gzdoom/libraries/lzma/C/Ppmd7.c
Cacodemon345 4497d7fdaa Update LZMA SDK to 23.01
As a bonus, add support for XZ-compressed files in ZIP
2023-10-07 17:31:24 +02:00

1122 lines
28 KiB
C

/* Ppmd7.c -- PPMdH codec
2023-04-02 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
#include "Precomp.h"
#include <string.h>
#include "Ppmd7.h"
/* define PPMD7_ORDER_0_SUPPPORT to suport order-0 mode, unsupported by orignal PPMd var.H. code */
// #define PPMD7_ORDER_0_SUPPPORT
MY_ALIGN(16)
static const Byte PPMD7_kExpEscape[16] = { 25, 14, 9, 7, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2 };
MY_ALIGN(16)
static const UInt16 PPMD7_kInitBinEsc[] = { 0x3CDD, 0x1F3F, 0x59BF, 0x48F3, 0x64A1, 0x5ABC, 0x6632, 0x6051};
#define MAX_FREQ 124
#define UNIT_SIZE 12
#define U2B(nu) ((UInt32)(nu) * UNIT_SIZE)
#define U2I(nu) (p->Units2Indx[(size_t)(nu) - 1])
#define I2U(indx) ((unsigned)p->Indx2Units[indx])
#define I2U_UInt16(indx) ((UInt16)p->Indx2Units[indx])
#define REF(ptr) Ppmd_GetRef(p, ptr)
#define STATS_REF(ptr) ((CPpmd_State_Ref)REF(ptr))
#define CTX(ref) ((CPpmd7_Context *)Ppmd7_GetContext(p, ref))
#define STATS(ctx) Ppmd7_GetStats(p, ctx)
#define ONE_STATE(ctx) Ppmd7Context_OneState(ctx)
#define SUFFIX(ctx) CTX((ctx)->Suffix)
typedef CPpmd7_Context * PPMD7_CTX_PTR;
struct CPpmd7_Node_;
typedef Ppmd_Ref_Type(struct CPpmd7_Node_) CPpmd7_Node_Ref;
typedef struct CPpmd7_Node_
{
UInt16 Stamp; /* must be at offset 0 as CPpmd7_Context::NumStats. Stamp=0 means free */
UInt16 NU;
CPpmd7_Node_Ref Next; /* must be at offset >= 4 */
CPpmd7_Node_Ref Prev;
} CPpmd7_Node;
#define NODE(r) Ppmd_GetPtr_Type(p, r, CPpmd7_Node)
void Ppmd7_Construct(CPpmd7 *p)
{
unsigned i, k, m;
p->Base = NULL;
for (i = 0, k = 0; i < PPMD_NUM_INDEXES; i++)
{
unsigned step = (i >= 12 ? 4 : (i >> 2) + 1);
do { p->Units2Indx[k++] = (Byte)i; } while (--step);
p->Indx2Units[i] = (Byte)k;
}
p->NS2BSIndx[0] = (0 << 1);
p->NS2BSIndx[1] = (1 << 1);
memset(p->NS2BSIndx + 2, (2 << 1), 9);
memset(p->NS2BSIndx + 11, (3 << 1), 256 - 11);
for (i = 0; i < 3; i++)
p->NS2Indx[i] = (Byte)i;
for (m = i, k = 1; i < 256; i++)
{
p->NS2Indx[i] = (Byte)m;
if (--k == 0)
k = (++m) - 2;
}
memcpy(p->ExpEscape, PPMD7_kExpEscape, 16);
}
void Ppmd7_Free(CPpmd7 *p, ISzAllocPtr alloc)
{
ISzAlloc_Free(alloc, p->Base);
p->Size = 0;
p->Base = NULL;
}
BoolInt Ppmd7_Alloc(CPpmd7 *p, UInt32 size, ISzAllocPtr alloc)
{
if (!p->Base || p->Size != size)
{
Ppmd7_Free(p, alloc);
p->AlignOffset = (4 - size) & 3;
if ((p->Base = (Byte *)ISzAlloc_Alloc(alloc, p->AlignOffset + size)) == NULL)
return False;
p->Size = size;
}
return True;
}
// ---------- Internal Memory Allocator ----------
/* We can use CPpmd7_Node in list of free units (as in Ppmd8)
But we still need one additional list walk pass in Ppmd7_GlueFreeBlocks().
