that they are the same.
4929 lines
146 KiB
C
4929 lines
146 KiB
C
/*
|
|
** This file contains all sources (including headers) to the LEMON
|
|
** LALR(1) parser generator. The sources have been combined into a
|
|
** single file to make it easy to include LEMON in the source tree
|
|
** and Makefile of another program.
|
|
**
|
|
** The author of this program disclaims copyright.
|
|
**
|
|
** This file is based on version 1.69 of lemon.c from the SQLite
|
|
** CVS, with modifications to make it work nicer when run
|
|
** from Developer Studio.
|
|
*/
|
|
#include <stdio.h>
|
|
#include <stdarg.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
|
|
#ifndef __WIN32__
|
|
# if defined(_WIN32) || defined(WIN32)
|
|
# define __WIN32__
|
|
# endif
|
|
#endif
|
|
|
|
#ifdef __WIN32__
|
|
extern int access();
|
|
#else
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
/* #define PRIVATE static */
|
|
#define PRIVATE
|
|
|
|
#ifdef TEST
|
|
#define MAXRHS 5 /* Set low to exercise exception code */
|
|
#else
|
|
#define MAXRHS 1000
|
|
#endif
|
|
|
|
static void *msort(void *list, void *next, int (*cmp)());
|
|
|
|
/*
|
|
** Compilers are getting increasingly pedantic about type conversions
|
|
** as C evolves ever closer to Ada.... To work around the latest problems
|
|
** we have to define the following variant of strlen().
|
|
*/
|
|
#define lemonStrlen(X) ((int)strlen(X))
|
|
|
|
/******** From the file "action.h" *************************************/
|
|
static struct action *Action_new(void);
|
|
static struct action *Action_sort(struct action *);
|
|
|
|
/********** From the file "build.h" ************************************/
|
|
void FindRulePrecedences();
|
|
void FindFirstSets();
|
|
void FindStates();
|
|
void FindLinks();
|
|
void FindFollowSets();
|
|
void FindActions();
|
|
|
|
/********* From the file "configlist.h" *********************************/
|
|
void Configlist_init(/* void */);
|
|
struct config *Configlist_add(/* struct rule *, int */);
|
|
struct config *Configlist_addbasis(/* struct rule *, int */);
|
|
void Configlist_closure(/* void */);
|
|
void Configlist_sort(/* void */);
|
|
void Configlist_sortbasis(/* void */);
|
|
struct config *Configlist_return(/* void */);
|
|
struct config *Configlist_basis(/* void */);
|
|
void Configlist_eat(/* struct config * */);
|
|
void Configlist_reset(/* void */);
|
|
|
|
/********* From the file "error.h" ***************************************/
|
|
void ErrorMsg(const char *, int,const char *, ...);
|
|
|
|
/****** From the file "option.h" ******************************************/
|
|
struct s_options {
|
|
enum { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR,
|
|
OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR} type;
|
|
char *label;
|
|
char *arg;
|
|
char *message;
|
|
};
|
|
int OptInit(/* char**,struct s_options*,FILE* */);
|
|
int OptNArgs(/* void */);
|
|
char *OptArg(/* int */);
|
|
void OptErr(/* int */);
|
|
void OptPrint(/* void */);
|
|
|
|
/******** From the file "parse.h" *****************************************/
|
|
void Parse(/* struct lemon *lemp */);
|
|
|
|
/********* From the file "plink.h" ***************************************/
|
|
struct plink *Plink_new(/* void */);
|
|
void Plink_add(/* struct plink **, struct config * */);
|
|
void Plink_copy(/* struct plink **, struct plink * */);
|
|
void Plink_delete(/* struct plink * */);
|
|
|
|
/********** From the file "report.h" *************************************/
|
|
void Reprint(/* struct lemon * */);
|
|
void ReportOutput(/* struct lemon * */);
|
|
void ReportTable(/* struct lemon * */);
|
|
void ReportHeader(/* struct lemon * */);
|
|
void CompressTables(/* struct lemon * */);
|
|
void ResortStates(/* struct lemon * */);
|
|
|
|
/********** From the file "set.h" ****************************************/
|
|
void SetSize(/* int N */); /* All sets will be of size N */
|
|
char *SetNew(/* void */); /* A new set for element 0..N */
|
|
void SetFree(/* char* */); /* Deallocate a set */
|
|
|
|
int SetAdd(/* char*,int */); /* Add element to a set */
|
|
int SetUnion(/* char *A,char *B */); /* A <- A U B, thru element N */
|
|
|
|
#define SetFind(X,Y) (X[Y]) /* True if Y is in set X */
|
|
|
|
/********** From the file "struct.h" *************************************/
|
|
/*
|
|
** Principal data structures for the LEMON parser generator.
|
|
*/
|
|
|
|
typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean;
|
|
|
|
/* Symbols (terminals and nonterminals) of the grammar are stored
|
|
** in the following: */
|
|
struct symbol {
|
|
char *name; /* Name of the symbol */
|
|
int index; /* Index number for this symbol */
|
|
enum {
|
|
TERMINAL,
|
|
NONTERMINAL,
|
|
MULTITERMINAL
|
|
} type; /* Symbols are all either TERMINALS or NTs */
|
|
struct rule *rule; /* Linked list of rules of this (if an NT) */
|
|
struct symbol *fallback; /* fallback token in case this token doesn't parse */
|
|
int prec; /* Precedence if defined (-1 otherwise) */
|
|
enum e_assoc {
|
|
LEFT,
|
|
RIGHT,
|
|
NONE,
|
|
UNK
|
|
} assoc; /* Associativity if precedence is defined */
|
|
char *firstset; /* First-set for all rules of this symbol */
|
|
Boolean lambda; /* True if NT and can generate an empty string */
|
|
int useCnt; /* Number of times used */
|
|
char *destructor; /* Code which executes whenever this symbol is
|
|
** popped from the stack during error processing */
|
|
int destLineno; /* Line number for start of destructor */
|
|
char *datatype; /* The data type of information held by this
|
|
** object. Only used if type==NONTERMINAL */
|
|
int dtnum; /* The data type number. In the parser, the value
|
|
** stack is a union. The .yy%d element of this
|
|
** union is the correct data type for this object */
|
|
/* The following fields are used by MULTITERMINALs only */
|
|
int nsubsym; /* Number of constituent symbols in the MULTI */
|
|
struct symbol **subsym; /* Array of constituent symbols */
|
|
};
|
|
|
|
/* Each production rule in the grammar is stored in the following
|
|
** structure. */
|
|
struct rule {
|
|
struct symbol *lhs; /* Left-hand side of the rule */
|
|
char *lhsalias; /* Alias for the LHS (NULL if none) */
|
|
int lhsStart; /* True if left-hand side is the start symbol */
|
|
int ruleline; /* Line number for the rule */
|
|
int nrhs; /* Number of RHS symbols */
|
|
struct symbol **rhs; /* The RHS symbols */
|
|
char **rhsalias; /* An alias for each RHS symbol (NULL if none) */
|
|
int line; /* Line number at which code begins */
|
|
char *code; /* The code executed when this rule is reduced */
|
|
struct symbol *precsym; /* Precedence symbol for this rule */
|
|
int index; /* An index number for this rule */
|
|
Boolean canReduce; /* True if this rule is ever reduced */
|
|
struct rule *nextlhs; /* Next rule with the same LHS */
|
|
struct rule *next; /* Next rule in the global list */
|
|
};
|
|
|
|
/* A configuration is a production rule of the grammar together with
|
|
** a mark (dot) showing how much of that rule has been processed so far.
|
|
** Configurations also contain a follow-set which is a list of terminal
|
|
** symbols which are allowed to immediately follow the end of the rule.
|
|
** Every configuration is recorded as an instance of the following: */
|
|
struct config {
|
|
struct rule *rp; /* The rule upon which the configuration is based */
|
|
int dot; /* The parse point */
|
|
char *fws; /* Follow-set for this configuration only */
|
|
struct plink *fplp; /* Follow-set forward propagation links */
|
|
struct plink *bplp; /* Follow-set backwards propagation links */
|
|
struct state *stp; /* Pointer to state which contains this */
|
|
enum {
|
|
COMPLETE, /* The status is used during followset and */
|
|
INCOMPLETE /* shift computations */
|
|
} status;
|
|
struct config *next; /* Next configuration in the state */
|
|
struct config *bp; /* The next basis configuration */
|
|
};
|
|
|
|
/* Every shift or reduce operation is stored as one of the following */
|
|
struct action {
|
|
struct symbol *sp; /* The look-ahead symbol */
|
|
enum e_action {
|
|
SHIFT,
|
|
ACCEPT,
|
|
REDUCE,
|
|
ERROR,
|
|
SSCONFLICT, /* A shift/shift conflict */
|
|
SRCONFLICT, /* Was a reduce, but part of a conflict */
|
|
RRCONFLICT, /* Was a reduce, but part of a conflict */
|
|
SH_RESOLVED, /* Was a shift. Precedence resolved conflict */
|
|
RD_RESOLVED, /* Was reduce. Precedence resolved conflict */
|
|
NOT_USED /* Deleted by compression */
|
|
} type;
|
|
union {
|
|
struct state *stp; /* The new state, if a shift */
|
|
struct rule *rp; /* The rule, if a reduce */
|
|
} x;
|
|
struct action *next; /* Next action for this state */
|
|
struct action *collide; /* Next action with the same hash */
|
|
};
|
|
|
|
/* Each state of the generated parser's finite state machine
|
|
** is encoded as an instance of the following structure. */
|
|
struct state {
|
|
struct config *bp; /* The basis configurations for this state */
|
|
struct config *cfp; /* All configurations in this set */
|
|
int statenum; /* Sequential number for this state */
|
|
struct action *ap; /* Array of actions for this state */
|
|
int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */
|
|
int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */
|
|
int iDflt; /* Default action */
|
|
};
|
|
#define NO_OFFSET (-2147483647)
|
|
|
|
/* A followset propagation link indicates that the contents of one
|
|
** configuration followset should be propagated to another whenever
|
|
** the first changes. */
|
|
struct plink {
|
|
struct config *cfp; /* The configuration to which linked */
|
|
struct plink *next; /* The next propagate link */
|
|
};
|
|
|
|
/* The state vector for the entire parser generator is recorded as
|
|
** follows. (LEMON uses no global variables and makes little use of
|
|
** static variables. Fields in the following structure can be thought
|
|
** of as begin global variables in the program.) */
|
|
struct lemon {
|
|
struct state **sorted; /* Table of states sorted by state number */
|
|
struct rule *rule; /* List of all rules */
|
|
int nstate; /* Number of states */
|
|
int nrule; /* Number of rules */
|
|
int nsymbol; /* Number of terminal and nonterminal symbols */
|
|
int nterminal; /* Number of terminal symbols */
|
|
struct symbol **symbols; /* Sorted array of pointers to symbols */
|
|
int errorcnt; /* Number of errors */
|
|
struct symbol *wildcard; /* Token that matches anything */
|
|
struct symbol *errsym; /* The error symbol */
|
|
char *name; /* Name of the generated parser */
|
|
char *arg; /* Declaration of the 3th argument to parser */
|
|
char *tokentype; /* Type of terminal symbols in the parser stack */
|
|
char *vartype; /* The default type of non-terminal symbols */
|
|
char *start; /* Name of the start symbol for the grammar */
|
|
char *stacksize; /* Size of the parser stack */
|
|
char *include; /* Code to put at the start of the C file */
|
|
char *error; /* Code to execute when an error is seen */
|
|
char *overflow; /* Code to execute on a stack overflow */
|
|
char *failure; /* Code to execute on parser failure */
|
|
char *accept; /* Code to execute when the parser excepts */
|
|
char *extracode; /* Code appended to the generated file */
|
|
char *tokendest; /* Code to execute to destroy token data */
|
|
char *vardest; /* Code for the default non-terminal destructor */
|
|
char *filename; /* Name of the input file */
|
|
char *outname; /* Name of the current output file */
|
|
char *tokenprefix; /* A prefix added to token names in the .h file */
|
|
int nconflict; /* Number of parsing conflicts */
|
|
int tablesize; /* Size of the parse tables */
|
|
int basisflag; /* Print only basis configurations */
|
|
int has_fallback; /* True if any %fallback is seen in the grammar */
|
|
int nolinenosflag; /* True if #line statements should not be printed */
|
|
char *argv0; /* Name of the program */
|
|
};
|
|
|
|
#define MemoryCheck(X) if((X)==0){ \
|
|
extern void memory_error(); \
|
|
memory_error(); \
|
|
}
|
|
|
|
/**************** From the file "table.h" *********************************/
|
|
/*
|
|
** All code in this file has been automatically generated
|
|
** from a specification in the file
|
|
** "table.q"
|
|
** by the associative array code building program "aagen".
|
|
** Do not edit this file! Instead, edit the specification
|
|
** file, then rerun aagen.
|
|
*/
|
|
/*
|
|
** Code for processing tables in the LEMON parser generator.
|
|
*/
|
|
|
|
/* Routines for handling a strings */
|
|
|
|
char *Strsafe();
|
|
|
|
void Strsafe_init(/* void */);
|
|
int Strsafe_insert(/* char * */);
|
|
char *Strsafe_find(/* char * */);
|
|
|
|
/* Routines for handling symbols of the grammar */
|
|
|
|
struct symbol *Symbol_new();
|
|
int Symbolcmpp(/* struct symbol **, struct symbol ** */);
|
|
void Symbol_init(/* void */);
|
|
int Symbol_insert(/* struct symbol *, char * */);
|
|
struct symbol *Symbol_find(/* char * */);
|
|
struct symbol *Symbol_Nth(/* int */);
|
|
int Symbol_count(/* */);
|
|
struct symbol **Symbol_arrayof(/* */);
|
|
|
|
/* Routines to manage the state table */
|
|
|
|
int Configcmp(/* struct config *, struct config * */);
|
|
struct state *State_new();
|
|
void State_init(/* void */);
|
|
int State_insert(/* struct state *, struct config * */);
|
|
struct state *State_find(/* struct config * */);
|
|
struct state **State_arrayof(/* */);
|
|
|
|
/* Routines used for efficiency in Configlist_add */
|
|
|
|
void Configtable_init(/* void */);
|
|
int Configtable_insert(/* struct config * */);
|
|
struct config *Configtable_find(/* struct config * */);
|
|
void Configtable_clear(/* int(*)(struct config *) */);
|
|
/****************** From the file "action.c" *******************************/
|
|
/*
|
|
** Routines processing parser actions in the LEMON parser generator.
|
|
*/
|
|
|
|
/* Allocate a new parser action */
|
|
static struct action *Action_new(void){
|
|
static struct action *freelist = 0;
|
|
struct action *new;
|
|
|
|
if( freelist==0 ){
|
|
int i;
|
|
int amt = 100;
|
|
freelist = (struct action *)calloc(amt, sizeof(struct action));
|
|
if( freelist==0 ){
|
|
fprintf(stderr,"Unable to allocate memory for a new parser action.");
|
|
exit(1);
|
|
}
|
|
for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
|
|
freelist[amt-1].next = 0;
|
|
}
|
|
new = freelist;
|
|
freelist = freelist->next;
|
|
return new;
|
|
}
|
|
|
|
/* Compare two actions for sorting purposes. Return negative, zero, or
|
|
** positive if the first action is less than, equal to, or greater than
|
|
** the first
|
|
*/
|
|
static int actioncmp(ap1,ap2)
|
|
struct action *ap1;
|
|
struct action *ap2;
|
|
{
|
|
int rc;
|
|
rc = ap1->sp->index - ap2->sp->index;
|
|
if( rc==0 ){
|
|
rc = (int)ap1->type - (int)ap2->type;
|
|
}
|
|
if( rc==0 && ap1->type==REDUCE ){
|
|
rc = ap1->x.rp->index - ap2->x.rp->index;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* Sort parser actions */
|
|
static struct action *Action_sort(struct action *ap)
|
|
{
|
|
ap = (struct action *)msort(ap,&ap->next,actioncmp);
|
|
return ap;
|
|
}
|
|
|
|
void Action_add(app,type,sp,arg)
|
|
struct action **app;
|
|
enum e_action type;
|
|
struct symbol *sp;
|
|
char *arg;
|
|
{
|
|
struct action *new;
|
|
new = Action_new();
|
|
new->next = *app;
|
|
*app = new;
|
|
new->type = type;
|
|
new->sp = sp;
|
|
if( type==SHIFT ){
|
|
new->x.stp = (struct state *)arg;
|
|
}else{
|
|
new->x.rp = (struct rule *)arg;
|
|
}
|
|
}
|
|
/********************** New code to implement the "acttab" module ***********/
|
|
/*
|
|
** This module implements routines use to construct the yy_action[] table.
|
|
*/
|
|
|
|
/*
|
|
** The state of the yy_action table under construction is an instance of
|
|
** the following structure
|
|
*/
|
|
typedef struct acttab acttab;
|
|
struct acttab {
|
|
int nAction; /* Number of used slots in aAction[] */
|
|
int nActionAlloc; /* Slots allocated for aAction[] */
|
|
struct {
|
|
int lookahead; /* Value of the lookahead token */
|
|
int action; /* Action to take on the given lookahead */
|
|
} *aAction, /* The yy_action[] table under construction */
|
|
*aLookahead; /* A single new transaction set */
|
|
int mnLookahead; /* Minimum aLookahead[].lookahead */
|
|
int mnAction; /* Action associated with mnLookahead */
|
|
int mxLookahead; /* Maximum aLookahead[].lookahead */
|
|
int nLookahead; /* Used slots in aLookahead[] */
|
|
int nLookaheadAlloc; /* Slots allocated in aLookahead[] */
|
|
};
|
|
|
|
/* Return the number of entries in the yy_action table */
|
|
#define acttab_size(X) ((X)->nAction)
|
|
|
|
/* The value for the N-th entry in yy_action */
|
|
#define acttab_yyaction(X,N) ((X)->aAction[N].action)
|
|
|
|
/* The value for the N-th entry in yy_lookahead */
|
|
#define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead)
|
|
|
|
/* Free all memory associated with the given acttab */
|
|
void acttab_free(acttab *p){
|
|
free( p->aAction );
|
|
free( p->aLookahead );
|
|
free( p );
|
|
}
|
|
|
|
/* Allocate a new acttab structure */
|
|
acttab *acttab_alloc(void){
|
|
acttab *p = calloc( 1, sizeof(*p) );
|
|
if( p==0 ){
|
|
fprintf(stderr,"Unable to allocate memory for a new acttab.");
|
|
exit(1);
|
|
}
|
|
memset(p, 0, sizeof(*p));
|
|
return p;
|
|
}
|
|
|
|
/* Add a new action to the current transaction set
|
|
*/
|
|
void acttab_action(acttab *p, int lookahead, int action){
|
|
if( p->nLookahead>=p->nLookaheadAlloc ){
|
|
p->nLookaheadAlloc += 25;
|
|
p->aLookahead = realloc( p->aLookahead,
|
|
sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
|
|
if( p->aLookahead==0 ){
|
|
fprintf(stderr,"malloc failed\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
if( p->nLookahead==0 ){
|
|
p->mxLookahead = lookahead;
|
|
p->mnLookahead = lookahead;
|
|
p->mnAction = action;
|
|
}else{
|
|
if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
|
|
if( p->mnLookahead>lookahead ){
|
|
p->mnLookahead = lookahead;
|
|
p->mnAction = action;
|
|
}
|
|
}
|
|
p->aLookahead[p->nLookahead].lookahead = lookahead;
|
|
p->aLookahead[p->nLookahead].action = action;
|
|
p->nLookahead++;
|
|
}
|
|
|
|
/*
|
|
** Add the transaction set built up with prior calls to acttab_action()
|
|
** into the current action table. Then reset the transaction set back
|
|
** to an empty set in preparation for a new round of acttab_action() calls.
|
|
**
|
|
** Return the offset into the action table of the new transaction.
|
|
*/
|
|
int acttab_insert(acttab *p){
|
|
int i, j, k, n;
|
|
assert( p->nLookahead>0 );
|
|
|
|
/* Make sure we have enough space to hold the expanded action table
|
|
** in the worst case. The worst case occurs if the transaction set
|
|
** must be appended to the current action table
|
|
*/
|
|
n = p->mxLookahead + 1;
|
|
if( p->nAction + n >= p->nActionAlloc ){
|
|
int oldAlloc = p->nActionAlloc;
|
|
p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
|
|
p->aAction = realloc( p->aAction,
|
|
sizeof(p->aAction[0])*p->nActionAlloc);
|
|
if( p->aAction==0 ){
|
|
fprintf(stderr,"malloc failed\n");
|
|
exit(1);
|
|
}
|
|
for(i=oldAlloc; i<p->nActionAlloc; i++){
|
|
p->aAction[i].lookahead = -1;
|
|
p->aAction[i].action = -1;
|
|
}
|
|
}
|
|
|
|
/* Scan the existing action table looking for an offset where we can
|
|
** insert the current transaction set. Fall out of the loop when that
|
|
** offset is found. In the worst case, we fall out of the loop when
|
|
** i reaches p->nAction, which means we append the new transaction set.
|
|
**
|
|
** i is the index in p->aAction[] where p->mnLookahead is inserted.
|
|
*/
|
|
for(i=0; i<p->nAction+p->mnLookahead; i++){
|
|
if( p->aAction[i].lookahead<0 ){
|
|
for(j=0; j<p->nLookahead; j++){
|
|
k = p->aLookahead[j].lookahead - p->mnLookahead + i;
|
|
if( k<0 ) break;
|
|
if( p->aAction[k].lookahead>=0 ) break;
|
|
}
|
|
if( j<p->nLookahead ) continue;
|
|
for(j=0; j<p->nAction; j++){
|
|
if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
|
|
}
|
|
if( j==p->nAction ){
|
|
break; /* Fits in empty slots */
|
|
}
|
|
}else if( p->aAction[i].lookahead==p->mnLookahead ){
|
|
if( p->aAction[i].action!=p->mnAction ) continue;
|
|
for(j=0; j<p->nLookahead; j++){
|
|
k = p->aLookahead[j].lookahead - p->mnLookahead + i;
|
|
if( k<0 || k>=p->nAction ) break;
|
|
if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
|
|
if( p->aLookahead[j].action!=p->aAction[k].action ) break;
|
|
}
|
|
if( j<p->nLookahead ) continue;
|
|
n = 0;
|
|
for(j=0; j<p->nAction; j++){
|
|
if( p->aAction[j].lookahead<0 ) continue;
|
|
if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
|
|
}
|
|
if( n==p->nLookahead ){
|
|
break; /* Same as a prior transaction set */
|
|
}
|
|
}
|
|
}
|
|
/* Insert transaction set at index i. */
|
|
for(j=0; j<p->nLookahead; j++){
|
|
k = p->aLookahead[j].lookahead - p->mnLookahead + i;
|
|
p->aAction[k] = p->aLookahead[j];
|
|
if( k>=p->nAction ) p->nAction = k+1;
|
|
}
|
|
p->nLookahead = 0;
|
|
|
|
/* Return the offset that is added to the lookahead in order to get the
|
|
** index into yy_action of the action */
|
|
return i - p->mnLookahead;
|
|
}
|
|
|
|
/********************** From the file "build.c" *****************************/
|
|
/*
|
|
** Routines to construction the finite state machine for the LEMON
|
|
** parser generator.
|
|
*/
|
|
|
|
/* Find a precedence symbol of every rule in the grammar.