So we use simple CPpmd_Void_Ref instead of CPpmd7_Node in Ppmd7_InsertNode() / Ppmd7_RemoveNode()
*/
#define EMPTY_NODE 0
static void Ppmd7_InsertNode(CPpmd7 *p, void *node, unsigned indx)
{
*((CPpmd_Void_Ref *)node) = p->FreeList[indx];
// ((CPpmd7_Node *)node)->Next = (CPpmd7_Node_Ref)p->FreeList[indx];
p->FreeList[indx] = REF(node);
}
static void *Ppmd7_RemoveNode(CPpmd7 *p, unsigned indx)
{
CPpmd_Void_Ref *node = (CPpmd_Void_Ref *)Ppmd7_GetPtr(p, p->FreeList[indx]);
p->FreeList[indx] = *node;
// CPpmd7_Node *node = NODE((CPpmd7_Node_Ref)p->FreeList[indx]);
// p->FreeList[indx] = node->Next;
return node;
}
static void Ppmd7_SplitBlock(CPpmd7 *p, void *ptr, unsigned oldIndx, unsigned newIndx)
{
unsigned i, nu = I2U(oldIndx) - I2U(newIndx);
ptr = (Byte *)ptr + U2B(I2U(newIndx));
if (I2U(i = U2I(nu)) != nu)
{
unsigned k = I2U(--i);
Ppmd7_InsertNode(p, ((Byte *)ptr) + U2B(k), nu - k - 1);
}
Ppmd7_InsertNode(p, ptr, i);
}
/* we use CPpmd7_Node_Union union to solve XLC -O2 strict pointer aliasing problem */
typedef union
{
CPpmd7_Node Node;
CPpmd7_Node_Ref NextRef;
} CPpmd7_Node_Union;
/* Original PPmdH (Ppmd7) code uses doubly linked list in Ppmd7_GlueFreeBlocks()
we use single linked list similar to Ppmd8 code */
static void Ppmd7_GlueFreeBlocks(CPpmd7 *p)
{
/*
we use first UInt16 field of 12-bytes UNITs as record type stamp
CPpmd_State { Byte Symbol; Byte Freq; : Freq != 0
CPpmd7_Context { UInt16 NumStats; : NumStats != 0
CPpmd7_Node { UInt16 Stamp : Stamp == 0 for free record
: Stamp == 1 for head record and guard
Last 12-bytes UNIT in array is always contains 12-bytes order-0 CPpmd7_Context record.
*/
CPpmd7_Node_Ref head, n = 0;
p->GlueCount = 255;
/* we set guard NODE at LoUnit */
if (p->LoUnit != p->HiUnit)
((CPpmd7_Node *)(void *)p->LoUnit)->Stamp = 1;
{
/* Create list of free blocks.
We still need one additional list walk pass before Glue. */
unsigned i;
for (i = 0; i < PPMD_NUM_INDEXES; i++)
{
const UInt16 nu = I2U_UInt16(i);
CPpmd7_Node_Ref next = (CPpmd7_Node_Ref)p->FreeList[i];
p->FreeList[i] = 0;
while (next != 0)
{
/* Don't change the order of the following commands: */
CPpmd7_Node_Union *un = (CPpmd7_Node_Union *)NODE(next);
const CPpmd7_Node_Ref tmp = next;
next = un->NextRef;
un->Node.Stamp = EMPTY_NODE;
un->Node.NU = nu;
un->Node.Next = n;
n = tmp;
}
}
}
head = n;
/* Glue and Fill must walk the list in same direction */
{
/* Glue free blocks */
CPpmd7_Node_Ref *prev = &head;
while (n)
{
CPpmd7_Node *node = NODE(n);
UInt32 nu = node->NU;
n = node->Next;
if (nu == 0)
{
*prev = n;
continue;
}
prev = &node->Next;
for (;;)
{
CPpmd7_Node *node2 = node + nu;
nu += node2->NU;
if (node2->Stamp != EMPTY_NODE || nu >= 0x10000)
break;
node->NU = (UInt16)nu;
node2->NU = 0;
}
}
}
/* Fill lists of free blocks */
for (n = head; n != 0;)
{
CPpmd7_Node *node = NODE(n);
UInt32 nu = node->NU;
unsigned i;
n = node->Next;
if (nu == 0)
continue;
for (; nu > 128; nu -= 128, node += 128)
Ppmd7_InsertNode(p, node, PPMD_NUM_INDEXES - 1);
if (I2U(i = U2I(nu)) != nu)
{
unsigned k = I2U(--i);
Ppmd7_InsertNode(p, node + k, (unsigned)nu - k - 1);
}
Ppmd7_InsertNode(p, node, i);
}
}
Z7_NO_INLINE
static void *Ppmd7_AllocUnitsRare(CPpmd7 *p, unsigned indx)
{
unsigned i;
if (p->GlueCount == 0)
{
Ppmd7_GlueFreeBlocks(p);
if (p->FreeList[indx] != 0)
return Ppmd7_RemoveNode(p, indx);
}
i = indx;
do
{
if (++i == PPMD_NUM_INDEXES)
{
UInt32 numBytes = U2B(I2U(indx));
Byte *us = p->UnitsStart;
p->GlueCount--;
return ((UInt32)(us - p->Text) > numBytes) ? (p->UnitsStart = us - numBytes) : NULL;
}
}
while (p->FreeList[i] == 0);
{
void *block = Ppmd7_RemoveNode(p, i);
Ppmd7_SplitBlock(p, block, i, indx);
return block;
}
}
static void *Ppmd7_AllocUnits(CPpmd7 *p, unsigned indx)
{
if (p->FreeList[indx] != 0)
return Ppmd7_RemoveNode(p, indx);
{
UInt32 numBytes = U2B(I2U(indx));
Byte *lo = p->LoUnit;
if ((UInt32)(p->HiUnit - lo) >= numBytes)
{
p->LoUnit = lo + numBytes;
return lo;
}
}
return Ppmd7_AllocUnitsRare(p, indx);
}
#define MEM_12_CPY(dest, src, num) \
{ UInt32 *d = (UInt32 *)dest; const UInt32 *z = (const UInt32 *)src; UInt32 n = num; \
do { d[0] = z[0]; d[1] = z[1]; d[2] = z[2]; z += 3; d += 3; } while (--n); }
/*
static void *ShrinkUnits(CPpmd7 *p, void *oldPtr, unsigned oldNU, unsigned newNU)
{
unsigned i0 = U2I(oldNU);
unsigned i1 = U2I(newNU);
if (i0 == i1)
return oldPtr;
if (p->FreeList[i1] != 0)
{
void *ptr = Ppmd7_RemoveNode(p, i1);
MEM_12_CPY(ptr, oldPtr, newNU)
Ppmd7_InsertNode(p, oldPtr, i0);
return ptr;
}
Ppmd7_SplitBlock(p, oldPtr, i0, i1);
return oldPtr;
}
*/
#define SUCCESSOR(p) Ppmd_GET_SUCCESSOR(p)
static void SetSuccessor(CPpmd_State *p, CPpmd_Void_Ref v)
{
Ppmd_SET_SUCCESSOR(p, v)
}
Z7_NO_INLINE
static
void Ppmd7_RestartModel(CPpmd7 *p)
{
unsigned i, k;