|
|
**
|
|
** Those rules which have a precedence symbol coded in the input
|
|
** grammar using the "[symbol]" construct will already have the
|
|
** rp->precsym field filled. Other rules take as their precedence
|
|
** symbol the first RHS symbol with a defined precedence. If there
|
|
** are not RHS symbols with a defined precedence, the precedence
|
|
** symbol field is left blank.
|
|
*/
|
|
void FindRulePrecedences(xp)
|
|
struct lemon *xp;
|
|
{
|
|
struct rule *rp;
|
|
for(rp=xp->rule; rp; rp=rp->next){
|
|
if( rp->precsym==0 ){
|
|
int i, j;
|
|
for(i=0; i<rp->nrhs && rp->precsym==0; i++){
|
|
struct symbol *sp = rp->rhs[i];
|
|
if( sp->type==MULTITERMINAL ){
|
|
for(j=0; j<sp->nsubsym; j++){
|
|
if( sp->subsym[j]->prec>=0 ){
|
|
rp->precsym = sp->subsym[j];
|
|
break;
|
|
}
|
|
}
|
|
}else if( sp->prec>=0 ){
|
|
rp->precsym = rp->rhs[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Find all nonterminals which will generate the empty string.
|
|
** Then go back and compute the first sets of every nonterminal.
|
|
** The first set is the set of all terminal symbols which can begin
|
|
** a string generated by that nonterminal.
|
|
*/
|
|
void FindFirstSets(lemp)
|
|
struct lemon *lemp;
|
|
{
|
|
int i, j;
|
|
struct rule *rp;
|
|
int progress;
|
|
|
|
for(i=0; i<lemp->nsymbol; i++){
|
|
lemp->symbols[i]->lambda = LEMON_FALSE;
|
|
}
|
|
for(i=lemp->nterminal; i<lemp->nsymbol; i++){
|
|
lemp->symbols[i]->firstset = SetNew();
|
|
}
|
|
|
|
/* First compute all lambdas */
|
|
do{
|
|
progress = 0;
|
|
for(rp=lemp->rule; rp; rp=rp->next){
|
|
if( rp->lhs->lambda ) continue;
|
|
for(i=0; i<rp->nrhs; i++){
|
|
struct symbol *sp = rp->rhs[i];
|
|
assert( sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE );
|
|
if( sp->lambda==LEMON_FALSE ) break;
|
|
}
|
|
if( i==rp->nrhs ){
|
|
rp->lhs->lambda = LEMON_TRUE;
|
|
progress = 1;
|
|
}
|
|
}
|
|
}while( progress );
|
|
|
|
/* Now compute all first sets */
|
|
do{
|
|
struct symbol *s1, *s2;
|
|
progress = 0;
|
|
for(rp=lemp->rule; rp; rp=rp->next){
|
|
s1 = rp->lhs;
|
|
for(i=0; i<rp->nrhs; i++){
|
|
s2 = rp->rhs[i];
|
|
if( s2->type==TERMINAL ){
|
|
progress += SetAdd(s1->firstset,s2->index);
|
|
break;
|
|
}else if( s2->type==MULTITERMINAL ){
|
|
for(j=0; j<s2->nsubsym; j++){
|
|
progress += SetAdd(s1->firstset,s2->subsym[j]->index);
|
|
}
|
|
break;
|
|
}else if( s1==s2 ){
|
|
if( s1->lambda==LEMON_FALSE ) break;
|
|
}else{
|
|
progress += SetUnion(s1->firstset,s2->firstset);
|
|
if( s2->lambda==LEMON_FALSE ) break;
|
|
}
|
|
}
|
|
}
|
|
}while( progress );
|
|
return;
|
|
}
|
|
|
|
/* Compute all LR(0) states for the grammar. Links
|
|
** are added to between some states so that the LR(1) follow sets
|
|
** can be computed later.
|
|
*/
|
|
PRIVATE struct state *getstate(/* struct lemon * */); /* forward reference */
|
|
void FindStates(lemp)
|
|
struct lemon *lemp;
|
|
{
|
|
struct symbol *sp;
|
|
struct rule *rp;
|
|
|
|
Configlist_init();
|
|
|
|
/* Find the start symbol */
|
|
if( lemp->start ){
|
|
sp = Symbol_find(lemp->start);
|
|
if( sp==0 ){
|
|
ErrorMsg(lemp->filename,0,
|
|
"The specified start symbol \"%s\" is not \
|
|
in a nonterminal of the grammar. \"%s\" will be used as the start \
|
|
symbol instead.",lemp->start,lemp->rule->lhs->name);
|
|
lemp->errorcnt++;
|
|
sp = lemp->rule->lhs;
|
|
}
|
|
}else{
|
|
sp = lemp->rule->lhs;
|
|
}
|
|
|
|
/* Make sure the start symbol doesn't occur on the right-hand side of
|
|
** any rule. Report an error if it does. (YACC would generate a new
|
|
** start symbol in this case.) */
|
|
for(rp=lemp->rule; rp; rp=rp->next){
|
|
int i;
|
|
for(i=0; i<rp->nrhs; i++){
|
|
if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */
|
|
ErrorMsg(lemp->filename,0,
|
|
"The start symbol \"%s\" occurs on the \
|
|
right-hand side of a rule. This will result in a parser which \
|
|
does not work properly.",sp->name);
|
|
lemp->errorcnt++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The basis configuration set for the first state
|
|
** is all rules which have the start symbol as their
|
|
** left-hand side */
|
|
for(rp=sp->rule; rp; rp=rp->nextlhs){
|
|
struct config *newcfp;
|
|
rp->lhsStart = 1;
|
|
newcfp = Configlist_addbasis(rp,0);
|
|
SetAdd(newcfp->fws,0);
|
|
}
|
|
|
|
/* Compute the first state. All other states will be
|
|
** computed automatically during the computation of the first one.
|
|
** The returned pointer to the first state is not used. */
|
|
(void)getstate(lemp);
|
|
return;
|
|
}
|
|
|
|
/* Return a pointer to a state which is described by the configuration
|
|
** list which has been built from calls to Configlist_add.
|
|
*/
|
|
PRIVATE void buildshifts(/* struct lemon *, struct state * */); /* Forwd ref */
|
|
PRIVATE struct state *getstate(lemp)
|
|
struct lemon *lemp;
|
|
{
|
|
struct config *cfp, *bp;
|
|
struct state *stp;
|
|
|
|
/* Extract the sorted basis of the new state. The basis was constructed
|
|
** by prior calls to "Configlist_addbasis()". */
|
|
Configlist_sortbasis();
|
|
bp = Configlist_basis();
|
|
|
|
/* Get a state with the same basis */
|
|
stp = State_find(bp);
|
|
if( stp ){
|
|
/* A state with the same basis already exists! Copy all the follow-set
|
|
** propagation links from the state under construction into the
|
|
** preexisting state, then return a pointer to the preexisting state */
|
|
struct config *x, *y;
|
|
for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
|
|
Plink_copy(&y->bplp,x->bplp);
|
|
Plink_delete(x->fplp);
|
|
x->fplp = x->bplp = 0;
|
|
}
|
|
cfp = Configlist_return();
|
|
Configlist_eat(cfp);
|
|
}else{
|
|
/* This really is a new state. Construct all the details */
|
|
Configlist_closure(lemp); /* Compute the configuration closure */
|
|
Configlist_sort(); /* Sort the configuration closure */
|
|
cfp = Configlist_return(); /* Get a pointer to the config list */
|
|
stp = State_new(); /* A new state structure */
|
|
MemoryCheck(stp);
|
|
stp->bp = bp; /* Remember the configuration basis */
|
|
stp->cfp = cfp; /* Remember the configuration closure */
|
|
stp->statenum = lemp->nstate++; /* Every state gets a sequence number */
|
|
stp->ap = 0; /* No actions, yet. */
|
|
State_insert(stp,stp->bp); /* Add to the state table */
|
|
buildshifts(lemp,stp); /* Recursively compute successor states */
|
|
}
|
|
return stp;
|
|
}
|
|
|
|
/*
|
|
** Return true if two symbols are the same.
|
|
*/
|
|
int same_symbol(a,b)
|
|
struct symbol *a;
|
|
struct symbol *b;
|
|
{
|
|
int i;
|
|
if( a==b ) return 1;
|
|
if( a->type!=MULTITERMINAL ) return 0;
|
|
if( b->type!=MULTITERMINAL ) return 0;
|
|
if( a->nsubsym!=b->nsubsym ) return 0;
|
|
for(i=0; i<a->nsubsym; i++){
|
|
if( a->subsym[i]!=b->subsym[i] ) return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Construct all successor states to the given state. A "successor"
|
|
** state is any state which can be reached by a shift action.
|
|
*/
|
|
PRIVATE void buildshifts(lemp,stp)
|
|
struct lemon *lemp;
|
|
struct state *stp; /* The state from which successors are computed */
|
|
{
|
|
struct config *cfp; /* For looping thru the config closure of "stp" */
|
|
struct config *bcfp; /* For the inner loop on config closure of "stp" */
|
|
struct config *new; /* */
|
|
struct symbol *sp; /* Symbol following the dot in configuration "cfp" */
|
|
struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */
|
|
struct state *newstp; /* A pointer to a successor state */
|
|
|
|
/* Each configuration becomes complete after it contibutes to a successor
|
|
** state. Initially, all configurations are incomplete */
|
|
for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
|
|
|
|
/* Loop through all configurations of the state "stp" */
|
|
for(cfp=stp->cfp; cfp; cfp=cfp->next){
|
|
if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */
|
|
if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */
|
|
Configlist_reset(); /* Reset the new config set */
|
|
sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */
|
|
|
|
/* For every configuration in the state "stp" which has the symbol "sp"
|
|
** following its dot, add the same configuration to the basis set under
|
|
** construction but with the dot shifted one symbol to the right. */
|
|
for(bcfp=cfp; bcfp; bcfp=bcfp->next){
|
|
if( bcfp->status==COMPLETE ) continue; /* Already used */
|
|
if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
|
|
bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */
|
|
if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */
|
|
bcfp->status = COMPLETE; /* Mark this config as used */
|
|
new = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
|
|
Plink_add(&new->bplp,bcfp);
|
|
}
|
|
|
|
/* Get a pointer to the state described by the basis configuration set
|
|
** constructed in the preceding loop */
|
|
newstp = getstate(lemp);
|
|
|
|
/* The state "newstp" is reached from the state "stp" by a shift action
|
|
** on the symbol "sp" */
|
|
if( sp->type==MULTITERMINAL ){
|
|
int i;
|
|
for(i=0; i<sp->nsubsym; i++){
|
|
Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp);
|
|
}
|
|
}else{
|
|
Action_add(&stp->ap,SHIFT,sp,(char *)newstp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Construct the propagation links
|
|
*/
|
|
void FindLinks(lemp)
|
|
struct lemon *lemp;
|
|
{
|
|
int i;
|
|
struct config *cfp, *other;
|
|
struct state *stp;
|
|
struct plink *plp;
|
|
|
|
/* Housekeeping detail:
|
|
** Add to every propagate link a pointer back to the state to
|
|
** which the link is attached. */
|
|
for(i=0; i<lemp->nstate; i++){
|
|
stp = lemp->sorted[i];
|
|
for(cfp=stp->cfp; cfp; cfp=cfp->next){
|
|
cfp->stp = stp;
|
|
}
|
|
}
|
|
|
|
/* Convert all backlinks into forward links. Only the forward
|
|
** links are used in the follow-set computation. */
|
|
for(i=0; i<lemp->nstate; i++){
|
|
stp = lemp->sorted[i];
|
|
for(cfp=stp->cfp; cfp; cfp=cfp->next){
|
|
for(plp=cfp->bplp; plp; plp=plp->next){
|
|
other = plp->cfp;
|
|
Plink_add(&other->fplp,cfp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Compute all followsets.
|
|
**
|
|
** A followset is the set of all symbols which can come immediately
|
|
** after a configuration.
|
|
*/
|
|
void FindFollowSets(lemp)
|
|
struct lemon *lemp;
|
|
{
|
|
int i;
|
|
struct config *cfp;
|
|
struct plink *plp;
|
|
int progress;
|
|
int change;
|
|
|
|
for(i=0; i<lemp->nstate; i++){
|
|
for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
|
|
cfp->status = INCOMPLETE;
|
|
}
|
|
}
|
|
|
|
do{
|
|
progress = 0;
|
|
for(i=0; i<lemp->nstate; i++){
|
|
for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
|
|
if( cfp->status==COMPLETE ) continue;
|
|
for(plp=cfp->fplp; plp; plp=plp->next){
|
|
change = SetUnion(plp->cfp->fws,cfp->fws);
|
|
if( change ){
|
|
plp->cfp->status = INCOMPLETE;
|
|
progress = 1;
|
|
}
|
|
}
|
|
cfp->status = COMPLETE;
|
|
}
|
|
}
|
|
}while( progress );
|
|
}
|
|
|
|
static int resolve_conflict();
|
|
|
|
/* Compute the reduce actions, and resolve conflicts.
|
|
*/
|
|
void FindActions(lemp)
|
|
struct lemon *lemp;
|
|
{
|
|
int i,j;
|
|
struct config *cfp;
|
|
struct state *stp;
|
|
struct symbol *sp;
|
|
struct rule *rp;
|
|
|
|
/* Add all of the reduce actions
|
|
** A reduce action is added for each element of the followset of
|
|
** a configuration which has its dot at the extreme right.
|
|
*/
|
|
for(i=0; i<lemp->nstate; i++){ /* Loop over all states */
|
|
stp = lemp->sorted[i];
|
|
for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */
|
|
if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */
|
|
for(j=0; j<lemp->nterminal; j++){
|
|
if( SetFind(cfp->fws,j) ){
|
|
/* Add a reduce action to the state "stp" which will reduce by the
|
|
** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
|
|
Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Add the accepting token */
|
|
if( lemp->start ){
|
|
sp = Symbol_find(lemp->start);
|
|
if( sp==0 ) sp = lemp->rule->lhs;
|
|
}else{
|
|
sp = lemp->rule->lhs;
|
|
}
|
|
/* Add to the first state (which is always the starting state of the
|
|
** finite state machine) an action to ACCEPT if the lookahead is the
|
|
** start nonterminal. */
|
|
Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
|
|
|
|
/* Resolve conflicts */
|
|
for(i=0; i<lemp->nstate; i++){
|
|
struct action *ap, *nap;
|
|
struct state *stp;
|
|
stp = lemp->sorted[i];
|
|
/* assert( stp->ap ); */
|
|
stp->ap = Action_sort(stp->ap);
|
|
for(ap=stp->ap; ap && ap->next; ap=ap->next){
|
|
for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
|
|
/* The two actions "ap" and "nap" have the same lookahead.
|
|
** Figure out which one should be used */
|
|
lemp->nconflict += resolve_conflict(ap,nap,lemp->errsym);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Report an error for each rule that can never be reduced. */
|
|
for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE;
|
|
for(i=0; i<lemp->nstate; i++){
|
|
struct action *ap;
|
|
for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
|
|
if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE;
|
|
}
|
|
}
|
|
for(rp=lemp->rule; rp; rp=rp->next){
|
|
if( rp->canReduce ) continue;
|
|
ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
|
|
lemp->errorcnt++;
|
|
}
|
|
}
|
|
|
|
/* Resolve a conflict between the two given actions. If the
|
|
** conflict can't be resolved, return non-zero.
|
|
**
|
|
** NO LONGER TRUE:
|
|
** To resolve a conflict, first look to see if either action
|
|
** is on an error rule. In that case, take the action which
|
|
** is not associated with the error rule. If neither or both
|
|
** actions are associated with an error rule, then try to
|
|
** use precedence to resolve the conflict.
|
|
**
|
|
** If either action is a SHIFT, then it must be apx. This
|
|
** function won't work if apx->type==REDUCE and apy->type==SHIFT.
|
|
*/
|
|
static int resolve_conflict(apx,apy,errsym)
|
|
struct action *apx;
|
|
struct action *apy;
|
|
struct symbol *errsym; /* The error symbol (if defined. NULL otherwise) */
|
|
{
|
|
struct symbol *spx, *spy;
|
|
int errcnt = 0;
|
|
assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */
|
|
if( apx->type==SHIFT && apy->type==SHIFT ){
|
|
apy->type = SSCONFLICT;
|
|
errcnt++;
|
|
}
|
|
if( apx->type==SHIFT && apy->type==REDUCE ){
|
|
spx = apx->sp;
|
|
spy = apy->x.rp->precsym;
|
|
if( spy==0 || spx->prec<0 || spy->prec<0 ){
|
|
/* Not enough precedence information. */
|
|
apy->type = SRCONFLICT;
|
|
errcnt++;
|
|
}else if( spx->prec>spy->prec ){ /* Lower precedence wins */
|
|
apy->type = RD_RESOLVED;
|
|
}else if( spx->prec<spy->prec ){
|
|
apx->type = SH_RESOLVED;
|
|
}else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
|
|
apy->type = RD_RESOLVED; /* associativity */
|
|
}else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */
|
|
apx->type = SH_RESOLVED;
|
|
}else{
|
|
assert( spx->prec==spy->prec && spx->assoc==NONE );
|
|
apy->type = SRCONFLICT;
|
|
errcnt++;
|
|
}
|
|
}else if( apx->type==REDUCE && apy->type==REDUCE ){
|
|
spx = apx->x.rp->precsym;
|
|
spy = apy->x.rp->precsym;
|
|
if( spx==0 || spy==0 || spx->prec<0 ||
|
|
spy->prec<0 || spx->prec==spy->prec ){
|
|
apy->type = RRCONFLICT;
|
|
errcnt++;
|
|
}else if( spx->prec>spy->prec ){
|
|
apy->type = RD_RESOLVED;
|
|
}else if( spx->prec<spy->prec ){
|
|
apx->type = RD_RESOLVED;
|
|
}
|
|
}else{
|
|
assert(
|
|
apx->type==SH_RESOLVED ||
|
|
apx->type==RD_RESOLVED ||
|
|
apx->type==SSCONFLICT ||
|
|
apx->type==SRCONFLICT ||
|
|
apx->type==RRCONFLICT ||
|
|
apy->type==SH_RESOLVED ||
|
|
apy->type==RD_RESOLVED ||
|
|
apy->type==SSCONFLICT ||
|
|
apy->type==SRCONFLICT ||
|
|
apy->type==RRCONFLICT
|
|
);
|
|
/* The REDUCE/SHIFT case cannot happen because SHIFTs come before
|
|
** REDUCEs on the list. If we reach this point it must be because
|
|
** the parser conflict had already been resolved. */
|
|
}
|
|
return errcnt;
|
|
}
|
|
/********************* From the file "configlist.c" *************************/
|
|
/*
|
|
** Routines to processing a configuration list and building a state
|
|
** in the LEMON parser generator.
|
|
*/
|
|
|
|
static struct config *freelist = 0; /* List of free configurations */
|
|
static struct config *current = 0; /* Top of list of configurations */
|
|
static struct config **currentend = 0; /* Last on list of configs */
|
|
static struct config *basis = 0; /* Top of list of basis configs */
|
|
static struct config **basisend = 0; /* End of list of basis configs */
|
|
|
|
/* Return a pointer to a new configuration */
|
|
PRIVATE struct config *newconfig(){
|
|
struct config *new;
|
|
if( freelist==0 ){
|
|
int i;
|
|
int amt = 3;
|
|
freelist = (struct config *)calloc( amt, sizeof(struct config) );
|
|
if( freelist==0 ){
|
|
fprintf(stderr,"Unable to allocate memory for a new configuration.");
|
|
exit(1);
|
|
}
|
|
for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
|
|
freelist[amt-1].next = 0;
|
|
}
|
|
new = freelist;
|
|
freelist = freelist->next;
|
|
return new;
|
|
}
|
|
|
|
/* The configuration "old" is no longer used */
|
|
PRIVATE void deleteconfig(old)
|
|
struct config *old;
|
|
{
|
|
old->next = freelist;
|
|
freelist = old;
|
|
}
|
|
|
|
/* Initialized the configuration list builder */
|
|
void Configlist_init(){
|
|
current = 0;
|
|
currentend = ¤t;
|
|
basis = 0;
|
|
basisend = &basis;
|
|
Configtable_init();
|
|
return;
|
|
}
|
|
|
|
/* Initialized the configuration list builder */
|
|
void Configlist_reset(){
|
|
current = 0;
|
|
currentend = ¤t;
|
|
basis = 0;
|
|
basisend = &basis;
|
|
Configtable_clear(0);
|
|
return;
|
|
}
|
|
|
|
/* Add another configuration to the configuration list */
|
|
struct config *Configlist_add(rp,dot)
|
|
struct rule *rp; /* The rule */
|
|
int dot; /* Index into the RHS of the rule where the dot goes */
|
|
{
|
|
struct config *cfp, model;
|
|
|
|
assert( currentend!=0 );
|
|
model.rp = rp;
|
|
model.dot = dot;
|
|
cfp = Configtable_find(&model);
|
|
if( cfp==0 ){
|
|
cfp = newconfig();
|
|
cfp->rp = rp;
|
|
cfp->dot = dot;
|
|
cfp->fws = SetNew();
|
|
cfp->stp = 0;
|
|
cfp->fplp = cfp->bplp = 0;
|
|
cfp->next = 0;
|
|
cfp->bp = 0;
|
|
*currentend = cfp;
|
|
currentend = &cfp->next;
|
|
Configtable_insert(cfp);
|
|
}
|
|
return cfp;
|
|
}
|
|
|
|
/* Add a basis configuration to the configuration list */
|
|
struct config *Configlist_addbasis(rp,dot)
|
|
struct rule *rp;
|
|
int dot;
|
|
{
|
|
struct config *cfp, model;
|
|
|
|
assert( basisend!=0 );
|
|
assert( currentend!=0 );
|
|
model.rp = rp;
|
|
model.dot = dot;
|
|
cfp = Configtable_find(&model);
|
|
if( cfp==0 ){
|
|
cfp = newconfig();
|
|
cfp->rp = rp;
|
|
cfp->dot = dot;
|
|
cfp->fws = SetNew();
|
|
cfp->stp = 0;
|
|
cfp->fplp = cfp->bplp = 0;
|
|
cfp->next = 0;
|
|
cfp->bp = 0;
|
|
*currentend = cfp;
|
|
currentend = &cfp->next;
|
|
*basisend = cfp;
|
|
basisend = &cfp->bp;
|
|
Configtable_insert(cfp);
|
|
}
|
|
return cfp;
|
|
}
|
|
|
|
/* Compute the closure of the configuration list */
|
|
void Configlist_closure(lemp)
|
|
struct lemon *lemp;
|
|
{
|
|
struct config *cfp, *newcfp;
|
|
struct rule *rp, *newrp;
|
|
struct symbol *sp, *xsp;
|
|
int i, dot;
|
|
|
|
assert( currentend!=0 );
|
|
for(cfp=current; cfp; cfp=cfp->next){
|
|
rp = cfp->rp;
|
|
dot = cfp->dot;
|
|
if( dot>=rp->nrhs ) continue;
|
|
sp = rp->rhs[dot];
|
|
if( sp->type==NONTERMINAL ){
|
|
if( sp->rule==0 && sp!=lemp->errsym ){
|
|
ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
|
|
sp->name);
|
|
lemp->errorcnt++;
|
|
}
|
|
for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
|
|
newcfp = Configlist_add(newrp,0);
|
|
for(i=dot+1; i<rp->nrhs; i++){
|
|
xsp = rp->rhs[i];
|
|
if( xsp->type==TERMINAL ){
|
|
SetAdd(newcfp->fws,xsp->index);
|
|
break;
|
|
}else if( xsp->type==MULTITERMINAL ){
|
|
int k;
|
|
for(k=0; k<xsp->nsubsym; k++){
|
|
SetAdd(newcfp->fws, xsp->subsym[k]->index);
|
|
}
|
|
break;
|
|
}else{
|
|
SetUnion(newcfp->fws,xsp->firstset);
|
|
if( xsp->lambda==LEMON_FALSE ) break;
|
|
}
|
|
}
|
|
if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Sort the configuration list */
|
|
void Configlist_sort(){
|
|
current = (struct config *)msort(current,&(current->next),Configcmp);
|
|
currentend = 0;
|
|
return;
|
|
}
|
|
|
|
/* Sort the basis configuration list */
|
|
void Configlist_sortbasis(){
|
|
basis = (struct config *)msort(current,&(current->bp),Configcmp);
|
|
basisend = 0;
|
|
return;
|
|
}
|
|
|
|
/* Return a pointer to the head of the configuration list and
|
|
** reset the list */
|
|
struct config *Configlist_return(){
|
|
struct config *old;
|
|
old = current;
|
|
current = 0;
|
|
currentend = 0;
|
|
return old;
|
|
}
|
|
|
|
/* Return a pointer to the head of the configuration list and
|
|
** reset the list */
|
|
struct config *Configlist_basis(){
|
|
struct config *old;
|
|
old = basis;
|
|
basis = 0;
|
|
basisend = 0;
|
|
return old;
|
|
}
|
|
|
|
/* Free all elements of the given configuration list */
|
|
void Configlist_eat(cfp)
|
|
struct config *cfp;
|
|
{
|
|
struct config *nextcfp;
|
|
for(; cfp; cfp=nextcfp){
|
|
nextcfp = cfp->next;
|
|
assert( cfp->fplp==0 );
|
|
assert( cfp->bplp==0 );
|
|
if( cfp->fws ) SetFree(cfp->fws);
|
|
deleteconfig(cfp);
|
|
}
|
|
return;
|
|
}
|
|
/***************** From the file "error.c" *********************************/
|
|
/*
|
|
** Code for printing error message.
|
|
*/
|
|
|
|
/* Find a good place to break "msg" so that its length is at least "min"
|
|
** but no more than "max". Make the point as close to max as possible.
|
|
*/
|
|
static int findbreak(msg,min,max)
|
|
char *msg;
|
|
int min;
|
|
int max;
|
|
{
|
|
int i,spot;
|
|
char c;
|
|
for(i=spot=min; i<=max; i++){
|
|
c = msg[i];
|
|
if( c=='\t' ) msg[i] = ' ';
|
|
if( c=='\n' ){ msg[i] = ' '; spot = i; break; }
|
|
if( c==0 ){ spot = i; break; }
|
|
if( c=='-' && i<max-1 ) spot = i+1;
|
|
if( c==' ' ) spot = i;
|
|
}
|
|
return spot;
|
|
}
|
|
|
|
/*
|
|
** The error message is split across multiple lines if necessary. The
|
|
** splits occur at a space, if there is a space available near the end
|
|
** of the line.
|
|
*/
|
|
#define ERRMSGSIZE 10000 /* Hope this is big enough. No way to error check */
|
|
#if _MSC_VER
|
|
#define LINEWIDTH 10000 /* Max width of any output line */
|
|
#else
|
|
#define LINEWIDTH 79 /* Max width of any output line */
|
|
#endif
|
|
#define PREFIXLIMIT 3000 /* Max width of the prefix on each line */
|
|
void ErrorMsg(const char *filename, int lineno, const char *format, ...){
|
|
char errmsg[ERRMSGSIZE];
|
|
char prefix[PREFIXLIMIT+10];
|
|
size_t errmsgsize;
|
|
size_t prefixsize;
|
|
size_t availablewidth;
|
|
va_list ap;
|
|
int end, restart, base;
|
|
|
|
va_start(ap, format);
|
|
/* Prepare a prefix to be prepended to every output line */
|
|
#if _MSC_VER
|
|
if( lineno>0 ){
|
|
sprintf(prefix,"%.*s(%d) : error : ",PREFIXLIMIT-10,filename,lineno);
|
|
}else{
|
|
sprintf(prefix,"%.*s : error : ",PREFIXLIMIT-10,filename);
|
|
}
|
|
#else
|
|
if( lineno>0 ){
|
|
sprintf(prefix,"%.*s:%d: ",PREFIXLIMIT-10,filename,lineno);
|
|
}else{
|
|
sprintf(prefix,"%.*s: ",PREFIXLIMIT-10,filename);
|
|
}
|
|
#endif
|
|
prefixsize = lemonStrlen(prefix);
|
|
availablewidth = LINEWIDTH - prefixsize;
|
|
|
|
/* Generate the error message */
|
|
vsprintf(errmsg,format,ap);
|
|
va_end(ap);
|
|
errmsgsize = lemonStrlen(errmsg);
|
|
/* Remove trailing '\n's from the error message. */
|
|
while( errmsgsize>0 && errmsg[errmsgsize-1]=='\n' ){
|
|
errmsg[--errmsgsize] = 0;
|
|
}
|
|
|
|
/* Print the error message */
|
|
base = 0;
|
|
while( errmsg[base]!=0 ){
|
|
end = restart = findbreak(&errmsg[base],0,availablewidth);
|
|
restart += base;
|
|
while( errmsg[restart]==' ' ) restart++;
|
|
fprintf(stdout,"%s%.*s\n",prefix,end,&errmsg[base]);
|
|
base = restart;
|
|
}
|
|
}
|
|
/**************** From the file "main.c" ************************************/
|
|
/*
|
|
** Main program file for the LEMON parser generator.
|
|
*/
|
|
|
|
/* Report an out-of-memory condition and abort. This function
|
|
** is used mostly by the "MemoryCheck" macro in struct.h
|
|
*/
|
|
void memory_error(){
|
|
fprintf(stderr,"Out of memory. Aborting...\n");
|
|
exit(1);
|
|
}
|
|
|
|
static int nDefine = 0; /* Number of -D options on the command line */
|
|
static char **azDefine = 0; /* Name of the -D macros */
|
|
|
|
/* This routine is called with the argument to each -D command-line option.
|
|
** Add the macro defined to the azDefine array.
|
|
*/
|
|
static void handle_D_option(char *z){
|
|
char **paz;
|
|
nDefine++;
|
|
azDefine = realloc(azDefine, sizeof(azDefine[0])*nDefine);
|
|
if( azDefine==0 ){
|
|
fprintf(stderr,"out of memory\n");
|
|
exit(1);
|
|
}
|
|
paz = &azDefine[nDefine-1];
|
|
*paz = malloc( lemonStrlen(z)+1 );
|
|
if( *paz==0 ){
|
|
fprintf(stderr,"out of memory\n");
|
|
exit(1);
|
|
}
|
|
strcpy(*paz, z);
|
|
for(z=*paz; *z && *z!='='; z++){}
|
|
*z = 0;
|
|
}
|
|
|
|
|
|
/* The main program. Parse the command line and do it... */
|
|
int main(argc,argv)
|
|
int argc;
|
|
char **argv;
|
|
{
|
|
static int version = 0;
|
|
static int rpflag = 0;
|
|
static int basisflag = 0;
|
|
static int compress = 0;
|
|
static int quiet = 0;
|
|
static int statistics = 0;
|
|
static int mhflag = 0;
|
|
static int nolinenosflag = 0;
|
|
static struct s_options options[] = {
|
|
{OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
|
|
{OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
|
|
{OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."},
|
|
{OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
|
|
{OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."},
|
|
{OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."},
|
|
{OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
|
|
{OPT_FLAG, "s", (char*)&statistics,
|
|
"Print parser stats to standard output."},
|
|
{OPT_FLAG, "x", (char*)&version, "Print the version number."},
|
|
{OPT_FLAG,0,0,0}
|
|
};
|
|
int i;
|
|
struct lemon lem;
|
|
|
|
OptInit(argv,options,stderr);
|
|
if( version ){
|
|
printf("Lemon version 1.0\n");
|
|
exit(0);
|
|
}
|
|
if( OptNArgs()!=1 ){
|
|
fprintf(stderr,"Exactly one filename argument is required.\n");
|
|
exit(1);
|
|
}
|
|
memset(&lem, 0, sizeof(lem));
|
|
lem.errorcnt = 0;
|
|
|
|
/* Initialize the machine */
|
|
Strsafe_init();
|
|
Symbol_init();
|
|
State_init();
|
|
lem.argv0 = argv[0];
|
|
lem.filename = OptArg(0);
|
|
lem.basisflag = basisflag;
|
|
lem.nolinenosflag = nolinenosflag;
|
|
Symbol_new("$");
|
|
lem.errsym = Symbol_new("error");
|
|
lem.errsym->useCnt = 0;
|
|
|
|
/* Parse the input file */
|
|
Parse(&lem);
|
|
if( lem.errorcnt ) exit(lem.errorcnt);
|
|
if( lem.nrule==0 ){
|
|
fprintf(stderr,"Empty grammar.\n");
|
|
exit(1);
|
|
}
|
|
|
|
/* Count and index the symbols of the grammar */
|
|
lem.nsymbol = Symbol_count();
|
|
Symbol_new("{default}");
|
|
lem.symbols = Symbol_arrayof();
|
|
for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
|
|
qsort(lem.symbols,lem.nsymbol+1,sizeof(struct symbol*),
|
|
(int(*)(const void*, const void*))Symbolcmpp);
|
|
for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
|
|
for(i=1; isupper(lem.symbols[i]->name[0]); i++);
|
|
lem.nterminal = i;
|
|
|
|
/* Generate a reprint of the grammar, if requested on the command line */
|
|
if( rpflag ){
|
|
Reprint(&lem);
|
|
}else{
|
|
/* Initialize the size for all follow and first sets */
|
|
SetSize(lem.nterminal+1);
|
|
|
|
/* Find the precedence for every production rule (that has one) */
|
|
FindRulePrecedences(&lem);
|
|
|
|
/* Compute the lambda-nonterminals and the first-sets for every
|
|
** nonterminal */
|
|
FindFirstSets(&lem);
|
|
|
|
/* Compute all LR(0) states. Also record follow-set propagation
|
|
** links so that the follow-set can be computed later */
|
|
lem.nstate = 0;
|
|
FindStates(&lem);
|
|
lem.sorted = State_arrayof();
|
|
|
|
/* Tie up loose ends on the propagation links */
|
|
FindLinks(&lem);
|
|
|
|
/* Compute the follow set of every reducible configuration */
|
|
FindFollowSets(&lem);
|
|
|
|
/* Compute the action tables */
|
|
FindActions(&lem);
|
|
|
|
/* Compress the action tables */
|
|
if( compress==0 ) CompressTables(&lem);
|
|
|
|
/* Reorder and renumber the states so that states with fewer choices
|
|
** occur at the end. */
|
|
ResortStates(&lem);
|
|
|
|
/* Generate a report of the parser generated. (the "y.output" file) */
|
|
if( !quiet ) ReportOutput(&lem);
|
|
|
|
/* Generate the source code for the parser */
|
|
ReportTable(&lem, mhflag);
|
|
|
|
/* Produce a header file for use by the scanner. (This step is
|
|
** omitted if the "-m" option is used because makeheaders will
|
|
** generate the file for us.) */
|
|
if( !mhflag ) ReportHeader(&lem);
|
|
}
|
|
if( statistics ){
|
|
printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n",
|
|
lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule);
|
|
printf(" %d states, %d parser table entries, %d conflicts\n",
|
|
lem.nstate, lem.tablesize, lem.nconflict);
|
|
}
|
|
if( lem.nconflict ){
|
|
fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
|
|
}
|
|
exit(lem.errorcnt + lem.nconflict);
|
|
return (lem.errorcnt + lem.nconflict);
|
|
}
|
|
/******************** From the file "msort.c" *******************************/
|
|
/*
|
|
** A generic merge-sort program.
|
|
**
|
|
** USAGE:
|
|
** Let "ptr" be a pointer to some structure which is at the head of
|
|
** a null-terminated list. Then to sort the list call:
|
|
**
|
|
** ptr = msort(ptr,&(ptr->next),cmpfnc);
|
|
**
|
|
** In the above, "cmpfnc" is a pointer to a function which compares
|
|
** two instances of the structure and returns an integer, as in
|
|
** strcmp. The second argument is a pointer to the pointer to the
|
|
** second element of the linked list. This address is used to compute
|
|
** the offset to the "next" field within the structure. The offset to
|
|
** the "next" field must be constant for all structures in the list.
|
|
**
|
|
** The function returns a new pointer which is the head of the list
|
|
** after sorting.
|
|
**
|
|
** ALGORITHM:
|
|
** Merge-sort.
|
|
*/
|
|
|
|
/*
|
|
** Return a pointer to the next structure in the linked list.
|
|
*/
|
|
#define NEXT(A) (*(void**)(((size_t)A)+offset))
|
|
|
|
/*
|
|
** Inputs:
|
|
** a: A sorted, null-terminated linked list. (May be null).
|
|
** b: A sorted, null-terminated linked list. (May be null).
|
|
** cmp: A pointer to the comparison function.
|
|
** offset: Offset in the structure to the "next" field.
|
|
**
|
|
** Return Value:
|
|
** A pointer to the head of a sorted list containing the elements
|
|
** of both a and b.
|
|
**
|
|
** Side effects:
|
|
** The "next" pointers for elements in the lists a and b are
|
|
** changed.
|
|
*/
|
|
static void *merge(void *a,void *b,int (*cmp)(),size_t offset)
|
|
{
|
|
char *ptr, *head;
|
|
|
|
if( a==0 ){
|
|
head = b;
|
|
}else if( b==0 ){
|
|
head = a;
|
|
}else{
|
|
if( (*cmp)(a,b)<0 ){
|
|
ptr = a;
|
|
a = NEXT(a);
|
|
}else{
|
|
ptr = b;
|
|
b = NEXT(b);
|
|
}
|
|
head = ptr;
|
|
while( a && b ){
|
|
if( (*cmp)(a,b)<0 ){
|
|
NEXT(ptr) = a;
|
|
ptr = a;
|
|
a = NEXT(a);
|
|
}else{
|
|
NEXT(ptr) = b;
|
|
ptr = b;
|
|
b = NEXT(b);
|
|
}
|
|
}
|
|
if( a ) NEXT(ptr) = a;
|
|
else NEXT(ptr) = b;
|
|
}
|
|
return head;
|
|
}
|
|
|
|
/*
|
|
** Inputs:
|
|
** list: Pointer to a singly-linked list of structures.
|
|
** next: Pointer to pointer to the second element of the list.
|
|
** cmp: A comparison function.
|
|
**
|
|
** Return Value:
|
|
** A pointer to the head of a sorted list containing the elements
|
|
** orginally in list.
|
|
**
|
|
** Side effects:
|
|
** The "next" pointers for elements in list are changed.
|
|
*/
|
|
#define LISTSIZE 30
|
|
static void *msort(void *list,void *next,int (*cmp)())
|
|
{
|
|
size_t offset;
|
|
char *ep;
|
|
char *set[LISTSIZE];
|
|
int i;
|
|
offset = (size_t)next - (size_t)list;
|
|
for(i=0; i<LISTSIZE; i++) set[i] = 0;
|
|
while( list ){
|
|
ep = list;
|
|
list = NEXT(list);
|
|
NEXT(ep) = 0;
|
|
for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
|
|
ep = merge(ep,set[i],cmp,offset);
|
|
set[i] = 0;
|
|
}
|
|
set[i] = ep;
|
|
}
|
|
ep = 0;
|
|
for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(ep,set[i],cmp,offset);
|
|
return ep;
|
|
}
|
|
/************************ From the file "option.c" **************************/
|
|
static char **argv;
|
|
static struct s_options *op;
|
|
static FILE *errstream;
|
|
|
|
#define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
|
|
|
|
/*
|
|
** Print the command line with a carrot pointing to the k-th character
|
|
** of the n-th field.
|
|
*/
|
|
static void errline(n,k,err)
|
|
int n;
|
|
int k;
|
|
FILE *err;
|
|
{
|
|
int i;
|
|
size_t spcnt;
|
|
if( argv[0] ) fprintf(err,"%s",argv[0]);
|
|
spcnt = lemonStrlen(argv[0]) + 1;
|
|
for(i=1; i<n && argv[i]; i++){
|
|
fprintf(err," %s",argv[i]);
|
|
spcnt += lemonStrlen(argv[i])+1;
|
|
}
|
|
spcnt += k;
|
|
for(; argv[i]; i++) fprintf(err," %s",argv[i]);
|
|
if( spcnt<20 ){
|
|
fprintf(err,"\n%*s^-- here\n",(int)spcnt,"");
|
|
}else{
|
|
fprintf(err,"\n%*shere --^\n",(int)spcnt-7,"");
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return the index of the N-th non-switch argument. Return -1
|
|
** if N is out of range.
|
|
*/
|
|
static int argindex(n)
|
|
int n;
|
|
{
|
|
int i;
|
|
int dashdash = 0;
|
|
if( argv!=0 && *argv!=0 ){
|
|
for(i=1; argv[i]; i++){
|
|
if( dashdash || !ISOPT(argv[i]) ){
|
|
if( n==0 ) return i;
|
|
n--;
|
|
}
|
|
if( strcmp(argv[i],"--")==0 ) dashdash = 1;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static char emsg[] = "Command line syntax error: ";
|
|
|
|
/*
|
|
** Process a flag command line argument.
|
|
*/
|
|
static int handleflags(i,err)
|
|
int i;
|
|
FILE *err;
|
|
{
|
|
int v;
|
|
int errcnt = 0;
|
|
int j;
|
|
for(j=0; op[j].label; j++){
|
|
if( strncmp(&argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break;
|
|
}
|
|
v = argv[i][0]=='-' ? 1 : 0;
|
|
if( op[j].label==0 ){
|
|
if( err ){
|
|
fprintf(err,"%sundefined option.\n",emsg);
|
|
errline(i,1,err);
|
|
}
|
|
errcnt++;
|
|
}else if( op[j].type==OPT_FLAG ){
|
|
*((int*)op[j].arg) = v;
|
|
}else if( op[j].type==OPT_FFLAG ){
|
|
(*(void(*)())(op[j].arg))(v);
|
|
}else if( op[j].type==OPT_FSTR ){
|
|
(*(void(*)())(op[j].arg))(&argv[i][2]);
|
|
}else{
|
|
if( err ){
|
|
fprintf(err,"%smissing argument on switch.\n",emsg);
|
|
errline(i,1,err);
|
|
}
|
|
errcnt++;
|
|
}
|
|
return errcnt;