memset(p->FreeList, 0, sizeof(p->FreeList));
p->Text = p->Base + p->AlignOffset;
p->HiUnit = p->Text + p->Size;
p->LoUnit = p->UnitsStart = p->HiUnit - p->Size / 8 / UNIT_SIZE * 7 * UNIT_SIZE;
p->GlueCount = 0;
p->OrderFall = p->MaxOrder;
p->RunLength = p->InitRL = -(Int32)((p->MaxOrder < 12) ? p->MaxOrder : 12) - 1;
p->PrevSuccess = 0;
{
CPpmd7_Context *mc = (PPMD7_CTX_PTR)(void *)(p->HiUnit -= UNIT_SIZE); /* AllocContext(p); */
CPpmd_State *s = (CPpmd_State *)p->LoUnit; /* Ppmd7_AllocUnits(p, PPMD_NUM_INDEXES - 1); */
p->LoUnit += U2B(256 / 2);
p->MaxContext = p->MinContext = mc;
p->FoundState = s;
mc->NumStats = 256;
mc->Union2.SummFreq = 256 + 1;
mc->Union4.Stats = REF(s);
mc->Suffix = 0;
for (i = 0; i < 256; i++, s++)
{
s->Symbol = (Byte)i;
s->Freq = 1;
SetSuccessor(s, 0);
}
#ifdef PPMD7_ORDER_0_SUPPPORT
if (p->MaxOrder == 0)
{
CPpmd_Void_Ref r = REF(mc);
s = p->FoundState;
for (i = 0; i < 256; i++, s++)
SetSuccessor(s, r);
return;
}
#endif
}
for (i = 0; i < 128; i++)
for (k = 0; k < 8; k++)
{
unsigned m;
UInt16 *dest = p->BinSumm[i] + k;
const UInt16 val = (UInt16)(PPMD_BIN_SCALE - PPMD7_kInitBinEsc[k] / (i + 2));
for (m = 0; m < 64; m += 8)
dest[m] = val;
}
for (i = 0; i < 25; i++)
{
CPpmd_See *s = p->See[i];
unsigned summ = ((5 * i + 10) << (PPMD_PERIOD_BITS - 4));
for (k = 0; k < 16; k++, s++)
{
s->Summ = (UInt16)summ;
s->Shift = (PPMD_PERIOD_BITS - 4);
s->Count = 4;
}
}
p->DummySee.Summ = 0; /* unused */
p->DummySee.Shift = PPMD_PERIOD_BITS;
p->DummySee.Count = 64; /* unused */
}
void Ppmd7_Init(CPpmd7 *p, unsigned maxOrder)
{
p->MaxOrder = maxOrder;
Ppmd7_RestartModel(p);
}
/*
Ppmd7_CreateSuccessors()
It's called when (FoundState->Successor) is RAW-Successor,
that is the link to position in Raw text.
So we create Context records and write the links to
FoundState->Successor and to identical RAW-Successors in suffix
contexts of MinContex.
The function returns:
if (OrderFall == 0) then MinContext is already at MAX order,
{ return pointer to new or existing context of same MAX order }
else
{ return pointer to new real context that will be (Order+1) in comparison with MinContext
also it can return pointer to real context of same order,
*/
Z7_NO_INLINE
static PPMD7_CTX_PTR Ppmd7_CreateSuccessors(CPpmd7 *p)
{
PPMD7_CTX_PTR c = p->MinContext;
CPpmd_Byte_Ref upBranch = (CPpmd_Byte_Ref)SUCCESSOR(p->FoundState);
Byte newSym, newFreq;
unsigned numPs = 0;
CPpmd_State *ps[PPMD7_MAX_ORDER];
if (p->OrderFall != 0)
ps[numPs++] = p->FoundState;
while (c->Suffix)
{
CPpmd_Void_Ref successor;
CPpmd_State *s;
c = SUFFIX(c);
if (c->NumStats != 1)
{
Byte sym = p->FoundState->Symbol;
for (s = STATS(c); s->Symbol != sym; s++);
}
else
{
s = ONE_STATE(c);
}
successor = SUCCESSOR(s);
if (successor != upBranch)
{
// (c) is real record Context here,
c = CTX(successor);
if (numPs == 0)
{
// (c) is real record MAX Order Context here,
// So we don't need to create any new contexts.