|
|
}
|
|
|
|
/*
|
|
** Process a command line switch which has an argument.
|
|
*/
|
|
static int handleswitch(i,err)
|
|
int i;
|
|
FILE *err;
|
|
{
|
|
int lv = 0;
|
|
double dv = 0.0;
|
|
char *sv = 0, *end;
|
|
char *cp;
|
|
int j;
|
|
int errcnt = 0;
|
|
cp = strchr(argv[i],'=');
|
|
assert( cp!=0 );
|
|
*cp = 0;
|
|
for(j=0; op[j].label; j++){
|
|
if( strcmp(argv[i],op[j].label)==0 ) break;
|
|
}
|
|
*cp = '=';
|
|
if( op[j].label==0 ){
|
|
if( err ){
|
|
fprintf(err,"%sundefined option.\n",emsg);
|
|
errline(i,0,err);
|
|
}
|
|
errcnt++;
|
|
}else{
|
|
cp++;
|
|
switch( op[j].type ){
|
|
case OPT_FLAG:
|
|
case OPT_FFLAG:
|
|
if( err ){
|
|
fprintf(err,"%soption requires an argument.\n",emsg);
|
|
errline(i,0,err);
|
|
}
|
|
errcnt++;
|
|
break;
|
|
case OPT_DBL:
|
|
case OPT_FDBL:
|
|
dv = strtod(cp,&end);
|
|
if( *end ){
|
|
if( err ){
|
|
fprintf(err,"%sillegal character in floating-point argument.\n",emsg);
|
|
errline(i,((size_t)end)-(size_t)argv[i],err);
|
|
}
|
|
errcnt++;
|
|
}
|
|
break;
|
|
case OPT_INT:
|
|
case OPT_FINT:
|
|
lv = strtol(cp,&end,0);
|
|
if( *end ){
|
|
if( err ){
|
|
fprintf(err,"%sillegal character in integer argument.\n",emsg);
|
|
errline(i,((size_t)end)-(size_t)argv[i],err);
|
|
}
|
|
errcnt++;
|
|
}
|
|
break;
|
|
case OPT_STR:
|
|
case OPT_FSTR:
|
|
sv = cp;
|
|
break;
|
|
}
|
|
switch( op[j].type ){
|
|
case OPT_FLAG:
|
|
case OPT_FFLAG:
|
|
break;
|
|
case OPT_DBL:
|
|
*(double*)(op[j].arg) = dv;
|
|
break;
|
|
case OPT_FDBL:
|
|
(*(void(*)())(op[j].arg))(dv);
|
|
break;
|
|
case OPT_INT:
|
|
*(int*)(op[j].arg) = lv;
|
|
break;
|
|
case OPT_FINT:
|
|
(*(void(*)())(op[j].arg))((int)lv);
|
|
break;
|
|
case OPT_STR:
|
|
*(char**)(op[j].arg) = sv;
|
|
break;
|
|
case OPT_FSTR:
|
|
(*(void(*)())(op[j].arg))(sv);
|
|
break;
|
|
}
|
|
}
|
|
return errcnt;
|
|
}
|
|
|
|
int OptInit(a,o,err)
|
|
char **a;
|
|
struct s_options *o;
|
|
FILE *err;
|
|
{
|
|
int errcnt = 0;
|
|
argv = a;
|
|
op = o;
|
|
errstream = err;
|
|
if( argv && *argv && op ){
|
|
int i;
|
|
for(i=1; argv[i]; i++){
|
|
if( argv[i][0]=='+' || argv[i][0]=='-' ){
|
|
errcnt += handleflags(i,err);
|
|
}else if( strchr(argv[i],'=') ){
|
|
errcnt += handleswitch(i,err);
|
|
}
|
|
}
|
|
}
|
|
if( errcnt>0 ){
|
|
fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
|
|
OptPrint();
|
|
exit(1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int OptNArgs(){
|
|
int cnt = 0;
|
|
int dashdash = 0;
|
|
int i;
|
|
if( argv!=0 && argv[0]!=0 ){
|
|
for(i=1; argv[i]; i++){
|
|
if( dashdash || !ISOPT(argv[i]) ) cnt++;
|
|
if( strcmp(argv[i],"--")==0 ) dashdash = 1;
|
|
}
|
|
}
|
|
return cnt;
|
|
}
|
|
|
|
char *OptArg(n)
|
|
int n;
|
|
{
|
|
int i;
|
|
i = argindex(n);
|
|
return i>=0 ? argv[i] : 0;
|
|
}
|
|
|
|
void OptErr(n)
|
|
int n;
|
|
{
|
|
int i;
|
|
i = argindex(n);
|
|
if( i>=0 ) errline(i,0,errstream);
|
|
}
|
|
|
|
void OptPrint(){
|
|
int i;
|
|
size_t max, len;
|
|
max = 0;
|
|
for(i=0; op[i].label; i++){
|
|
len = lemonStrlen(op[i].label) + 1;
|
|
switch( op[i].type ){
|
|
case OPT_FLAG:
|
|
case OPT_FFLAG:
|
|
break;
|
|
case OPT_INT:
|
|
case OPT_FINT:
|
|
len += 9; /* length of "<integer>" */
|
|
break;
|
|
case OPT_DBL:
|
|
case OPT_FDBL:
|
|
len += 6; /* length of "<real>" */
|
|
break;
|
|
case OPT_STR:
|
|
case OPT_FSTR:
|
|
len += 8; /* length of "<string>" */
|
|
break;
|
|
}
|
|
if( len>max ) max = len;
|
|
}
|
|
for(i=0; op[i].label; i++){
|
|
switch( op[i].type ){
|
|
case OPT_FLAG:
|
|
case OPT_FFLAG:
|
|
fprintf(errstream," -%-*s %s\n",(int)max,op[i].label,op[i].message);
|
|
break;
|
|
case OPT_INT:
|
|
case OPT_FINT:
|
|
fprintf(errstream," %s=<integer>%*s %s\n",op[i].label,
|
|
(int)(max-lemonStrlen(op[i].label)-9),"",op[i].message);
|
|
break;
|
|
case OPT_DBL:
|
|
case OPT_FDBL:
|
|
fprintf(errstream," %s=<real>%*s %s\n",op[i].label,
|
|
(int)(max-lemonStrlen(op[i].label)-6),"",op[i].message);
|
|
break;
|
|
case OPT_STR:
|
|
case OPT_FSTR:
|
|
fprintf(errstream," %s=<string>%*s %s\n",op[i].label,
|
|
(int)(max-lemonStrlen(op[i].label)-8),"",op[i].message);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
/*********************** From the file "parse.c" ****************************/
|
|
/*
|
|
** Input file parser for the LEMON parser generator.
|
|
*/
|
|
|
|
/* The state of the parser */
|
|
struct pstate {
|
|
char *filename; /* Name of the input file */
|
|
int tokenlineno; /* Linenumber at which current token starts */
|
|
int errorcnt; /* Number of errors so far */
|
|
char *tokenstart; /* Text of current token */
|
|
struct lemon *gp; /* Global state vector */
|
|
enum e_state {
|
|
INITIALIZE,
|
|
WAITING_FOR_DECL_OR_RULE,
|
|
WAITING_FOR_DECL_KEYWORD,
|
|
WAITING_FOR_DECL_ARG,
|
|
WAITING_FOR_PRECEDENCE_SYMBOL,
|
|
WAITING_FOR_ARROW,
|
|
IN_RHS,
|
|
LHS_ALIAS_1,
|
|
LHS_ALIAS_2,
|
|
LHS_ALIAS_3,
|
|
RHS_ALIAS_1,
|
|
RHS_ALIAS_2,
|
|
PRECEDENCE_MARK_1,
|
|
PRECEDENCE_MARK_2,
|
|
RESYNC_AFTER_RULE_ERROR,
|
|
RESYNC_AFTER_DECL_ERROR,
|
|
WAITING_FOR_DESTRUCTOR_SYMBOL,
|
|
WAITING_FOR_DATATYPE_SYMBOL,
|
|
WAITING_FOR_FALLBACK_ID,
|
|
WAITING_FOR_WILDCARD_ID
|
|
} state; /* The state of the parser */
|
|
struct symbol *fallback; /* The fallback token */
|
|
struct symbol *lhs; /* Left-hand side of current rule */
|
|
char *lhsalias; /* Alias for the LHS */
|
|
int nrhs; /* Number of right-hand side symbols seen */
|
|
struct symbol *rhs[MAXRHS]; /* RHS symbols */
|
|
char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */
|
|
struct rule *prevrule; /* Previous rule parsed */
|
|
char *declkeyword; /* Keyword of a declaration */
|
|
char **declargslot; /* Where the declaration argument should be put */
|
|
int insertLineMacro; /* Add #line before declaration insert */
|
|
int *decllinenoslot; /* Where to write declaration line number */
|
|
enum e_assoc declassoc; /* Assign this association to decl arguments */
|
|
int preccounter; /* Assign this precedence to decl arguments */
|
|
struct rule *firstrule; /* Pointer to first rule in the grammar */
|
|
struct rule *lastrule; /* Pointer to the most recently parsed rule */
|
|
};
|
|
|
|
/* Parse a single token */
|
|
static void parseonetoken(psp)
|
|
struct pstate *psp;
|
|
{
|
|
char *x;
|
|
x = Strsafe(psp->tokenstart); /* Save the token permanently */
|
|
#if 0
|
|
printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
|
|
x,psp->state);
|
|
#endif
|
|
switch( psp->state ){
|
|
case INITIALIZE:
|
|
psp->prevrule = 0;
|
|
psp->preccounter = 0;
|
|
psp->firstrule = psp->lastrule = 0;
|
|
psp->gp->nrule = 0;
|
|
/* Fall thru to next case */
|
|
case WAITING_FOR_DECL_OR_RULE:
|
|
if( x[0]=='%' ){
|
|
psp->state = WAITING_FOR_DECL_KEYWORD;
|
|
}else if( islower(x[0]) ){
|
|
psp->lhs = Symbol_new(x);
|
|
psp->nrhs = 0;
|
|
psp->lhsalias = 0;
|
|
psp->state = WAITING_FOR_ARROW;
|
|
}else if( x[0]=='{' ){
|
|
if( psp->prevrule==0 ){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"There is no prior rule upon which to attach the code \
|
|
fragment which begins on this line.");
|
|
psp->errorcnt++;
|
|
}else if( psp->prevrule->code!=0 ){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Code fragment beginning on this line is not the first \
|
|
to follow the previous rule.");
|
|
psp->errorcnt++;
|
|
}else{
|
|
psp->prevrule->line = psp->tokenlineno;
|
|
psp->prevrule->code = &x[1];
|
|
}
|
|
}else if( x[0]=='[' ){
|
|
psp->state = PRECEDENCE_MARK_1;
|
|
}else{
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Token \"%s\" should be either \"%%\" or a nonterminal name.",
|
|
x);
|
|
psp->errorcnt++;
|
|
}
|
|
break;
|
|
case PRECEDENCE_MARK_1:
|
|
if( !isupper(x[0]) ){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"The precedence symbol must be a terminal.");
|
|
psp->errorcnt++;
|
|
}else if( psp->prevrule==0 ){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"There is no prior rule to assign precedence \"[%s]\".",x);
|
|
psp->errorcnt++;
|
|
}else if( psp->prevrule->precsym!=0 ){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Precedence mark on this line is not the first \
|
|
to follow the previous rule.");
|
|
psp->errorcnt++;
|
|
}else{
|
|
psp->prevrule->precsym = Symbol_new(x);
|
|
}
|
|
psp->state = PRECEDENCE_MARK_2;
|
|
break;
|
|
case PRECEDENCE_MARK_2:
|
|
if( x[0]!=']' ){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Missing \"]\" on precedence mark.");
|
|
psp->errorcnt++;
|
|
}
|
|
psp->state = WAITING_FOR_DECL_OR_RULE;
|
|
break;
|
|
case WAITING_FOR_ARROW:
|
|
if( x[0]==':' && x[1]==':' && x[2]=='=' ){
|
|
psp->state = IN_RHS;
|
|
}else if( x[0]=='(' ){
|
|
psp->state = LHS_ALIAS_1;
|
|
}else{
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Expected to see a \":\" following the LHS symbol \"%s\".",
|
|
psp->lhs->name);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_RULE_ERROR;
|
|
}
|
|
break;
|
|
case LHS_ALIAS_1:
|
|
if( isalpha(x[0]) ){
|
|
psp->lhsalias = x;
|
|
psp->state = LHS_ALIAS_2;
|
|
}else{
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"\"%s\" is not a valid alias for the LHS \"%s\"\n",
|
|
x,psp->lhs->name);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_RULE_ERROR;
|
|
}
|
|
break;
|
|
case LHS_ALIAS_2:
|
|
if( x[0]==')' ){
|
|
psp->state = LHS_ALIAS_3;
|
|
}else{
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_RULE_ERROR;
|
|
}
|
|
break;
|
|
case LHS_ALIAS_3:
|
|
if( x[0]==':' && x[1]==':' && x[2]=='=' ){
|
|
psp->state = IN_RHS;
|
|
}else{
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Missing \"->\" following: \"%s(%s)\".",
|
|
psp->lhs->name,psp->lhsalias);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_RULE_ERROR;
|
|
}
|
|
break;
|
|
case IN_RHS:
|
|
if( x[0]=='.' ){
|
|
struct rule *rp;
|
|
rp = (struct rule *)calloc( sizeof(struct rule) +
|
|
sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1);
|
|
if( rp==0 ){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Can't allocate enough memory for this rule.");
|
|
psp->errorcnt++;
|
|
psp->prevrule = 0;
|
|
}else{
|
|
int i;
|
|
rp->ruleline = psp->tokenlineno;
|
|
rp->rhs = (struct symbol**)&rp[1];
|
|
rp->rhsalias = (char**)&(rp->rhs[psp->nrhs]);
|
|
for(i=0; i<psp->nrhs; i++){
|
|
rp->rhs[i] = psp->rhs[i];
|
|
rp->rhsalias[i] = psp->alias[i];
|
|
}
|
|
rp->lhs = psp->lhs;
|
|
rp->lhsalias = psp->lhsalias;
|
|
rp->nrhs = psp->nrhs;
|
|
rp->code = 0;
|
|
rp->precsym = 0;
|
|
rp->index = psp->gp->nrule++;
|
|
rp->nextlhs = rp->lhs->rule;
|
|
rp->lhs->rule = rp;
|
|
rp->next = 0;
|
|
if( psp->firstrule==0 ){
|
|
psp->firstrule = psp->lastrule = rp;
|
|
}else{
|
|
psp->lastrule->next = rp;
|
|
psp->lastrule = rp;
|
|
}
|
|
psp->prevrule = rp;
|
|
}
|
|
psp->state = WAITING_FOR_DECL_OR_RULE;
|
|
}else if( isalpha(x[0]) ){
|
|
if( psp->nrhs>=MAXRHS ){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Too many symbols on RHS of rule beginning at \"%s\".",
|
|
x);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_RULE_ERROR;
|
|
}else{
|
|
psp->rhs[psp->nrhs] = Symbol_new(x);
|
|
psp->alias[psp->nrhs] = 0;
|
|
psp->nrhs++;
|
|
}
|
|
}else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){
|
|
struct symbol *msp = psp->rhs[psp->nrhs-1];
|
|
if( msp->type!=MULTITERMINAL ){
|
|
struct symbol *origsp = msp;
|
|
msp = calloc(1,sizeof(*msp));
|
|
msp->type = MULTITERMINAL;
|
|
msp->nsubsym = 1;
|
|
msp->subsym = calloc(1,sizeof(struct symbol*));
|
|
msp->subsym[0] = origsp;
|
|
msp->name = origsp->name;
|
|
psp->rhs[psp->nrhs-1] = msp;
|
|
}
|
|
msp->nsubsym++;
|
|
msp->subsym = realloc(msp->subsym, sizeof(struct symbol*)*msp->nsubsym);
|
|
msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]);
|
|
if( islower(x[1]) || islower(msp->subsym[0]->name[0]) ){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Cannot form a compound containing a non-terminal");
|
|
psp->errorcnt++;
|
|
}
|
|
}else if( x[0]=='(' && psp->nrhs>0 ){
|
|
psp->state = RHS_ALIAS_1;
|
|
}else{
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Illegal character on RHS of rule: \"%s\".",x);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_RULE_ERROR;
|
|
}
|
|
break;
|
|
case RHS_ALIAS_1:
|
|
if( isalpha(x[0]) ){
|
|
psp->alias[psp->nrhs-1] = x;
|
|
psp->state = RHS_ALIAS_2;
|
|
}else{
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
|
|
x,psp->rhs[psp->nrhs-1]->name);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_RULE_ERROR;
|
|
}
|
|
break;
|
|
case RHS_ALIAS_2:
|
|
if( x[0]==')' ){
|
|
psp->state = IN_RHS;
|
|
}else{
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_RULE_ERROR;
|
|
}
|
|
break;
|
|
case WAITING_FOR_DECL_KEYWORD:
|
|
if( isalpha(x[0]) ){
|
|
psp->declkeyword = x;
|
|
psp->declargslot = 0;
|
|
psp->decllinenoslot = 0;
|
|
psp->insertLineMacro = 1;
|
|
psp->state = WAITING_FOR_DECL_ARG;
|
|
if( strcmp(x,"name")==0 ){
|
|
psp->declargslot = &(psp->gp->name);
|
|
psp->insertLineMacro = 0;
|
|
}else if( strcmp(x,"include")==0 ){
|
|
psp->declargslot = &(psp->gp->include);
|
|
}else if( strcmp(x,"code")==0 ){
|
|
psp->declargslot = &(psp->gp->extracode);
|
|
}else if( strcmp(x,"token_destructor")==0 ){
|
|
psp->declargslot = &psp->gp->tokendest;
|
|
}else if( strcmp(x,"default_destructor")==0 ){
|
|
psp->declargslot = &psp->gp->vardest;
|
|
}else if( strcmp(x,"token_prefix")==0 ){
|
|
psp->declargslot = &psp->gp->tokenprefix;
|
|
psp->insertLineMacro = 0;
|
|
}else if( strcmp(x,"syntax_error")==0 ){
|
|
psp->declargslot = &(psp->gp->error);
|
|
}else if( strcmp(x,"parse_accept")==0 ){
|
|
psp->declargslot = &(psp->gp->accept);
|
|
}else if( strcmp(x,"parse_failure")==0 ){
|
|
psp->declargslot = &(psp->gp->failure);
|
|
}else if( strcmp(x,"stack_overflow")==0 ){
|
|
psp->declargslot = &(psp->gp->overflow);
|
|
}else if( strcmp(x,"extra_argument")==0 ){
|
|
psp->declargslot = &(psp->gp->arg);
|
|
psp->insertLineMacro = 0;
|
|
}else if( strcmp(x,"token_type")==0 ){
|
|
psp->declargslot = &(psp->gp->tokentype);
|
|
psp->insertLineMacro = 0;
|
|
}else if( strcmp(x,"default_type")==0 ){
|
|
psp->declargslot = &(psp->gp->vartype);
|
|
psp->insertLineMacro = 0;
|
|
}else if( strcmp(x,"stack_size")==0 ){
|
|
psp->declargslot = &(psp->gp->stacksize);
|
|
psp->insertLineMacro = 0;
|
|
}else if( strcmp(x,"start_symbol")==0 ){
|
|
psp->declargslot = &(psp->gp->start);
|
|
psp->insertLineMacro = 0;
|
|
}else if( strcmp(x,"left")==0 ){
|
|
psp->preccounter++;
|
|
psp->declassoc = LEFT;
|
|
psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
|
|
}else if( strcmp(x,"right")==0 ){
|
|
psp->preccounter++;
|
|
psp->declassoc = RIGHT;
|
|
psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
|
|
}else if( strcmp(x,"nonassoc")==0 ){
|
|
psp->preccounter++;
|
|
psp->declassoc = NONE;
|
|
psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
|
|
}else if( strcmp(x,"destructor")==0 ){
|
|
psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
|
|
}else if( strcmp(x,"type")==0 ){
|
|
psp->state = WAITING_FOR_DATATYPE_SYMBOL;
|
|
}else if( strcmp(x,"fallback")==0 ){
|
|
psp->fallback = 0;
|
|
psp->state = WAITING_FOR_FALLBACK_ID;
|
|
}else if( strcmp(x,"wildcard")==0 ){
|
|
psp->state = WAITING_FOR_WILDCARD_ID;
|
|
}else{
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Unknown declaration keyword: \"%%%s\".",x);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_DECL_ERROR;
|
|
}
|
|
}else{
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Illegal declaration keyword: \"%s\".",x);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_DECL_ERROR;
|
|
}
|
|
break;
|
|
case WAITING_FOR_DESTRUCTOR_SYMBOL:
|
|
if( !isalpha(x[0]) ){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Symbol name missing after %%destructor keyword");
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_DECL_ERROR;
|
|
}else{
|
|
struct symbol *sp = Symbol_new(x);
|
|
psp->declargslot = &sp->destructor;
|
|
psp->decllinenoslot = &sp->destLineno;
|
|
psp->insertLineMacro = 1;
|
|
psp->state = WAITING_FOR_DECL_ARG;
|
|
}
|
|
break;
|
|
case WAITING_FOR_DATATYPE_SYMBOL:
|
|
if( !isalpha(x[0]) ){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Symbol name missing after %%destructor keyword");
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_DECL_ERROR;
|
|
}else{
|
|
struct symbol *sp = Symbol_new(x);
|
|
psp->declargslot = &sp->datatype;
|
|
psp->insertLineMacro = 0;
|
|
psp->state = WAITING_FOR_DECL_ARG;
|
|
}
|
|
break;
|
|
case WAITING_FOR_PRECEDENCE_SYMBOL:
|
|
if( x[0]=='.' ){
|
|
psp->state = WAITING_FOR_DECL_OR_RULE;
|
|
}else if( isupper(x[0]) ){
|
|
struct symbol *sp;
|
|
sp = Symbol_new(x);
|
|
if( sp->prec>=0 ){
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Symbol \"%s\" has already be given a precedence.",x);
|
|
psp->errorcnt++;
|
|
}else{
|
|
sp->prec = psp->preccounter;
|
|
sp->assoc = psp->declassoc;
|
|
}
|
|
}else{
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Can't assign a precedence to \"%s\".",x);
|
|
psp->errorcnt++;
|
|
}
|
|
break;
|
|
case WAITING_FOR_DECL_ARG:
|
|
if( x[0]=='{' || x[0]=='\"' || isalnum(x[0]) ){
|
|
char *zOld, *zNew, *zBuf, *z;
|
|
int nOld, n, nLine, nNew, nBack;
|
|
int addLineMacro;
|
|
char zLine[50];
|
|
zNew = x;
|
|
if( zNew[0]=='"' || zNew[0]=='{' ) zNew++;
|
|
nNew = lemonStrlen(zNew);
|
|
if( *psp->declargslot ){
|
|
zOld = *psp->declargslot;
|
|
}else{
|
|
zOld = "";
|
|
}
|
|
nOld = lemonStrlen(zOld);
|
|
n = nOld + nNew + 20;
|
|
addLineMacro = !psp->gp->nolinenosflag && psp->insertLineMacro &&
|
|
(psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0);
|
|
if( addLineMacro ){
|
|
for(z=psp->filename, nBack=0; *z; z++){
|
|
if( *z=='\\' ) nBack++;
|
|
}
|
|
sprintf(zLine, "#line %d ", psp->tokenlineno);
|
|
nLine = lemonStrlen(zLine);
|
|
n += nLine + lemonStrlen(psp->filename) + nBack;
|
|
}
|
|
*psp->declargslot = zBuf = realloc(*psp->declargslot, n);
|
|
zBuf += nOld;
|
|
if( addLineMacro ){
|
|
if( nOld && zBuf[-1]!='\n' ){
|
|
*(zBuf++) = '\n';
|
|
}
|
|
memcpy(zBuf, zLine, nLine);
|
|
zBuf += nLine;
|
|
*(zBuf++) = '"';
|
|
for(z=psp->filename; *z; z++){
|
|
if( *z=='\\' ){
|
|
*(zBuf++) = '\\';
|
|
}
|
|
*(zBuf++) = *z;
|
|
}
|
|
*(zBuf++) = '"';
|
|
*(zBuf++) = '\n';
|
|
}
|
|
if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){
|
|
psp->decllinenoslot[0] = psp->tokenlineno;
|
|
}
|
|
memcpy(zBuf, zNew, nNew);
|
|
zBuf += nNew;
|
|
*zBuf = 0;
|
|
psp->state = WAITING_FOR_DECL_OR_RULE;
|
|
}else{
|
|
ErrorMsg(psp->filename,psp->tokenlineno,
|
|
"Illegal argument to %%%s: %s",psp->declkeyword,x);
|
|
psp->errorcnt++;
|
|
psp->state = RESYNC_AFTER_DECL_ERROR;
|
|
}
|
|
break;
|
|
case WAITING_FOR_FALLBACK_ID:
|
|
if( x[0]=='.' ){
|
|
psp->state = WAITING_FOR_DECL_OR_RULE;
|
|
}else if( !isupper(x[0]) ){
|
|
ErrorMsg(psp->filename, psp->tokenlineno,
|
|
"%%fallback argument \"%s\" should be a token", x);
|
|
psp->errorcnt++;
|
|
}else{
|
|
struct symbol *sp = Symbol_new(x);
|
|
if( psp->fallback==0 ){
|
|
psp->fallback = sp;
|
|
}else if( sp->fallback ){
|
|
ErrorMsg(psp->filename, psp->tokenlineno,
|
|
"More than one fallback assigned to token %s", x);
|
|
psp->errorcnt++;
|
|
}else{
|
|
sp->fallback = psp->fallback;
|
|
psp->gp->has_fallback = 1;
|
|
}
|
|
}
|
|
break;
|
|
case WAITING_FOR_WILDCARD_ID:
|
|
if( x[0]=='.' ){
|
|
psp->state = WAITING_FOR_DECL_OR_RULE;
|
|
}else if( !isupper(x[0]) ){
|
|
ErrorMsg(psp->filename, psp->tokenlineno,
|
|
"%%wildcard argument \"%s\" should be a token", x);
|
|
psp->errorcnt++;
|
|
}else{
|
|
struct symbol *sp = Symbol_new(x);
|
|
if( psp->gp->wildcard==0 ){
|
|
psp->gp->wildcard = sp;
|
|
}else{
|
|
ErrorMsg(psp->filename, psp->tokenlineno,
|
|
"Extra wildcard to token: %s", x);
|
|
psp->errorcnt++;
|
|
}
|
|
}
|
|
break;
|
|
case RESYNC_AFTER_RULE_ERROR:
|
|
/* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
|
|
** break; */
|
|
case RESYNC_AFTER_DECL_ERROR:
|
|
if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
|
|
if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Run the preprocessor over the input file text. The global variables
|
|
** azDefine[0] through azDefine[nDefine-1] contains the names of all defined
|
|
** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and
|
|
** comments them out. Text in between is also commented out as appropriate.
|
|
*/
|
|
static void preprocess_input(char *z){
|
|
int i, j, k, n;
|
|
int exclude = 0;
|
|
int start = 0;
|
|
int lineno = 1;
|
|
int start_lineno = 1;
|
|
for(i=0; z[i]; i++){
|
|
if( z[i]=='\n' ) lineno++;
|
|
if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue;
|
|
if( strncmp(&z[i],"%endif",6)==0 && isspace(z[i+6]) ){
|
|
if( exclude ){
|
|
exclude--;
|
|
if( exclude==0 ){
|
|
for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
|
|
}
|
|
}
|
|
for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
|
|
}else if( (strncmp(&z[i],"%ifdef",6)==0 && isspace(z[i+6]))
|
|
|| (strncmp(&z[i],"%ifndef",7)==0 && isspace(z[i+7])) ){
|
|
if( exclude ){
|
|
exclude++;
|
|
}else{
|
|
for(j=i+7; isspace(z[j]); j++){}
|
|
for(n=0; z[j+n] && !isspace(z[j+n]); n++){}
|
|
exclude = 1;
|
|
for(k=0; k<nDefine; k++){
|
|
if( strncmp(azDefine[k],&z[j],n)==0 && lemonStrlen(azDefine[k])==n ){
|
|
exclude = 0;
|
|
break;
|
|
}
|
|
}
|
|
if( z[i+3]=='n' ) exclude = !exclude;
|
|
if( exclude ){
|
|
start = i;
|
|
start_lineno = lineno;
|
|
}
|
|
}
|
|
for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
|
|
}
|
|
}
|
|
if( exclude ){
|
|
fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
int strip_crlf(filebuf, filesize)
|
|
char *filebuf;
|
|
int filesize;
|
|
{
|
|
int i, j;
|
|
|
|
for (i = j = 0; i < filesize; ++i, ++j)
|
|
{
|
|
if (filebuf[i] == '\r' && filebuf[i+1] == '\n')
|
|
{
|
|
++i;
|
|
}
|
|
filebuf[j] = filebuf[i];
|
|
}
|
|
return j;
|
|
}
|
|
|
|
/* In spite of its name, this function is really a scanner. It read
|
|
** in the entire input file (all at once) then tokenizes it. Each
|
|
** token is passed to the function "parseonetoken" which builds all
|
|
** the appropriate data structures in the global state vector "gp".
|
|
*/
|
|
void Parse(gp)
|
|
struct lemon *gp;
|
|
{
|
|
struct pstate ps;
|
|
FILE *fp;
|
|
char *filebuf;
|
|
int filesize;
|
|
int lineno;
|
|
int c;
|
|
char *cp, *nextcp;
|
|
int startline = 0;
|
|
|
|
memset(&ps, '\0', sizeof(ps));
|
|
ps.gp = gp;
|
|
ps.filename = gp->filename;
|
|
ps.errorcnt = 0;
|
|
ps.state = INITIALIZE;
|
|
|
|
/* Begin by reading the input file */
|
|
fp = fopen(ps.filename,"rb");
|
|
if( fp==0 ){
|
|
ErrorMsg(ps.filename,0,"Can't open this file for reading.");
|
|
gp->errorcnt++;
|
|
return;
|
|
}
|
|
fseek(fp,0,2);
|
|
filesize = ftell(fp);
|
|
rewind(fp);
|
|
filebuf = (char *)malloc( filesize+1 );
|
|
if( filebuf==0 ){
|
|
ErrorMsg(ps.filename,0,"Can't allocate %d of memory to hold this file.",
|
|
filesize+1);
|
|
gp->errorcnt++;
|
|
fclose(fp);
|
|
return;
|
|
}
|
|
if( fread(filebuf,1,filesize,fp)!=filesize ){
|
|
ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
|
|
filesize);
|
|
free(filebuf);
|
|
gp->errorcnt++;
|
|
fclose(fp);
|
|
return;
|
|
}
|
|
fclose(fp);
|
|
filesize = strip_crlf(filebuf, filesize);
|
|
filebuf[filesize] = 0;
|
|
|
|
/* Make an initial pass through the file to handle %ifdef and %ifndef */
|
|
preprocess_input(filebuf);
|
|
|
|
/* Now scan the text of the input file */
|
|
lineno = 1;
|
|
for(cp=filebuf; (c= *cp)!=0; ){
|
|
if( c=='\n' ) lineno++; /* Keep track of the line number */
|
|
if( isspace(c) ){ cp++; continue; } /* Skip all white space */
|
|
if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */
|
|
cp+=2;
|
|
while( (c= *cp)!=0 && c!='\n' ) cp++;
|
|
continue;
|
|
}
|
|
if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */
|
|
cp+=2;
|
|
while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
|
|
if( c=='\n' ) lineno++;
|
|
cp++;
|
|
}
|
|
if( c ) cp++;
|
|
continue;
|
|
}
|
|
ps.tokenstart = cp; /* Mark the beginning of the token */
|
|
ps.tokenlineno = lineno; /* Linenumber on which token begins */
|
|
if( c=='\"' ){ /* String literals */
|
|
cp++;
|
|
while( (c= *cp)!=0 && c!='\"' ){
|
|
if( c=='\n' ) lineno++;
|
|
cp++;
|
|
}
|
|
if( c==0 ){
|
|
ErrorMsg(ps.filename,startline,
|
|
"String starting on this line is not terminated before the end of the file.");
|
|
ps.errorcnt++;
|
|
nextcp = cp;
|
|
}else{
|
|
nextcp = cp+1;
|
|
}
|
|
}else if( c=='{' ){ /* A block of C code */
|
|
int level;
|
|
cp++;
|
|
for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
|
|
if( c=='\n' ) lineno++;
|
|
else if( c=='{' ) level++;
|
|
else if( c=='}' ) level--;
|
|
else if( c=='/' && cp[1]=='*' ){ /* Skip comments */
|
|
int prevc;
|
|
cp = &cp[2];
|
|
prevc = 0;
|
|
while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
|
|
if( c=='\n' ) lineno++;
|
|
prevc = c;
|
|
cp++;
|
|
}
|
|
}else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */
|
|
cp = &cp[2];
|
|
while( (c= *cp)!=0 && c!='\n' ) cp++;
|
|
if( c ) lineno++;
|
|
}else if( c=='\'' || c=='\"' ){ /* String a character literals */
|
|
int startchar, prevc;
|
|
startchar = c;
|
|
prevc = 0;
|
|
for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
|
|
if( c=='\n' ) lineno++;
|
|
if( prevc=='\\' ) prevc = 0;
|
|
else prevc = c;
|
|
}
|
|
}
|
|
}
|
|
if( c==0 ){
|
|
ErrorMsg(ps.filename,ps.tokenlineno,
|
|
"C code starting on this line is not terminated before the end of the file.");
|
|
ps.errorcnt++;
|
|
nextcp = cp;
|
|
}else{
|
|
nextcp = cp+1;
|
|
}
|
|
}else if( isalnum(c) ){ /* Identifiers */
|
|
while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
|
|
nextcp = cp;
|
|
}else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
|
|
cp += 3;
|
|
nextcp = cp;
|
|
}else if( (c=='/' || c=='|') && isalpha(cp[1]) ){
|
|
cp += 2;
|
|
while( (c = *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
|
|
nextcp = cp;
|
|
}else{ /* All other (one character) operators */
|
|
cp++;
|
|
nextcp = cp;
|
|
}
|
|
c = *cp;
|
|
*cp = 0; /* Null terminate the token */
|
|
parseonetoken(&ps); /* Parse the token */
|
|
*cp = c; /* Restore the buffer */
|
|
cp = nextcp;
|
|
}
|
|
free(filebuf); /* Release the buffer after parsing */
|
|
gp->rule = ps.firstrule;
|
|
gp->errorcnt = ps.errorcnt;
|
|
}
|
|
/*************************** From the file "plink.c" *********************/
|
|
/*
|
|
** Routines processing configuration follow-set propagation links
|
|
** in the LEMON parser generator.
|
|
*/
|
|
static struct plink *plink_freelist = 0;
|
|
|
|
/* Allocate a new plink */
|
|
struct plink *Plink_new(){
|
|
struct plink *new;
|
|
|
|
if( plink_freelist==0 ){
|
|
int i;
|
|
int amt = 100;
|
|
plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) );
|
|
if( plink_freelist==0 ){
|
|
fprintf(stderr,
|
|
"Unable to allocate memory for a new follow-set propagation link.\n");
|
|
exit(1);
|
|
}
|
|
for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
|
|
plink_freelist[amt-1].next = 0;
|
|
}
|
|
new = plink_freelist;
|
|
plink_freelist = plink_freelist->next;
|
|
return new;
|
|
}
|
|
|
|
/* Add a plink to a plink list */
|
|
void Plink_add(plpp,cfp)
|
|
struct plink **plpp;
|
|
struct config *cfp;
|
|
{
|
|
struct plink *new;
|
|
new = Plink_new();
|
|
new->next = *plpp;
|
|
*plpp = new;
|
|
new->cfp = cfp;
|
|
}
|
|
|
|
/* Transfer every plink on the list "from" to the list "to" */
|
|
void Plink_copy(to,from)
|
|
struct plink **to;
|
|
struct plink *from;
|
|
{
|
|
struct plink *nextpl;
|
|
while( from ){
|
|
nextpl = from->next;
|
|
from->next = *to;
|
|
*to = from;
|
|
from = nextpl;
|
|
}
|
|
}
|
|
|
|
/* Delete every plink on the list */
|
|
void Plink_delete(plp)
|
|
struct plink *plp;
|
|
{
|
|
struct plink *nextpl;
|
|
|
|
while( plp ){
|
|
nextpl = plp->next;
|
|
plp->next = plink_freelist;
|
|
plink_freelist = plp;
|
|
plp = nextpl;
|
|
}
|
|
}
|
|
/*********************** From the file "report.c" **************************/
|
|
/*
|
|
** Procedures for generating reports and tables in the LEMON parser generator.
|
|
*/
|
|
|
|
/* Generate a filename with the given suffix. Space to hold the
|
|
** name comes from malloc() and must be freed by the calling
|
|
** function.
|
|
*/
|
|
PRIVATE char *file_makename(lemp,suffix)
|
|
struct lemon *lemp;
|
|
char *suffix;
|
|
{
|
|
char *name;
|
|
char *cp;
|
|
|
|
name = malloc( lemonStrlen(lemp->filename) + lemonStrlen(suffix) + 5 );
|
|
if( name==0 ){
|
|
fprintf(stderr,"Can't allocate space for a filename.\n");
|
|
exit(1);
|
|
}
|
|
strcpy(name,lemp->filename);
|
|
cp = strrchr(name,'.');
|
|
if( cp ) *cp = 0;
|
|
strcat(name,suffix);
|
|
return name;
|
|
}
|
|
|
|
/* Open a file with a name based on the name of the input file,
|
|
** but with a different (specified) suffix, and return a pointer
|
|
** to the stream */
|
|
PRIVATE FILE *file_open(lemp,suffix,mode)
|
|
struct lemon *lemp;
|
|
char *suffix;
|
|
char *mode;
|
|
{
|
|
FILE *fp;
|
|
|
|
if( lemp->outname ) free(lemp->outname);
|
|
lemp->outname = file_makename(lemp, suffix);
|
|
fp = fopen(lemp->outname,mode);
|
|
if( fp==0 && *mode=='w' ){
|
|
fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
|
|
lemp->errorcnt++;
|
|
return 0;
|
|
}
|
|
return fp;
|
|
}
|
|
|
|
/* Duplicate the input file without comments and without actions
|
|
** on rules */
|
|
void Reprint(lemp)
|
|
struct lemon *lemp;
|
|
{
|
|
struct rule *rp;
|
|
struct symbol *sp;
|
|
int i, j, maxlen, len, ncolumns, skip;
|
|
printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
|
|
maxlen = 10;
|
|
for(i=0; i<lemp->nsymbol; i++){
|
|
sp = lemp->symbols[i];
|
|
len = lemonStrlen(sp->name);
|
|
if( len>maxlen ) maxlen = len;
|
|
}
|
|
ncolumns = 76/(maxlen+5);
|
|
if( ncolumns<1 ) ncolumns = 1;
|
|
skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
|
|
for(i=0; i<skip; i++){
|
|
printf("//");
|
|
for(j=i; j<lemp->nsymbol; j+=skip){
|
|
sp = lemp->symbols[j];
|
|
assert( sp->index==j );
|
|
printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
|
|
}
|
|
printf("\n");
|
|
}
|
|
for(rp=lemp->rule; rp; rp=rp->next){
|
|
printf("%s",rp->lhs->name);
|
|
/* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */
|
|
printf(" ::=");
|
|
for(i=0; i<rp->nrhs; i++){
|
|
sp = rp->rhs[i];
|
|
printf(" %s", sp->name);
|
|
if( sp->type==MULTITERMINAL ){
|
|
for(j=1; j<sp->nsubsym; j++){
|
|
printf("|%s", sp->subsym[j]->name);
|
|
}
|
|
}
|
|
/* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */
|
|
}
|
|
printf(".");
|
|
if( rp->precsym ) printf(" [%s]",rp->precsym->name);
|
|
/* if( rp->code ) printf("\n %s",rp->code); */
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
void ConfigPrint(fp,cfp)
|
|
FILE *fp;
|
|
struct config *cfp;
|
|
{
|
|
struct rule *rp;
|
|
struct symbol *sp;
|
|
int i, j;
|
|
rp = cfp->rp;
|
|
fprintf(fp,"%s ::=",rp->lhs->name);
|
|
for(i=0; i<=rp->nrhs; i++){
|
|
if( i==cfp->dot ) fprintf(fp," *");
|
|
if( i==rp->nrhs ) break;
|
|
sp = rp->rhs[i];
|
|
fprintf(fp," %s", sp->name);
|
|
if( sp->type==MULTITERMINAL ){
|
|
for(j=1; j<sp->nsubsym; j++){
|
|
fprintf(fp,"|%s",sp->subsym[j]->name);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* #define TEST */
|
|
#if 0
|
|
/* Print a set */
|
|
PRIVATE void SetPrint(out,set,lemp)
|
|
FILE *out;
|
|
char *set;
|
|
struct lemon *lemp;
|
|
{
|
|
int i;
|
|
char *spacer;
|
|
spacer = "";
|
|
fprintf(out,"%12s[","");
|
|
for(i=0; i<lemp->nterminal; i++){
|
|
if( SetFind(set,i) ){
|
|
fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
|
|
spacer = " ";
|
|
}
|
|
}
|
|
fprintf(out,"]\n");
|
|
}
|
|
|
|
/* Print a plink chain */
|
|
PRIVATE void PlinkPrint(out,plp,tag)
|
|
FILE *out;
|
|
struct plink *plp;
|
|
char *tag;
|
|
{
|
|
while( plp ){
|
|
fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum);
|
|
ConfigPrint(out,plp->cfp);
|
|
fprintf(out,"\n");
|
|
plp = plp->next;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Print an action to the given file descriptor. Return FALSE if
|
|
** nothing was actually printed.
|
|
*/
|
|
int PrintAction(struct action *ap, FILE *fp, int indent){
|
|
int result = 1;
|
|
switch( ap->type ){
|
|
case SHIFT:
|
|
fprintf(fp,"%*s shift %d",indent,ap->sp->name,ap->x.stp->statenum);
|
|
break;
|
|
case REDUCE:
|
|
fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index);
|
|
break;
|
|
case ACCEPT:
|
|
fprintf(fp,"%*s accept",indent,ap->sp->name);
|
|
break;
|
|
case ERROR:
|
|
fprintf(fp,"%*s error",indent,ap->sp->name);
|
|
break;
|
|
case SRCONFLICT:
|
|
case RRCONFLICT:
|
|
fprintf(fp,"%*s reduce %-3d ** Parsing conflict **",
|
|
indent,ap->sp->name,ap->x.rp->index);
|
|
break;
|
|
case SSCONFLICT:
|
|
fprintf(fp,"%*s shift %d ** Parsing conflict **",
|
|
indent,ap->sp->name,ap->x.stp->statenum);
|
|
break;
|
|
case SH_RESOLVED:
|
|
case RD_RESOLVED:
|
|
case NOT_USED:
|
|
result = 0;
|
|
break;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Generate the "y.output" log file */
|
|
void ReportOutput(lemp)
|
|
struct lemon *lemp;
|
|
{
|
|
int i;
|
|
struct state *stp;
|
|
struct config *cfp;
|
|
struct action *ap;
|
|
FILE *fp;
|
|
|
|
fp = file_open(lemp,".out","wb");
|
|
if( fp==0 ) return;
|
|
for(i=0; i<lemp->nstate; i++){
|
|
stp = lemp->sorted[i];
|
|
fprintf(fp,"State %d:\n",stp->statenum);
|
|
if( lemp->basisflag ) cfp=stp->bp;
|
|
else cfp=stp->cfp;
|
|
while( cfp ){
|
|
char buf[20];
|
|
if( cfp->dot==cfp->rp->nrhs ){
|
|
sprintf(buf,"(%d)",cfp->rp->index);
|
|
fprintf(fp," %5s ",buf);
|
|
}else{
|
|
fprintf(fp," ");
|
|
}
|
|
ConfigPrint(fp,cfp);
|
|
fprintf(fp,"\n");
|
|
#if 0
|
|
SetPrint(fp,cfp->fws,lemp);
|
|
PlinkPrint(fp,cfp->fplp,"To ");
|
|
PlinkPrint(fp,cfp->bplp,"From");
|
|
#endif
|
|
if( lemp->basisflag ) cfp=cfp->bp;
|
|
else cfp=cfp->next;
|
|
}
|
|
fprintf(fp,"\n");
|
|
for(ap=stp->ap; ap; ap=ap->next){
|
|
if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
|
|
}
|
|
fprintf(fp,"\n");
|
|
}
|
|
fprintf(fp, "----------------------------------------------------\n");
|
|
fprintf(fp, "Symbols:\n");
|
|
for(i=0; i<lemp->nsymbol; i++){
|
|
int j;
|
|
struct symbol *sp;
|
|
|
|
sp = lemp->symbols[i];
|
|
fprintf(fp, " %3d: %s", i, sp->name);
|
|
if( sp->type==NONTERMINAL ){
|
|
fprintf(fp, ":");
|
|
if( sp->lambda ){
|
|
fprintf(fp, " <lambda>");
|
|
}
|
|
for(j=0; j<lemp->nterminal; j++){
|
|
if( sp->firstset && SetFind(sp->firstset, j) ){
|
|
fprintf(fp, " %s", lemp->symbols[j]->name);
|
|
}
|
|
}
|
|
}
|
|
fprintf(fp, "\n");
|
|
}
|
|
fclose(fp);
|
|
return;
|
|
}
|
|
|
|
/* Search for the file "name" which is in the same directory as
|
|
** the exacutable */
|
|
PRIVATE char *pathsearch(argv0,name,modemask)
|
|
char *argv0;
|
|
char *name;
|
|
int modemask;
|
|
{
|
|
char *pathlist;
|
|
char *path,*cp;
|
|
char c;
|
|
|
|
#ifdef __WIN32__
|
|
for (cp = argv0 + lemonStrlen(argv0); cp-- > argv0; )
|
|
{
|
|
if( *cp == '\\' || *cp == '/' )
|
|
break;
|
|
}
|
|
#else
|
|
cp = strrchr(argv0,'/');
|
|
#endif
|
|
if( cp ){
|
|
c = *cp;
|
|
*cp = 0;
|
|
path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 );
|
|
if( path ) sprintf(path,"%s/%s",argv0,name);
|
|
*cp = c;
|
|
}else{
|
|
extern char *getenv();
|
|
pathlist = getenv("PATH");
|
|
if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
|
|
path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 );
|
|
if( path!=0 ){
|
|
while( *pathlist ){
|
|
cp = strchr(pathlist,':');
|
|
if( cp==0 ) cp = &pathlist[lemonStrlen(pathlist)];
|
|
c = *cp;
|
|
*cp = 0;
|
|
sprintf(path,"%s/%s",pathlist,name);
|
|
*cp = c;
|
|
if( c==0 ) pathlist = "";
|
|
else pathlist = &cp[1];
|
|
if( access(path,modemask)==0 ) break;
|
|
}
|
|
}
|
|
}
|
|
return path;