return c;
}
break;
}
ps[numPs++] = s;
}
// All created contexts will have single-symbol with new RAW-Successor
// All new RAW-Successors will point to next position in RAW text
// after FoundState->Successor
newSym = *(const Byte *)Ppmd7_GetPtr(p, upBranch);
upBranch++;
if (c->NumStats == 1)
newFreq = ONE_STATE(c)->Freq;
else
{
UInt32 cf, s0;
CPpmd_State *s;
for (s = STATS(c); s->Symbol != newSym; s++);
cf = (UInt32)s->Freq - 1;
s0 = (UInt32)c->Union2.SummFreq - c->NumStats - cf;
/*
cf - is frequency of symbol that will be Successor in new context records.
s0 - is commulative frequency sum of another symbols from parent context.
max(newFreq)= (s->Freq + 1), when (s0 == 1)
we have requirement (Ppmd7Context_OneState()->Freq <= 128) in BinSumm[]
so (s->Freq < 128) - is requirement for multi-symbol contexts
*/
newFreq = (Byte)(1 + ((2 * cf <= s0) ? (5 * cf > s0) : (2 * cf + s0 - 1) / (2 * s0) + 1));
}
// Create new single-symbol contexts from low order to high order in loop
do
{
PPMD7_CTX_PTR c1;
/* = AllocContext(p); */
if (p->HiUnit != p->LoUnit)
c1 = (PPMD7_CTX_PTR)(void *)(p->HiUnit -= UNIT_SIZE);
else if (p->FreeList[0] != 0)
c1 = (PPMD7_CTX_PTR)Ppmd7_RemoveNode(p, 0);
else
{
c1 = (PPMD7_CTX_PTR)Ppmd7_AllocUnitsRare(p, 0);
if (!c1)
return NULL;
}
c1->NumStats = 1;
ONE_STATE(c1)->Symbol = newSym;
ONE_STATE(c1)->Freq = newFreq;
SetSuccessor(ONE_STATE(c1), upBranch);
c1->Suffix = REF(c);
SetSuccessor(ps[--numPs], REF(c1));
c = c1;
}
while (numPs != 0);
return c;
}
#define SWAP_STATES(s) \
{ CPpmd_State tmp = s[0]; s[0] = s[-1]; s[-1] = tmp; }
void Ppmd7_UpdateModel(CPpmd7 *p);
Z7_NO_INLINE
void Ppmd7_UpdateModel(CPpmd7 *p)
{
CPpmd_Void_Ref maxSuccessor, minSuccessor;
PPMD7_CTX_PTR c, mc;
unsigned s0, ns;
if (p->FoundState->Freq < MAX_FREQ / 4 && p->MinContext->Suffix != 0)
{
/* Update Freqs in Suffix Context */
c = SUFFIX(p->MinContext);
if (c->NumStats == 1)
{
CPpmd_State *s = ONE_STATE(c);
if (s->Freq < 32)
s->Freq++;
}
else
{
CPpmd_State *s = STATS(c);
Byte sym = p->FoundState->Symbol;
if (s->Symbol != sym)
{
do
{
// s++; if (s->Symbol == sym) break;
s++;
}
while (s->Symbol != sym);
if (s[0].Freq >= s[-1].Freq)
{
SWAP_STATES(s)
s--;
}
}
if (s->Freq < MAX_FREQ - 9)
{
s->Freq = (Byte)(s->Freq + 2);
c->Union2.SummFreq = (UInt16)(c->Union2.SummFreq + 2);
}
}
}
if (p->OrderFall == 0)
{
/* MAX ORDER context */
/* (FoundState->Successor) is RAW-Successor. */
p->MaxContext = p->MinContext = Ppmd7_CreateSuccessors(p);
if (!p->MinContext)
{
Ppmd7_RestartModel(p);
return;
}
SetSuccessor(p->FoundState, REF(p->MinContext));
return;
}
/* NON-MAX ORDER context */
{
Byte *text = p->Text;
*text++ = p->FoundState->Symbol;
p->Text = text;
if (text >= p->UnitsStart)
{
Ppmd7_RestartModel(p);
return;
}
maxSuccessor = REF(text);
}
minSuccessor = SUCCESSOR(p->FoundState);
if (minSuccessor)
{
// there is Successor for FoundState in MinContext.