|
|
}
|
|
|
|
/* Given an action, compute the integer value for that action
|
|
** which is to be put in the action table of the generated machine.
|
|
** Return negative if no action should be generated.
|
|
*/
|
|
PRIVATE int compute_action(lemp,ap)
|
|
struct lemon *lemp;
|
|
struct action *ap;
|
|
{
|
|
int act;
|
|
switch( ap->type ){
|
|
case SHIFT: act = ap->x.stp->statenum; break;
|
|
case REDUCE: act = ap->x.rp->index + lemp->nstate; break;
|
|
case ERROR: act = lemp->nstate + lemp->nrule; break;
|
|
case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break;
|
|
default: act = -1; break;
|
|
}
|
|
return act;
|
|
}
|
|
|
|
#define LINESIZE 1000
|
|
/* The next cluster of routines are for reading the template file
|
|
** and writing the results to the generated parser */
|
|
/* The first function transfers data from "in" to "out" until
|
|
** a line is seen which begins with "%%". The line number is
|
|
** tracked.
|
|
**
|
|
** if name!=0, then any word that begin with "Parse" is changed to
|
|
** begin with *name instead.
|
|
*/
|
|
PRIVATE void tplt_xfer(name,in,out,lineno)
|
|
char *name;
|
|
FILE *in;
|
|
FILE *out;
|
|
int *lineno;
|
|
{
|
|
int i, iStart;
|
|
char line[LINESIZE];
|
|
while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
|
|
(*lineno)++;
|
|
iStart = 0;
|
|
if( name ){
|
|
for(i=0; line[i]; i++){
|
|
if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
|
|
&& (i==0 || !isalpha(line[i-1]))
|
|
){
|
|
if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
|
|
fprintf(out,"%s",name);
|
|
i += 4;
|
|
iStart = i+1;
|
|
}
|
|
}
|
|
}
|
|
fprintf(out,"%s",&line[iStart]);
|
|
}
|
|
}
|
|
|
|
/* The next function finds the template file and opens it, returning
|
|
** a pointer to the opened file. */
|
|
PRIVATE FILE *tplt_open(lemp)
|
|
struct lemon *lemp;
|
|
{
|
|
static char templatename[] = "lempar.c";
|
|
char buf[1000];
|
|
FILE *in;
|
|
char *tpltname;
|
|
char *cp;
|
|
|
|
cp = strrchr(lemp->filename,'.');
|
|
if( cp ){
|
|
sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
|
|
}else{
|
|
sprintf(buf,"%s.lt",lemp->filename);
|
|
}
|
|
if( access(buf,004)==0 ){
|
|
tpltname = buf;
|
|
}else if( access(templatename,004)==0 ){
|
|
tpltname = templatename;
|
|
}else{
|
|
tpltname = pathsearch(lemp->argv0,templatename,0);
|
|
}
|
|
if( tpltname==0 ){
|
|
fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
|
|
templatename);
|
|
lemp->errorcnt++;
|
|
return 0;
|
|
}
|
|
in = fopen(tpltname,"rb");
|
|
if( in==0 ){
|
|
fprintf(stderr,"Can't open the template file \"%s\".\n",templatename);
|
|
lemp->errorcnt++;
|
|
return 0;
|
|
}
|
|
return in;
|
|
}
|
|
|
|
/* Print a #line directive line to the output file. */
|
|
PRIVATE void tplt_linedir(out,lineno,filename)
|
|
FILE *out;
|
|
int lineno;
|
|
char *filename;
|
|
{
|
|
fprintf(out,"#line %d \"",lineno);
|
|
while( *filename ){
|
|
if( *filename == '\\' ) putc('\\',out);
|
|
putc(*filename,out);
|
|
filename++;
|
|
}
|
|
fprintf(out,"\"\n");
|
|
}
|
|
|
|
/* Print a string to the file and keep the linenumber up to date */
|
|
PRIVATE void tplt_print(out,lemp,str,lineno)
|
|
FILE *out;
|
|
struct lemon *lemp;
|
|
char *str;
|
|
int *lineno;
|
|
{
|
|
if( str==0 ) return;
|
|
while( *str ){
|
|
if( *str=='\n' ) (*lineno)++;
|
|
putc(*str,out);
|
|
str++;
|
|
}
|
|
if( str[-1]!='\n' ){
|
|
putc('\n',out);
|
|
(*lineno)++;
|
|
}
|
|
if (!lemp->nolinenosflag) {
|
|
(*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** The following routine emits code for the destructor for the
|
|
** symbol sp
|
|
*/
|
|
void emit_destructor_code(out,sp,lemp,lineno)
|
|
FILE *out;
|
|
struct symbol *sp;
|
|
struct lemon *lemp;
|
|
int *lineno;
|
|
{
|
|
char *cp = 0;
|
|
|
|
if( sp->type==TERMINAL ){
|
|
cp = lemp->tokendest;
|
|
if( cp==0 ) return;
|
|
fprintf(out,"{\n"); (*lineno)++;
|
|
}else if( sp->destructor ){
|
|
cp = sp->destructor;
|
|
fprintf(out,"{\n"); (*lineno)++;
|
|
if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,sp->destLineno,lemp->filename); }
|
|
}else if( lemp->vardest ){
|
|
cp = lemp->vardest;
|
|
if( cp==0 ) return;
|
|
fprintf(out,"{\n"); (*lineno)++;
|
|
}else{
|
|
assert( 0 ); /* Cannot happen */
|
|
}
|
|
for(; *cp; cp++){
|
|
if( *cp=='$' && cp[1]=='$' ){
|
|
fprintf(out,"(yypminor->yy%d)",sp->dtnum);
|
|
cp++;
|
|
continue;
|
|
}
|
|
if( *cp=='\n' ) (*lineno)++;
|
|
fputc(*cp,out);
|
|
}
|
|
fprintf(out,"\n"); (*lineno)++;
|
|
if (!lemp->nolinenosflag) {
|
|
(*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
|
|
}
|
|
fprintf(out,"}\n"); (*lineno)++;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** Return TRUE (non-zero) if the given symbol has a destructor.
|
|
*/
|
|
int has_destructor(sp, lemp)
|
|
struct symbol *sp;
|
|
struct lemon *lemp;
|
|
{
|
|
int ret;
|
|
if( sp->type==TERMINAL ){
|
|
ret = lemp->tokendest!=0;
|
|
}else{
|
|
ret = lemp->vardest!=0 || sp->destructor!=0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
** Append text to a dynamically allocated string. If zText is 0 then
|
|
** reset the string to be empty again. Always return the complete text
|
|
** of the string (which is overwritten with each call).
|
|
**
|
|
** n bytes of zText are stored. If n==0 then all of zText up to the first
|
|
** \000 terminator is stored. zText can contain up to two instances of
|
|
** %d. The values of p1 and p2 are written into the first and second
|
|
** %d.
|
|
**
|
|
** If n==-1, then the previous character is overwritten.
|
|
*/
|
|
PRIVATE char *append_str(char *zText, int n, int p1, int p2, int bNoSubst){
|
|
static char *z = 0;
|
|
static int alloced = 0;
|
|
static int used = 0;
|
|
int c;
|
|
char zInt[40];
|
|
|
|
if( zText==0 ){
|
|
used = 0;
|
|
return z;
|
|
}
|
|
if( n<=0 ){
|
|
if( n<0 ){
|
|
used += n;
|
|
assert( used>=0 );
|
|
}
|
|
n = lemonStrlen(zText);
|
|
}
|
|
if( n+sizeof(zInt)*2+used >= (size_t)alloced ){
|
|
alloced = n + sizeof(zInt)*2 + used + 200;
|
|
z = realloc(z, alloced);
|
|
}
|
|
if( z==0 ) return "";
|
|
while( n-- > 0 ){
|
|
c = *(zText++);
|
|
if( !bNoSubst && c=='%' && n>0 && zText[0]=='d' ){
|
|
sprintf(zInt, "%d", p1);
|
|
p1 = p2;
|
|
strcpy(&z[used], zInt);
|
|
used += lemonStrlen(&z[used]);
|
|
zText++;
|
|
n--;
|
|
}else{
|
|
z[used++] = c;
|
|
}
|
|
}
|
|
z[used] = 0;
|
|
return z;
|
|
}
|
|
|
|
/*
|
|
** zCode is a string that is the action associated with a rule. Expand
|
|
** the symbols in this string so that the refer to elements of the parser
|
|
** stack.
|
|
*/
|
|
PRIVATE void translate_code(struct lemon *lemp, struct rule *rp){
|
|
char *cp, *xp;
|
|
int i;
|
|
char lhsused = 0; /* True if the LHS element has been used */
|
|
char used[MAXRHS]; /* True for each RHS element which is used */
|
|
|
|
for(i=0; i<rp->nrhs; i++) used[i] = 0;
|
|
lhsused = 0;
|
|
|
|
if( rp->code==0 ){
|
|
rp->code = "\n";
|
|
rp->line = rp->ruleline;
|
|
}
|
|
|
|
append_str(0,0,0,0,0);
|
|
for(cp=rp->code; *cp; cp++){
|
|
if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){
|
|
char saved;
|
|
for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++);
|
|
saved = *xp;
|
|
*xp = 0;
|
|
if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
|
|
append_str("yygotominor.yy%d",0,rp->lhs->dtnum,0,0);
|
|
cp = xp;
|
|
lhsused = 1;
|
|
}else{
|
|
for(i=0; i<rp->nrhs; i++){
|
|
if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
|
|
if( cp!=rp->code && cp[-1]=='@' ){
|
|
/* If the argument is of the form @X then substituted
|
|
** the token number of X, not the value of X */
|
|
append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0,0);
|
|
}else{
|
|
struct symbol *sp = rp->rhs[i];
|
|
int dtnum;
|
|
if( sp->type==MULTITERMINAL ){
|
|
dtnum = sp->subsym[0]->dtnum;
|
|
}else{
|
|
dtnum = sp->dtnum;
|
|
}
|
|
append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum,0);
|
|
}
|
|
cp = xp;
|
|
used[i] = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
*xp = saved;
|
|
}
|
|
append_str(cp, 1, 0, 0, 1);
|
|
} /* End loop */
|
|
|
|
/* Check to make sure the LHS has been used */
|
|
if( rp->lhsalias && !lhsused ){
|
|
ErrorMsg(lemp->filename,rp->ruleline,
|
|
"Label \"%s\" for \"%s(%s)\" is never used.",
|
|
rp->lhsalias,rp->lhs->name,rp->lhsalias);
|
|
lemp->errorcnt++;
|
|
}
|
|
|
|
/* Generate destructor code for RHS symbols which are not used in the
|
|
** reduce code */
|
|
for(i=0; i<rp->nrhs; i++){
|
|
if( rp->rhsalias[i] && !used[i] ){
|
|
ErrorMsg(lemp->filename,rp->ruleline,
|
|
"Label %s for \"%s(%s)\" is never used.",
|
|
rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
|
|
lemp->errorcnt++;
|
|
}else if( rp->rhsalias[i]==0 ){
|
|
if( has_destructor(rp->rhs[i],lemp) ){
|
|
append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
|
|
rp->rhs[i]->index,i-rp->nrhs+1,0);
|
|
}else{
|
|
/* No destructor defined for this term */
|
|
}
|
|
}
|
|
}
|
|
if( rp->code ){
|
|
cp = append_str(0,0,0,0,0);
|
|
rp->code = Strsafe(cp?cp:"");
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate code which executes when the rule "rp" is reduced. Write
|
|
** the code to "out". Make sure lineno stays up-to-date.
|
|
*/
|
|
PRIVATE void emit_code(out,rp,lemp,lineno)
|
|
FILE *out;
|
|
struct rule *rp;
|
|
struct lemon *lemp;
|
|
int *lineno;
|
|
{
|
|
char *cp;
|
|
|
|
/* Generate code to do the reduce action */
|
|
if( rp->code ){
|
|
if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,rp->line,lemp->filename); }
|
|
fprintf(out,"{%s",rp->code);
|
|
for(cp=rp->code; *cp; cp++){
|
|
if( *cp=='\n' ) (*lineno)++;
|
|
} /* End loop */
|
|
fprintf(out,"}\n"); (*lineno)++;
|
|
if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); }
|
|
} /* End if( rp->code ) */
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** Print the definition of the union used for the parser's data stack.
|
|
** This union contains fields for every possible data type for tokens
|
|
** and nonterminals. In the process of computing and printing this
|
|
** union, also set the ".dtnum" field of every terminal and nonterminal
|
|
** symbol.
|
|
*/
|
|
void print_stack_union(out,lemp,plineno,mhflag)
|
|
FILE *out; /* The output stream */
|
|
struct lemon *lemp; /* The main info structure for this parser */
|
|
int *plineno; /* Pointer to the line number */
|
|
int mhflag; /* True if generating makeheaders output */
|
|
{
|
|
int lineno = *plineno; /* The line number of the output */
|
|
char **types; /* A hash table of datatypes */
|
|
int arraysize; /* Size of the "types" array */
|
|
int maxdtlength; /* Maximum length of any ".datatype" field. */
|
|
char *stddt; /* Standardized name for a datatype */
|
|
int i,j; /* Loop counters */
|
|
int hash; /* For hashing the name of a type */
|
|
char *name; /* Name of the parser */
|
|
|
|
/* Allocate and initialize types[] and allocate stddt[] */
|
|
arraysize = lemp->nsymbol * 2;
|
|
types = (char**)calloc( arraysize, sizeof(char*) );
|
|
if( types==0 ){
|
|
fprintf(stderr,"Out of memory.\n");
|
|
exit(1);
|
|
}
|
|
maxdtlength = 0;
|
|
if( lemp->vartype ){
|
|
maxdtlength = lemonStrlen(lemp->vartype);
|
|
}
|
|
for(i=0; i<lemp->nsymbol; i++){
|
|
int len;
|
|
struct symbol *sp = lemp->symbols[i];
|
|
if( sp->datatype==0 ) continue;
|
|
len = lemonStrlen(sp->datatype);
|
|
if( len>maxdtlength ) maxdtlength = len;
|
|
}
|
|
stddt = (char*)malloc( maxdtlength*2 + 1 );
|
|
if( types==0 || stddt==0 ){
|
|
fprintf(stderr,"Out of memory.\n");
|
|
exit(1);
|
|
}
|
|
|
|
/* Build a hash table of datatypes. The ".dtnum" field of each symbol
|
|
** is filled in with the hash index plus 1. A ".dtnum" value of 0 is
|
|
** used for terminal symbols. If there is no %default_type defined then
|
|
** 0 is also used as the .dtnum value for nonterminals which do not specify
|
|
** a datatype using the %type directive.
|
|
*/
|
|
for(i=0; i<lemp->nsymbol; i++){
|
|
struct symbol *sp = lemp->symbols[i];
|
|
char *cp;
|
|
if( sp==lemp->errsym ){
|
|
sp->dtnum = arraysize+1;
|
|
continue;
|
|
}
|
|
if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
|
|
sp->dtnum = 0;
|
|
continue;
|
|
}
|
|
cp = sp->datatype;
|
|
if( cp==0 ) cp = lemp->vartype;
|
|
j = 0;
|
|
while( isspace(*cp) ) cp++;
|
|
while( *cp ) stddt[j++] = *cp++;
|
|
while( j>0 && isspace(stddt[j-1]) ) j--;
|
|
stddt[j] = 0;
|
|
if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){
|
|
sp->dtnum = 0;
|
|
continue;
|
|
}
|
|
hash = 0;
|
|
for(j=0; stddt[j]; j++){
|
|
hash = hash*53 + stddt[j];
|
|
}
|
|
hash = (hash & 0x7fffffff)%arraysize;
|
|
while( types[hash] ){
|
|
if( strcmp(types[hash],stddt)==0 ){
|
|
sp->dtnum = hash + 1;
|
|
break;
|
|
}
|
|
hash++;
|
|
if( hash>=arraysize ) hash = 0;
|
|
}
|
|
if( types[hash]==0 ){
|
|
sp->dtnum = hash + 1;
|
|
types[hash] = (char*)malloc( lemonStrlen(stddt)+1 );
|
|
if( types[hash]==0 ){
|
|
fprintf(stderr,"Out of memory.\n");
|
|
exit(1);
|
|
}
|
|
strcpy(types[hash],stddt);
|
|
}
|
|
}
|
|
|
|
/* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
|
|
name = lemp->name ? lemp->name : "Parse";
|
|
lineno = *plineno;
|
|
if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
|
|
fprintf(out,"#define %sTOKENTYPE %s\n",name,
|
|
lemp->tokentype?lemp->tokentype:"void*"); lineno++;
|
|
if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
|
|
fprintf(out,"typedef union {\n"); lineno++;
|
|
fprintf(out," int yyinit;\n"); lineno++;
|
|
fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++;
|
|
for(i=0; i<arraysize; i++){
|
|
if( types[i]==0 ) continue;
|
|
fprintf(out," %s yy%d;\n",types[i],i+1); lineno++;
|
|
free(types[i]);
|
|
}
|
|
if( lemp->errsym->useCnt ){
|
|
fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++;
|
|
}
|
|
free(stddt);
|
|
free(types);
|
|
fprintf(out,"} YYMINORTYPE;\n"); lineno++;
|
|
*plineno = lineno;
|
|
}
|
|
|
|
/*
|
|
** Return the name of a C datatype able to represent values between
|
|
** lwr and upr, inclusive.
|
|
*/
|
|
static const char *minimum_size_type(int lwr, int upr){
|
|
if( lwr>=0 ){
|
|
if( upr<=255 ){
|
|
return "unsigned char";
|
|
}else if( upr<65535 ){
|
|
return "unsigned short int";
|
|
}else{
|
|
return "unsigned int";
|
|
}
|
|
}else if( lwr>=-127 && upr<=127 ){
|
|
return "signed char";
|
|
}else if( lwr>=-32767 && upr<32767 ){
|
|
return "short";
|
|
}else{
|
|
return "int";
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Each state contains a set of token transaction and a set of
|
|
** nonterminal transactions. Each of these sets makes an instance
|
|
** of the following structure. An array of these structures is used
|
|
** to order the creation of entries in the yy_action[] table.
|
|
*/
|
|
struct axset {
|
|
struct state *stp; /* A pointer to a state */
|
|
int isTkn; /* True to use tokens. False for non-terminals */
|
|
int nAction; /* Number of actions */
|
|
};
|
|
|
|
/*
|
|
** Compare to axset structures for sorting purposes
|
|
*/
|
|
static int axset_compare(const void *a, const void *b){
|
|
struct axset *p1 = (struct axset*)a;
|
|
struct axset *p2 = (struct axset*)b;
|
|
return p2->nAction - p1->nAction;
|
|
}
|
|
|
|
/*
|
|
** Write text on "out" that describes the rule "rp".
|
|
*/
|
|
static void writeRuleText(FILE *out, struct rule *rp){
|
|
int j;
|
|
fprintf(out,"%s ::=", rp->lhs->name);
|
|
for(j=0; j<rp->nrhs; j++){
|
|
struct symbol *sp = rp->rhs[j];
|
|
fprintf(out," %s", sp->name);
|
|
if( sp->type==MULTITERMINAL ){
|
|
int k;
|
|
for(k=1; k<sp->nsubsym; k++){
|
|
fprintf(out,"|%s",sp->subsym[k]->name);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Generate C source code for the parser */
|
|
void ReportTable(lemp, mhflag)
|
|
struct lemon *lemp;
|
|
int mhflag; /* Output in makeheaders format if true */
|
|
{
|
|
FILE *out, *in;
|
|
char line[LINESIZE];
|
|
int lineno;
|
|
struct state *stp;
|
|
struct action *ap;
|
|
struct rule *rp;
|
|
struct acttab *pActtab;
|
|
int i, j, n;
|
|
char *name;
|
|
int mnTknOfst, mxTknOfst;
|
|
int mnNtOfst, mxNtOfst;
|
|
struct axset *ax;
|
|
|
|
in = tplt_open(lemp);
|
|
if( in==0 ) return;
|
|
out = file_open(lemp,".c","wb");
|
|
if( out==0 ){
|
|
fclose(in);
|
|
return;
|
|
}
|
|
lineno = 1;
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate the include code, if any */
|
|
tplt_print(out,lemp,lemp->include,&lineno);
|
|
if( mhflag ){
|
|
char *name = file_makename(lemp, ".h");
|
|
fprintf(out,"#include \"%s\"\n", name); lineno++;
|
|
free(name);
|
|
}
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate #defines for all tokens */
|
|
if( mhflag ){
|
|
char *prefix;
|
|
fprintf(out,"#if INTERFACE\n"); lineno++;
|
|
if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
|
|
else prefix = "";
|
|
for(i=1; i<lemp->nterminal; i++){
|
|
fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
|
|
lineno++;
|
|
}
|
|
fprintf(out,"#endif\n"); lineno++;
|
|
}
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate the defines */
|
|
fprintf(out,"#define YYCODETYPE %s\n",
|
|
minimum_size_type(0, lemp->nsymbol+1)); lineno++;
|
|
fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1); lineno++;
|
|
fprintf(out,"#define YYACTIONTYPE %s\n",
|
|
minimum_size_type(0, lemp->nstate+lemp->nrule+5)); lineno++;
|
|
if( lemp->wildcard ){
|
|
fprintf(out,"#define YYWILDCARD %d\n",
|
|
lemp->wildcard->index); lineno++;
|
|
}
|
|
print_stack_union(out,lemp,&lineno,mhflag);
|
|
fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++;
|
|
if( lemp->stacksize ){
|
|
fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++;
|
|
}else{
|
|
fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++;
|
|
}
|
|
fprintf(out, "#endif\n"); lineno++;
|
|
if( mhflag ){
|
|
fprintf(out,"#if INTERFACE\n"); lineno++;
|
|
}
|
|
name = lemp->name ? lemp->name : "Parse";
|
|
if( lemp->arg && lemp->arg[0] ){
|
|
size_t i;
|
|
i = lemonStrlen(lemp->arg);
|
|
while( i>=1 && isspace(lemp->arg[i-1]) ) i--;
|
|
while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
|
|
fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++;
|
|
fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++;
|
|
fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n",
|
|
name,lemp->arg,&lemp->arg[i]); lineno++;
|
|
fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n",
|
|
name,&lemp->arg[i],&lemp->arg[i]); lineno++;
|
|
}else{
|
|
fprintf(out,"#define %sARG_SDECL\n",name); lineno++;
|
|
fprintf(out,"#define %sARG_PDECL\n",name); lineno++;
|
|
fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
|
|
fprintf(out,"#define %sARG_STORE\n",name); lineno++;
|
|
}
|
|
if( mhflag ){
|
|
fprintf(out,"#endif\n"); lineno++;
|
|
}
|
|
fprintf(out,"#define YYNSTATE %d\n",lemp->nstate); lineno++;
|
|
fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++;
|
|
if( lemp->errsym->useCnt ){
|
|
fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++;
|
|
fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++;
|
|
}
|
|
if( lemp->has_fallback ){
|
|
fprintf(out,"#define YYFALLBACK 1\n"); lineno++;
|
|
}
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate the action table and its associates:
|
|
**
|
|
** yy_action[] A single table containing all actions.
|
|
** yy_lookahead[] A table containing the lookahead for each entry in
|
|
** yy_action. Used to detect hash collisions.
|
|
** yy_shift_ofst[] For each state, the offset into yy_action for
|
|
** shifting terminals.
|
|
** yy_reduce_ofst[] For each state, the offset into yy_action for
|
|
** shifting non-terminals after a reduce.
|
|
** yy_default[] Default action for each state.
|
|
*/
|
|
|
|
/* Compute the actions on all states and count them up */
|
|
ax = calloc(lemp->nstate*2 , sizeof(ax[0]));
|
|
if( ax==0 ){
|
|
fprintf(stderr,"malloc failed\n");
|
|
exit(1);
|
|
}
|
|
for(i=0; i<lemp->nstate; i++){
|
|
stp = lemp->sorted[i];
|
|
ax[i*2].stp = stp;
|
|
ax[i*2].isTkn = 1;
|
|
ax[i*2].nAction = stp->nTknAct;
|
|
ax[i*2+1].stp = stp;
|
|
ax[i*2+1].isTkn = 0;
|
|
ax[i*2+1].nAction = stp->nNtAct;
|
|
}
|
|
mxTknOfst = mnTknOfst = 0;
|
|
mxNtOfst = mnNtOfst = 0;
|
|
|
|
/* Compute the action table. In order to try to keep the size of the
|
|
** action table to a minimum, the heuristic of placing the largest action
|
|
** sets first is used.
|
|
*/
|
|
qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare);
|
|
pActtab = acttab_alloc();
|
|
for(i=0; i<lemp->nstate*2 && ax[i].nAction>0; i++){
|
|
stp = ax[i].stp;
|
|
if( ax[i].isTkn ){
|
|
for(ap=stp->ap; ap; ap=ap->next){
|
|
int action;
|
|
if( ap->sp->index>=lemp->nterminal ) continue;
|
|
action = compute_action(lemp, ap);
|
|
if( action<0 ) continue;
|
|
acttab_action(pActtab, ap->sp->index, action);
|
|
}
|
|
stp->iTknOfst = acttab_insert(pActtab);
|
|
if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
|
|
if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
|
|
}else{
|
|
for(ap=stp->ap; ap; ap=ap->next){
|
|
int action;
|
|
if( ap->sp->index<lemp->nterminal ) continue;
|
|
if( ap->sp->index==lemp->nsymbol ) continue;
|
|
action = compute_action(lemp, ap);
|
|
if( action<0 ) continue;
|
|
acttab_action(pActtab, ap->sp->index, action);
|
|
}
|
|
stp->iNtOfst = acttab_insert(pActtab);
|
|
if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
|
|
if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
|
|
}
|
|
}
|
|
free(ax);
|
|
|
|
/* Output the yy_action table */
|
|
fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++;
|
|
n = acttab_size(pActtab);
|
|
for(i=j=0; i<n; i++){
|
|
int action = acttab_yyaction(pActtab, i);
|
|
if( action<0 ) action = lemp->nstate + lemp->nrule + 2;
|
|
if( j==0 ) fprintf(out," /* %5d */ ", i);
|
|
fprintf(out, " %4d,", action);
|
|
if( j==9 || i==n-1 ){
|
|
fprintf(out, "\n"); lineno++;
|
|
j = 0;
|
|
}else{
|
|
j++;
|
|
}
|
|
}
|
|
fprintf(out, "};\n"); lineno++;
|
|
|
|
/* Output the yy_lookahead table */
|
|
fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++;
|
|
for(i=j=0; i<n; i++){
|
|
int la = acttab_yylookahead(pActtab, i);
|
|
if( la<0 ) la = lemp->nsymbol;
|
|
if( j==0 ) fprintf(out," /* %5d */ ", i);
|
|
fprintf(out, " %4d,", la);
|
|
if( j==9 || i==n-1 ){
|
|
fprintf(out, "\n"); lineno++;
|
|
j = 0;
|
|
}else{
|
|
j++;
|
|
}
|
|
}
|
|
fprintf(out, "};\n"); lineno++;
|
|
|
|
/* Output the yy_shift_ofst[] table */
|
|
fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++;
|
|
n = lemp->nstate;
|
|
while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
|
|
fprintf(out, "#define YY_SHIFT_MAX %d\n", n-1); lineno++;
|
|
fprintf(out, "static const %s yy_shift_ofst[] = {\n",
|
|
minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++;
|
|
for(i=j=0; i<n; i++){
|
|
int ofst;
|
|
stp = lemp->sorted[i];
|
|
ofst = stp->iTknOfst;
|
|
if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1;
|
|
if( j==0 ) fprintf(out," /* %5d */ ", i);
|
|
fprintf(out, " %4d,", ofst);
|
|
if( j==9 || i==n-1 ){
|
|
fprintf(out, "\n"); lineno++;
|
|
j = 0;
|
|
}else{
|
|
j++;
|
|
}
|
|
}
|
|
fprintf(out, "};\n"); lineno++;
|
|
|
|
/* Output the yy_reduce_ofst[] table */
|
|
fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
|
|
n = lemp->nstate;
|
|
while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
|
|
fprintf(out, "#define YY_REDUCE_MAX %d\n", n-1); lineno++;
|
|
fprintf(out, "static const %s yy_reduce_ofst[] = {\n",
|
|
minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++;
|
|
for(i=j=0; i<n; i++){
|
|
int ofst;
|
|
stp = lemp->sorted[i];
|
|
ofst = stp->iNtOfst;
|
|
if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
|
|
if( j==0 ) fprintf(out," /* %5d */ ", i);
|
|
fprintf(out, " %4d,", ofst);
|
|
if( j==9 || i==n-1 ){
|
|
fprintf(out, "\n"); lineno++;
|
|
j = 0;
|
|
}else{
|
|
j++;
|
|
}
|
|
}
|
|
fprintf(out, "};\n"); lineno++;
|
|
|
|
/* Output the default action table */
|
|
fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++;
|
|
n = lemp->nstate;
|
|
for(i=j=0; i<n; i++){
|
|
stp = lemp->sorted[i];
|
|
if( j==0 ) fprintf(out," /* %5d */ ", i);
|
|
fprintf(out, " %4d,", stp->iDflt);
|
|
if( j==9 || i==n-1 ){
|
|
fprintf(out, "\n"); lineno++;
|
|
j = 0;
|
|
}else{
|
|
j++;
|
|
}
|
|
}
|
|
fprintf(out, "};\n"); lineno++;
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate the table of fallback tokens.
|
|
*/
|
|
if( lemp->has_fallback ){
|
|
int mx = lemp->nterminal - 1;
|
|
while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; }
|
|
for(i=0; i<=mx; i++){
|
|
struct symbol *p = lemp->symbols[i];
|
|
if( p->fallback==0 ){
|
|
fprintf(out, " 0, /* %10s => nothing */\n", p->name);
|
|
}else{
|
|
fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index,
|
|
p->name, p->fallback->name);
|
|
}
|
|
lineno++;
|
|
}
|
|
}
|
|
tplt_xfer(lemp->name, in, out, &lineno);
|
|
|
|
/* Generate a table containing the symbolic name of every symbol
|
|
*/
|
|
for(i=0; i<lemp->nsymbol; i++){
|
|
sprintf(line,"\"%s\",",lemp->symbols[i]->name);
|
|
fprintf(out," %-15s",line);
|
|
if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; }
|
|
}
|
|
if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; }
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate a table containing a text string that describes every
|
|
** rule in the rule set of the grammar. This information is used
|
|
** when tracing REDUCE actions.
|
|
*/
|
|
for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
|
|
assert( rp->index==i );
|
|
fprintf(out," /* %3d */ \"", i);
|
|
writeRuleText(out, rp);
|
|
fprintf(out,"\",\n"); lineno++;
|
|
}
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate code which executes every time a symbol is popped from
|
|
** the stack while processing errors or while destroying the parser.
|
|
** (In other words, generate the %destructor actions)
|
|
*/
|
|
if( lemp->tokendest ){
|
|
int once = 1;
|
|
for(i=0; i<lemp->nsymbol; i++){
|
|
struct symbol *sp = lemp->symbols[i];
|
|
if( sp==0 || sp->type!=TERMINAL ) continue;
|
|
if( once ){
|
|
fprintf(out, " /* TERMINAL Destructor */\n"); lineno++;
|
|
once = 0;
|
|
}
|
|
fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
|
|
}
|
|
for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
|
|
if( i<lemp->nsymbol ){
|
|
emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
|
|
fprintf(out," break;\n"); lineno++;
|
|
}
|
|
}
|
|
if( lemp->vardest ){
|
|
struct symbol *dflt_sp = 0;
|
|
int once = 1;
|
|
for(i=0; i<lemp->nsymbol; i++){
|
|
struct symbol *sp = lemp->symbols[i];
|
|
if( sp==0 || sp->type==TERMINAL ||
|
|
sp->index<=0 || sp->destructor!=0 ) continue;
|
|
if( once ){
|
|
fprintf(out, " /* Default NON-TERMINAL Destructor */\n"); lineno++;
|
|
once = 0;
|
|
}
|
|
fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
|
|
dflt_sp = sp;
|
|
}
|
|
if( dflt_sp!=0 ){
|
|
emit_destructor_code(out,dflt_sp,lemp,&lineno);
|
|
}
|
|
fprintf(out," break;\n"); lineno++;
|
|
}
|
|
for(i=0; i<lemp->nsymbol; i++){
|
|
struct symbol *sp = lemp->symbols[i];
|
|
if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
|
|
fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
|
|
|
|
/* Combine duplicate destructors into a single case */
|
|
for(j=i+1; j<lemp->nsymbol; j++){
|
|
struct symbol *sp2 = lemp->symbols[j];
|
|
if( sp2 && sp2->type!=TERMINAL && sp2->destructor
|
|
&& sp2->dtnum==sp->dtnum
|
|
&& strcmp(sp->destructor,sp2->destructor)==0 ){
|
|
fprintf(out," case %d: /* %s */\n",
|
|
sp2->index, sp2->name); lineno++;
|
|
sp2->destructor = 0;
|
|
}
|
|
}
|
|
|
|
emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
|
|
fprintf(out," break;\n"); lineno++;
|
|
}
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate code which executes whenever the parser stack overflows */
|
|
tplt_print(out,lemp,lemp->overflow,&lineno);
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate the table of rule information
|
|
**
|
|
** Note: This code depends on the fact that rules are number
|
|
** sequentually beginning with 0.
|
|
*/
|
|
for(rp=lemp->rule; rp; rp=rp->next){
|
|
fprintf(out," { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++;
|
|
}
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate code which executes during each REDUCE action */
|
|
for(rp=lemp->rule; rp; rp=rp->next){
|
|
translate_code(lemp, rp);
|
|
}
|
|
/* First output rules other than the default: rule */
|
|
for(rp=lemp->rule; rp; rp=rp->next){
|
|
struct rule *rp2; /* Other rules with the same action */
|
|
if( rp->code==0 ) continue;
|
|
if( rp->code[0]=='\n' && rp->code[1]==0 ) continue; /* Will be default: */
|
|
fprintf(out," case %d: /* ",rp->index);
|
|
writeRuleText(out, rp);
|
|
fprintf(out," */\n"); lineno++;
|
|
for(rp2=rp->next; rp2; rp2=rp2->next){
|
|
if( rp2->code==rp->code ){
|
|
fprintf(out," case %d: /*",rp2->index);
|
|
writeRuleText(out, rp2);
|
|
fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp2->index); lineno++;
|
|
rp2->code = 0;
|
|
}
|
|
}
|
|
emit_code(out,rp,lemp,&lineno);
|
|
fprintf(out," break;\n"); lineno++;
|
|
rp->code = 0;
|
|
}
|
|
/* Finally, output the default: rule. We choose as the default: all
|
|
** empty actions. */
|
|
fprintf(out," default:\n"); lineno++;
|
|
for(rp=lemp->rule; rp; rp=rp->next){
|
|
if( rp->code==0 ) continue;
|
|
assert( rp->code[0]=='\n' && rp->code[1]==0 );
|
|
fprintf(out," /* (%d) ", rp->index);
|
|
writeRuleText(out, rp);
|
|
fprintf(out," */ yytestcase(yyruleno==%d);\n", rp->index); lineno++;
|
|
}
|
|
fprintf(out," break;\n"); lineno++;
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate code which executes if a parse fails */
|
|
tplt_print(out,lemp,lemp->failure,&lineno);
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate code which executes when a syntax error occurs */
|
|
tplt_print(out,lemp,lemp->error,&lineno);
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Generate code which executes when the parser accepts its input */
|
|
tplt_print(out,lemp,lemp->accept,&lineno);
|
|
tplt_xfer(lemp->name,in,out,&lineno);
|
|
|
|
/* Append any addition code the user desires */
|
|
tplt_print(out,lemp,lemp->extracode,&lineno);
|
|
|
|
fclose(in);
|
|
fclose(out);
|
|
return;
|
|
}
|
|
|
|
/* Generate a header file for the parser */
|
|
void ReportHeader(lemp)
|
|
struct lemon *lemp;
|
|
{
|
|
FILE *out, *in;
|
|
char *prefix;
|
|
char line[LINESIZE];
|
|
char pattern[LINESIZE];
|
|
int i;
|
|
|
|
if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
|
|
else prefix = "";
|
|
in = file_open(lemp,".h","rb");
|
|
if( in ){
|
|
int nextChar;
|
|
for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
|
|
sprintf(pattern,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
|
|
if( strcmp(line,pattern) ) break;
|
|
}
|
|
nextChar = fgetc(in);
|
|
fclose(in);
|
|
if( i==lemp->nterminal && nextChar==EOF ){
|
|
/* No change in the file. Don't rewrite it. */
|
|
/* (not the best idea if you use make tools that check the date! */
|
|
/*return;*/
|
|
}
|
|
}
|
|
out = file_open(lemp,".h","wb");
|
|
if( out ){
|
|
for(i=1; i<lemp->nterminal; i++){
|
|
fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
|
|
}
|
|
fclose(out);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Reduce the size of the action tables, if possible, by making use
|
|
** of defaults.
|
|
**
|
|
** In this version, we take the most frequent REDUCE action and make
|
|
** it the default. Except, there is no default if the wildcard token
|
|
** is a possible look-ahead.
|
|
*/
|
|
void CompressTables(lemp)
|
|
struct lemon *lemp;
|
|
{
|
|
struct state *stp;
|
|
struct action *ap, *ap2;
|
|
struct rule *rp, *rp2, *rbest;
|
|
int nbest, n;
|
|
int i;
|
|
int usesWildcard;
|
|
|
|
for(i=0; i<lemp->nstate; i++){
|
|
stp = lemp->sorted[i];
|
|
nbest = 0;
|
|
rbest = 0;
|
|
usesWildcard = 0;
|
|
|
|
for(ap=stp->ap; ap; ap=ap->next){
|
|
if( ap->type==SHIFT && ap->sp==lemp->wildcard ){
|
|
usesWildcard = 1;
|
|
}
|
|
if( ap->type!=REDUCE ) continue;
|
|
rp = ap->x.rp;
|
|
if( rp->lhsStart ) continue;
|
|
if( rp==rbest ) continue;
|
|
n = 1;
|
|
for(ap2=ap->next; ap2; ap2=ap2->next){
|
|
if( ap2->type!=REDUCE ) continue;
|
|
rp2 = ap2->x.rp;
|
|
if( rp2==rbest ) continue;
|
|
if( rp2==rp ) n++;
|
|
}
|
|
if( n>nbest ){
|
|
nbest = n;
|
|
rbest = rp;
|
|
}
|
|
}
|
|
|
|
/* Do not make a default if the number of rules to default
|
|
** is not at least 1 or if the wildcard token is a possbile
|
|
** lookahead.
|
|
*/
|
|
if( nbest<1 || usesWildcard ) continue;
|
|
|
|
|
|
/* Combine matching REDUCE actions into a single default */
|
|
for(ap=stp->ap; ap; ap=ap->next){
|
|
if( ap->type==REDUCE && ap->x.rp==rbest ) break;
|
|
}
|
|
assert( ap );
|
|
ap->sp = Symbol_new("{default}");
|
|
for(ap=ap->next; ap; ap=ap->next){
|
|
if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
|
|
}
|
|
stp->ap = Action_sort(stp->ap);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Compare two states for sorting purposes. The smaller state is the
|
|
** one with the most non-terminal actions. If they have the same number
|
|
** of non-terminal actions, then the smaller is the one with the most
|
|
** token actions.
|
|
*/
|
|
static int stateResortCompare(const void *a, const void *b){
|
|
const struct state *pA = *(const struct state**)a;
|
|
const struct state *pB = *(const struct state**)b;
|
|
int n;
|
|
|
|
n = pB->nNtAct - pA->nNtAct;
|
|
if( n==0 ){
|
|
n = pB->nTknAct - pA->nTknAct;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
|
|
/*
|
|
** Renumber and resort states so that states with fewer choices
|
|
** occur at the end. Except, keep state 0 as the first state.
|
|
*/
|
|
void ResortStates(lemp)
|
|
struct lemon *lemp;
|
|
{
|
|
int i;
|
|
struct state *stp;
|
|
struct action *ap;
|
|
|
|
for(i=0; i<lemp->nstate; i++){
|
|
stp = lemp->sorted[i];
|
|
stp->nTknAct = stp->nNtAct = 0;
|
|
stp->iDflt = lemp->nstate + lemp->nrule;
|
|
stp->iTknOfst = NO_OFFSET;
|
|
stp->iNtOfst = NO_OFFSET;
|
|
for(ap=stp->ap; ap; ap=ap->next){
|
|
if( compute_action(lemp,ap)>=0 ){
|
|
if( ap->sp->index<lemp->nterminal ){
|
|
stp->nTknAct++;
|
|
}else if( ap->sp->index<lemp->nsymbol ){
|
|
stp->nNtAct++;
|
|
}else{
|
|
stp->iDflt = compute_action(lemp, ap);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]),
|
|
stateResortCompare);
|
|
for(i=0; i<lemp->nstate; i++){
|
|
lemp->sorted[i]->statenum = i;
|
|
}
|
|
}
|
|
|
|
|
|
/***************** From the file "set.c" ************************************/
|
|
/*
|
|
** Set manipulation routines for the LEMON parser generator.
|
|
*/
|
|
|
|
static int size = 0;
|
|
|
|
/* Set the set size */
|
|
void SetSize(n)
|
|
int n;
|
|
{
|
|
size = n+1;
|
|
}
|
|
|
|
/* Allocate a new set */
|
|
char *SetNew(){
|
|
char *s;
|
|
s = (char*)calloc( size, 1);
|
|
if( s==0 ){
|
|
extern void memory_error();
|
|
memory_error();
|
|
}
|
|
return s;
|
|
}
|
|
|
|
/* Deallocate a set */
|
|
void SetFree(s)
|
|
char *s;
|
|
{
|
|
free(s);
|
|
}
|
|
|
|
/* Add a new element to the set. Return TRUE if the element was added
|
|
** and FALSE if it was already there. */
|
|
int SetAdd(s,e)
|
|
char *s;
|
|
int e;
|
|
{
|
|
int rv;
|
|
assert( e>=0 && e<size );
|
|
rv = s[e];
|
|
s[e] = 1;
|
|
return !rv;
|
|
}
|
|
|
|
/* Add every element of s2 to s1. Return TRUE if s1 changes. */
|
|
int SetUnion(s1,s2)
|
|
char *s1;
|
|
char *s2;
|
|
{
|
|
int i, progress;
|
|
progress = 0;
|
|
for(i=0; i<size; i++){
|
|
if( s2[i]==0 ) continue;
|
|
if( s1[i]==0 ){
|
|
progress = 1;
|
|
s1[i] = 1;
|
|
}
|
|
}
|
|
return progress;
|
|
}
|
|
/********************** From the file "table.c" ****************************/
|
|
/*
|
|
** All code in this file has been automatically generated
|
|
** from a specification in the file
|
|
** "table.q"
|
|
** by the associative array code building program "aagen".
|
|
** Do not edit this file! Instead, edit the specification
|
|
** file, then rerun aagen.
|
|
*/
|
|
/*
|
|
** Code for processing tables in the LEMON parser generator.
|
|
*/
|
|
|
|
PRIVATE int strhash(x)
|
|
char *x;
|
|
{
|
|
int h = 0;
|
|
while( *x) h = h*13 + *(x++);
|
|
return h;
|
|
}
|
|
|
|
/* Works like strdup, sort of. Save a string in malloced memory, but
|
|
** keep strings in a table so that the same string is not in more
|
|
** than one place.
|
|
*/
|
|
char *Strsafe(y)
|
|
char *y;
|
|
{
|
|
char *z;
|
|
|
|
if( y==0 ) return 0;
|
|
z = Strsafe_find(y);
|
|
if( z==0 && (z=malloc( lemonStrlen(y)+1 ))!=0 ){
|
|
strcpy(z,y);
|
|
Strsafe_insert(z);
|
|
}
|
|
MemoryCheck(z);
|
|
return z;
|
|
}
|
|
|
|
/* There is one instance of the following structure for each
|
|
** associative array of type "x1".
|
|
*/
|
|
struct s_x1 {
|
|
int size; /* The number of available slots. */
|
|
/* Must be a power of 2 greater than or */
|
|
/* equal to 1 */
|
|
int count; /* Number of currently slots filled */
|
|
struct s_x1node *tbl; /* The data stored here */
|
|
struct s_x1node **ht; /* Hash table for lookups */
|
|
};
|
|
|
|
/* There is one instance of this structure for every data element
|
|
** in an associative array of type "x1".
|
|
*/
|
|
typedef struct s_x1node {
|
|
char *data; /* The data */
|
|
struct s_x1node *next; /* Next entry with the same hash */
|
|
struct s_x1node **from; /* Previous link */
|
|
} x1node;
|
|
|
|
/* There is only one instance of the array, which is the following */
|
|
static struct s_x1 *x1a;
|
|
|
|
/* Allocate a new associative array */
|
|
void Strsafe_init(){
|
|
if( x1a ) return;
|
|
x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
|
|
if( x1a ){
|
|
x1a->size = 1024;
|
|
x1a->count = 0;
|
|
x1a->tbl = (x1node*)malloc(
|
|
(sizeof(x1node) + sizeof(x1node*))*1024 );
|
|
if( x1a->tbl==0 ){
|
|
free(x1a);
|
|
x1a = 0;
|
|
}else{
|
|
int i;
|
|
x1a->ht = (x1node**)&(x1a->tbl[1024]);
|
|
for(i=0; i<1024; i++) x1a->ht[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
/* Insert a new record into the array. Return TRUE if successful.
|
|
** Prior data with the same key is NOT overwritten */
|
|
int Strsafe_insert(data)
|
|
char *data;
|
|
{
|
|
x1node *np;
|
|
int h;
|
|
int ph;
|
|
|
|
if( x1a==0 ) return 0;
|
|
ph = strhash(data);
|
|
h = ph & (x1a->size-1);
|
|
np = x1a->ht[h];
|
|
while( np ){
|
|
if( strcmp(np->data,data)==0 ){
|
|
/* An existing entry with the same key is found. */
|
|
/* Fail because overwrite is not allows. */
|
|
return 0;
|
|
}
|
|
np = np->next;
|
|
}
|
|
if( x1a->count>=x1a->size ){
|
|
/* Need to make the hash table bigger */
|
|
int i,size;
|
|
struct s_x1 array;
|
|
array.size = size = x1a->size*2;
|
|
array.count = x1a->count;
|
|
array.tbl = (x1node*)malloc(
|
|
(sizeof(x1node) + sizeof(x1node*))*size );
|
|
if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
|
|
array.ht = (x1node**)&(array.tbl[size]);
|
|
for(i=0; i<size; i++) array.ht[i] = 0;
|
|
for(i=0; i<x1a->count; i++){
|
|
x1node *oldnp, *newnp;
|
|
oldnp = &(x1a->tbl[i]);
|
|
h = strhash(oldnp->data) & (size-1);
|
|
newnp = &(array.tbl[i]);
|
|
if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
|
|
newnp->next = array.ht[h];
|
|
newnp->data = oldnp->data;
|
|
newnp->from = &(array.ht[h]);
|
|
array.ht[h] = newnp;
|
|
}
|
|
free(x1a->tbl);
|
|
*x1a = array;
|
|
}
|
|
/* Insert the new data */
|
|
h = ph & (x1a->size-1);
|
|
np = &(x1a->tbl[x1a->count++]);
|
|
np->data = data;
|
|
if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
|
|
np->next = x1a->ht[h];
|
|
x1a->ht[h] = np;
|
|
np->from = &(x1a->ht[h]);
|
|
return 1;
|
|
}
|
|
|
|
/* Return a pointer to data assigned to the given key. Return NULL
|
|
** if no such key. */
|
|
char *Strsafe_find(key)
|
|
char *key;
|
|
{
|
|
int h;
|
|
x1node *np;
|
|
|
|
if( x1a==0 ) return 0;
|
|
h = strhash(key) & (x1a->size-1);
|
|
np = x1a->ht[h];
|
|
while( np ){
|
|
if( strcmp(np->data,key)==0 ) break;
|
|
np = np->next;
|
|
}
|
|
return np ? np->data : 0;
|
|
}
|
|
|
|
/* Return a pointer to the (terminal or nonterminal) symbol "x".
|
|
** Create a new symbol if this is the first time "x" has been seen.
|
|
*/
|
|
struct symbol *Symbol_new(x)
|
|
char *x;
|
|
{
|
|
struct symbol *sp;
|
|
|
|
sp = Symbol_find(x);
|
|
if( sp==0 ){
|
|
sp = (struct symbol *)calloc(1, sizeof(struct symbol) );
|
|
MemoryCheck(sp);
|
|
sp->name = Strsafe(x);
|
|
sp->type = isupper(*x) ? TERMINAL : NONTERMINAL;
|
|
sp->rule = 0;
|
|
sp->fallback = 0;
|
|
sp->prec = -1;
|
|
sp->assoc = UNK;
|
|
sp->firstset = 0;
|
|
sp->lambda = LEMON_FALSE;
|
|
sp->destructor = 0;
|
|
sp->destLineno = 0;
|
|
sp->datatype = 0;
|
|
sp->useCnt = 0;
|
|
Symbol_insert(sp,sp->name);
|
|
}
|
|
sp->useCnt++;
|
|
return sp;
|
|
}
|
|
|
|
/* Compare two symbols for working purposes
|
|
**
|
|
** Symbols that begin with upper case letters (terminals or tokens)
|
|
** must sort before symbols that begin with lower case letters
|
|
** (non-terminals). Other than that, the order does not matter.
|
|
**
|
|
** We find experimentally that leaving the symbols in their original
|
|
** order (the order they appeared in the grammar file) gives the
|
|
** smallest parser tables in SQLite.
|
|
*/
|
|
int Symbolcmpp(struct symbol **a, struct symbol **b){
|
|
int i1 = (**a).index + 10000000*((**a).name[0]>'Z');
|
|
int i2 = (**b).index + 10000000*((**b).name[0]>'Z');
|
|
return i1-i2;
|
|
}
|
|
|
|
/* There is one instance of the following structure for each
|
|
** associative array of type "x2".
|
|
*/
|
|
struct s_x2 {
|
|
int size; /* The number of available slots. */
|
|
/* Must be a power of 2 greater than or */
|
|
/* equal to 1 */
|
|
int count; /* Number of currently slots filled */
|
|
struct s_x2node *tbl; /* The data stored here */
|
|
struct s_x2node **ht; /* Hash table for lookups */
|
|
};
|
|
|
|
/* There is one instance of this structure for every data element
|
|
** in an associative array of type "x2".
|
|
*/
|
|
typedef struct s_x2node {
|
|
struct symbol *data; /* The data */
|
|
char *key; /* The key */
|
|
struct s_x2node *next; /* Next entry with the same hash */
|
|
struct s_x2node **from; /* Previous link */
|
|
} x2node;
|
|
|
|
/* There is only one instance of the array, which is the following */
|
|
static struct s_x2 *x2a;
|
|
|
|
/* Allocate a new associative array */
|
|
void Symbol_init(){
|
|
if( x2a ) return;
|
|
x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
|
|
if( x2a ){
|
|
x2a->size = 128;
|
|
x2a->count = 0;
|
|
x2a->tbl = (x2node*)malloc(
|
|
(sizeof(x2node) + sizeof(x2node*))*128 );
|
|
if( x2a->tbl==0 ){
|
|
free(x2a);
|
|
x2a = 0;
|
|
}else{
|
|
int i;
|
|
x2a->ht = (x2node**)&(x2a->tbl[128]);
|
|
for(i=0; i<128; i++) x2a->ht[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
/* Insert a new record into the array. Return TRUE if successful.
|
|
** Prior data with the same key is NOT overwritten */
|
|
int Symbol_insert(data,key)
|
|
struct symbol *data;
|
|
char *key;
|
|
{
|
|
x2node *np;
|
|
int h;
|
|
int ph;
|
|
|
|
if( x2a==0 ) return 0;
|
|
ph = strhash(key);
|
|
h = ph & (x2a->size-1);
|
|
np = x2a->ht[h];
|
|
while( np ){
|
|
if( strcmp(np->key,key)==0 ){
|
|
/* An existing entry with the same key is found. */
|
|
/* Fail because overwrite is not allows. */
|
|
return 0;
|
|
}
|
|
np = np->next;
|
|
}
|
|
if( x2a->count>=x2a->size ){
|
|
/* Need to make the hash table bigger */
|
|
int i,size;
|
|
struct s_x2 array;
|
|
array.size = size = x2a->size*2;
|
|
array.count = x2a->count;
|
|
array.tbl = (x2node*)malloc(
|
|
(sizeof(x2node) + sizeof(x2node*))*size );
|
|
if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
|
|
array.ht = (x2node**)&(array.tbl[size]);
|
|
for(i=0; i<size; i++) array.ht[i] = 0;
|
|
for(i=0; i<x2a->count; i++){
|
|
x2node *oldnp, *newnp;
|
|
oldnp = &(x2a->tbl[i]);
|
|
h = strhash(oldnp->key) & (size-1);
|
|
newnp = &(array.tbl[i]);
|
|
if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
|
|
newnp->next = array.ht[h];
|
|
newnp->key = oldnp->key;
|
|
newnp->data = oldnp->data;
|
|
newnp->from = &(array.ht[h]);
|
|
array.ht[h] = newnp;
|
|
}
|
|
free(x2a->tbl);
|
|
*x2a = array;
|
|
}
|
|
/* Insert the new data */
|
|
h = ph & (x2a->size-1);
|
|
np = &(x2a->tbl[x2a->count++]);
|
|
np->key = key;
|
|
np->data = data;
|
|
if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
|
|
np->next = x2a->ht[h];
|
|
x2a->ht[h] = np;
|
|
np->from = &(x2a->ht[h]);
|
|
return 1;
|
|
}
|
|
|
|
/* Return a pointer to data assigned to the given key. Return NULL
|
|
** if no such key. */
|
|
struct symbol *Symbol_find(key)
|
|
char *key;
|
|
{
|
|
int h;
|
|
x2node *np;
|
|
|
|
if( x2a==0 ) return 0;
|
|
h = strhash(key) & (x2a->size-1);
|
|
np = x2a->ht[h];
|
|
while( np ){
|
|
if( strcmp(np->key,key)==0 ) break;
|
|
np = np->next;
|
|
}
|
|
return np ? np->data : 0;
|
|
}
|
|
|
|
/* Return the n-th data. Return NULL if n is out of range. */
|
|
struct symbol *Symbol_Nth(n)
|
|
int n;
|
|
{
|
|
struct symbol *data;
|
|
if( x2a && n>0 && n<=x2a->count ){
|
|
data = x2a->tbl[n-1].data;
|
|
}else{
|
|
data = 0;
|
|
}
|
|
return data;
|
|
}
|
|
|
|
/* Return the size of the array */
|
|
int Symbol_count()
|
|
{
|
|
return x2a ? x2a->count : 0;
|
|
}
|
|
|
|
/* Return an array of pointers to all data in the table.
|
|
** The array is obtained from malloc. Return NULL if memory allocation
|
|
** problems, or if the array is empty. */
|
|
struct symbol **Symbol_arrayof()
|
|
{
|
|
struct symbol **array;
|
|
int i,size;
|
|
if( x2a==0 ) return 0;
|
|
size = x2a->count;
|
|
array = (struct symbol **)calloc(size, sizeof(struct symbol *));
|
|
if( array ){
|
|
for(i=0; i<size; i++) array[i] = x2a->tbl[i].data;
|
|
}
|
|
return array;
|
|
}
|
|
|
|
/* Compare two configurations */
|
|
int Configcmp(a,b)
|
|
struct config *a;
|
|
struct config *b;
|
|
{
|
|
int x;
|
|
x = a->rp->index - b->rp->index;
|
|
if( x==0 ) x = a->dot - b->dot;
|
|
return x;
|
|
}
|
|
|
|
/* Compare two states */
|
|
PRIVATE int statecmp(a,b)
|
|
struct config *a;
|
|
struct config *b;
|
|
{
|
|
int rc;
|
|
for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){
|
|
rc = a->rp->index - b->rp->index;
|
|
if( rc==0 ) rc = a->dot - b->dot;
|
|
}
|
|
if( rc==0 ){
|
|
if( a ) rc = 1;
|
|
if( b ) rc = -1;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* Hash a state */
|
|
PRIVATE int statehash(a)
|
|
struct config *a;
|
|
{
|
|
int h=0;
|
|
while( a ){
|
|
h = h*571 + a->rp->index*37 + a->dot;
|
|
a = a->bp;
|
|
}
|
|
return h;
|
|
}
|
|
|
|
/* Allocate a new state structure */
|
|
struct state *State_new()
|
|
{
|
|
struct state *new;
|
|
new = (struct state *)calloc(1, sizeof(struct state) );
|
|
MemoryCheck(new);
|
|
return new;
|
|
}
|
|
|
|
/* There is one instance of the following structure for each
|
|
** associative array of type "x3".
|
|
*/
|
|
struct s_x3 {
|
|
int size; /* The number of available slots. */
|
|
/* Must be a power of 2 greater than or */
|
|
/* equal to 1 */
|
|
int count; /* Number of currently slots filled */
|
|
struct s_x3node *tbl; /* The data stored here */
|
|
struct s_x3node **ht; /* Hash table for lookups */
|
|
};
|
|
|
|
/* There is one instance of this structure for every data element
|
|
** in an associative array of type "x3".
|
|
*/
|
|
typedef struct s_x3node {
|
|
struct state *data; /* The data */
|
|
struct config *key; /* The key */
|
|
struct s_x3node *next; /* Next entry with the same hash */
|
|
struct s_x3node **from; /* Previous link */
|
|
} x3node;
|
|
|
|
/* There is only one instance of the array, which is the following */
|
|
static struct s_x3 *x3a;
|
|
|
|
/* Allocate a new associative array */
|
|
void State_init(){
|
|
if( x3a ) return;
|
|
x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
|
|
if( x3a ){
|
|
x3a->size = 128;
|
|
x3a->count = 0;
|
|
x3a->tbl = (x3node*)malloc(
|
|
(sizeof(x3node) + sizeof(x3node*))*128 );
|
|
if( x3a->tbl==0 ){
|
|
free(x3a);
|
|
x3a = 0;
|
|
}else{
|
|
int i;
|
|
x3a->ht = (x3node**)&(x3a->tbl[128]);
|
|
for(i=0; i<128; i++) x3a->ht[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
/* Insert a new record into the array. Return TRUE if successful.
|
|
** Prior data with the same key is NOT overwritten */
|
|
int State_insert(data,key)
|
|
struct state *data;
|
|
struct config *key;
|
|
{
|
|
x3node *np;
|
|
int h;
|
|
int ph;
|
|
|
|
if( x3a==0 ) return 0;
|
|
ph = statehash(key);
|
|
h = ph & (x3a->size-1);
|
|
np = x3a->ht[h];
|
|
while( np ){
|
|
if( statecmp(np->key,key)==0 ){
|
|
/* An existing entry with the same key is found. */
|
|
/* Fail because overwrite is not allows. */
|
|
return 0;
|
|
}
|
|
np = np->next;
|
|
}
|
|
if( x3a->count>=x3a->size ){
|
|
/* Need to make the hash table bigger */
|
|
int i,size;
|
|
struct s_x3 array;
|
|
array.size = size = x3a->size*2;
|
|
array.count = x3a->count;
|
|
array.tbl = (x3node*)malloc(
|
|
(sizeof(x3node) + sizeof(x3node*))*size );
|
|
if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
|
|
array.ht = (x3node**)&(array.tbl[size]);
|
|
for(i=0; i<size; i++) array.ht[i] = 0;
|
|
for(i=0; i<x3a->count; i++){
|
|
x3node *oldnp, *newnp;
|
|
oldnp = &(x3a->tbl[i]);
|
|
h = statehash(oldnp->key) & (size-1);
|
|
newnp = &(array.tbl[i]);
|
|
if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
|
|
newnp->next = array.ht[h];
|
|
newnp->key = oldnp->key;
|
|
newnp->data = oldnp->data;
|
|
newnp->from = &(array.ht[h]);
|
|
array.ht[h] = newnp;
|
|
}
|
|
free(x3a->tbl);
|
|
*x3a = array;
|
|
}
|
|
/* Insert the new data */
|
|
h = ph & (x3a->size-1);
|
|
np = &(x3a->tbl[x3a->count++]);
|
|
np->key = key;
|
|
np->data = data;
|
|
if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
|
|
np->next = x3a->ht[h];
|
|
x3a->ht[h] = np;
|
|
np->from = &(x3a->ht[h]);
|
|
return 1;
|
|
}
|
|
|
|
/* Return a pointer to data assigned to the given key. Return NULL
|
|
** if no such key. */
|
|
struct state *State_find(key)
|
|
struct config *key;
|
|
{
|
|
int h;
|
|
x3node *np;
|
|
|
|
if( x3a==0 ) return 0;
|
|
h = statehash(key) & (x3a->size-1);
|
|
np = x3a->ht[h];
|
|
while( np ){
|
|
if( statecmp(np->key,key)==0 ) break;
|
|
np = np->next;
|
|
}
|
|
return np ? np->data : 0;
|
|
}
|
|
|
|
/* Return an array of pointers to all data in the table.
|
|
** The array is obtained from malloc. Return NULL if memory allocation
|
|
** problems, or if the array is empty. */
|
|
struct state **State_arrayof()
|
|
{
|
|
struct state **array;
|
|
int i,size;
|
|
if( x3a==0 ) return 0;
|
|
size = x3a->count;
|
|
array = (struct state **)malloc( sizeof(struct state *)*size );
|
|
if( array ){
|
|
for(i=0; i<size; i++) array[i] = x3a->tbl[i].data;
|
|
}
|
|
return array;
|
|
}
|
|
|
|
/* Hash a configuration */
|
|
PRIVATE int confighash(a)
|
|
struct config *a;
|
|
{
|
|
int h=0;
|
|
h = h*571 + a->rp->index*37 + a->dot;
|
|
return h;
|
|
}
|
|
|
|
/* There is one instance of the following structure for each
|
|
** associative array of type "x4".
|
|
*/
|
|
struct s_x4 {
|
|
int size; /* The number of available slots. */
|
|
/* Must be a power of 2 greater than or */
|
|
/* equal to 1 */
|
|
int count; /* Number of currently slots filled */
|
|
struct s_x4node *tbl; /* The data stored here */
|
|
struct s_x4node **ht; /* Hash table for lookups */
|
|
};
|
|
|
|
/* There is one instance of this structure for every data element
|
|
** in an associative array of type "x4".
|
|
*/
|
|
typedef struct s_x4node {
|
|
struct config *data; /* The data */
|
|
struct s_x4node *next; /* Next entry with the same hash */
|
|
struct s_x4node **from; /* Previous link */
|
|
} x4node;
|
|
|
|
/* There is only one instance of the array, which is the following */
|
|
static struct s_x4 *x4a;
|
|
|
|
/* Allocate a new associative array */
|
|
void Configtable_init(){
|
|
if( x4a ) return;
|
|
x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
|
|
if( x4a ){
|
|
x4a->size = 64;
|
|
x4a->count = 0;
|
|
x4a->tbl = (x4node*)malloc(
|
|
(sizeof(x4node) + sizeof(x4node*))*64 );
|
|
if( x4a->tbl==0 ){
|
|
free(x4a);
|
|
x4a = 0;
|
|
}else{
|
|
int i;
|
|
x4a->ht = (x4node**)&(x4a->tbl[64]);
|
|
for(i=0; i<64; i++) x4a->ht[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
/* Insert a new record into the array. Return TRUE if successful.
|
|
** Prior data with the same key is NOT overwritten */
|
|
int Configtable_insert(data)
|
|
struct config *data;
|
|
{
|
|
x4node *np;
|
|
int h;
|
|
int ph;
|
|
|
|
if( x4a==0 ) return 0;
|
|
ph = confighash(data);
|
|
h = ph & (x4a->size-1);
|
|
np = x4a->ht[h];
|
|
while( np ){
|
|
if( Configcmp(np->data,data)==0 ){
|
|
/* An existing entry with the same key is found. */
|
|
/* Fail because overwrite is not allows. */
|
|
return 0;
|
|
}
|
|
np = np->next;
|
|
}
|
|
if( x4a->count>=x4a->size ){
|
|
/* Need to make the hash table bigger */
|
|
int i,size;
|
|
struct s_x4 array;
|
|
array.size = size = x4a->size*2;
|
|
array.count = x4a->count;
|
|
array.tbl = (x4node*)malloc(
|
|
(sizeof(x4node) + sizeof(x4node*))*size );
|
|
if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
|
|
array.ht = (x4node**)&(array.tbl[size]);
|
|
for(i=0; i<size; i++) array.ht[i] = 0;
|
|
for(i=0; i<x4a->count; i++){
|
|
x4node *oldnp, *newnp;
|
|
oldnp = &(x4a->tbl[i]);
|
|
h = confighash(oldnp->data) & (size-1);
|
|
newnp = &(array.tbl[i]);
|
|
if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
|
|
newnp->next = array.ht[h];
|
|
newnp->data = oldnp->data;
|
|
newnp->from = &(array.ht[h]);
|
|
array.ht[h] = newnp;
|
|
}
|
|
free(x4a->tbl);
|
|
*x4a = array;
|
|
}
|
|
/* Insert the new data */
|
|
h = ph & (x4a->size-1);
|
|
np = &(x4a->tbl[x4a->count++]);
|
|
np->data = data;
|
|
if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
|
|
np->next = x4a->ht[h];
|
|
x4a->ht[h] = np;
|
|
np->from = &(x4a->ht[h]);
|
|
return 1;
|
|
}
|
|
|
|
/* Return a pointer to data assigned to the given key. Return NULL
|
|
** if no such key. */
|
|
struct config *Configtable_find(key)
|
|
struct config *key;
|
|
{
|
|
int h;
|
|
x4node *np;
|
|
|
|
if( x4a==0 ) return 0;
|
|
h = confighash(key) & (x4a->size-1);
|
|
np = x4a->ht[h];
|
|
while( np ){
|
|
if( Configcmp(np->data,key)==0 ) break;
|
|
np = np->next;
|
|
}
|
|
return np ? np->data : 0;
|
|
}
|
|
|
|
/* Remove all data from the table. Pass each data to the function "f"
|
|
** as it is removed. ("f" may be null to avoid this step.) */
|
|
void Configtable_clear(f)
|
|
int(*f)(/* struct config * */);
|
|
{
|
|
int i;
|
|
if( x4a==0 || x4a->count==0 ) return;
|
|
if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
|
|
for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
|
|
x4a->count = 0;
|
|
return;
|
|
}
|