// So the next context will be one order higher than MinContext.
if (minSuccessor <= maxSuccessor)
{
// minSuccessor is RAW-Successor. So we will create real contexts records:
PPMD7_CTX_PTR cs = Ppmd7_CreateSuccessors(p);
if (!cs)
{
Ppmd7_RestartModel(p);
return;
}
minSuccessor = REF(cs);
}
// minSuccessor now is real Context pointer that points to existing (Order+1) context
if (--p->OrderFall == 0)
{
/*
if we move to MaxOrder context, then minSuccessor will be common Succesor for both:
MinContext that is (MaxOrder - 1)
MaxContext that is (MaxOrder)
so we don't need new RAW-Successor, and we can use real minSuccessor
as succssors for both MinContext and MaxContext.
*/
maxSuccessor = minSuccessor;
/*
if (MaxContext != MinContext)
{
there was order fall from MaxOrder and we don't need current symbol
to transfer some RAW-Succesors to real contexts.
So we roll back pointer in raw data for one position.
}
*/
p->Text -= (p->MaxContext != p->MinContext);
}
}
else
{
/*
FoundState has NULL-Successor here.
And only root 0-order context can contain NULL-Successors.
We change Successor in FoundState to RAW-Successor,
And next context will be same 0-order root Context.
*/
SetSuccessor(p->FoundState, maxSuccessor);
minSuccessor = REF(p->MinContext);
}
mc = p->MinContext;
c = p->MaxContext;
p->MaxContext = p->MinContext = CTX(minSuccessor);
if (c == mc)
return;
// s0 : is pure Escape Freq
s0 = mc->Union2.SummFreq - (ns = mc->NumStats) - ((unsigned)p->FoundState->Freq - 1);
do
{
unsigned ns1;
UInt32 sum;
if ((ns1 = c->NumStats) != 1)
{
if ((ns1 & 1) == 0)
{
/* Expand for one UNIT */
unsigned oldNU = ns1 >> 1;
unsigned i = U2I(oldNU);
if (i != U2I((size_t)oldNU + 1))
{
void *ptr = Ppmd7_AllocUnits(p, i + 1);
void *oldPtr;
if (!ptr)
{
Ppmd7_RestartModel(p);
return;
}
oldPtr = STATS(c);
MEM_12_CPY(ptr, oldPtr, oldNU)
Ppmd7_InsertNode(p, oldPtr, i);
c->Union4.Stats = STATS_REF(ptr);
}
}
sum = c->Union2.SummFreq;
/* max increase of Escape_Freq is 3 here.
total increase of Union2.SummFreq for all symbols is less than 256 here */
sum += (UInt32)(2 * ns1 < ns) + 2 * ((unsigned)(4 * ns1 <= ns) & (sum <= 8 * ns1));
/* original PPMdH uses 16-bit variable for (sum) here.
But (sum < 0x9000). So we don't truncate (sum) to 16-bit */
// sum = (UInt16)sum;
}
else
{
// instead of One-symbol context we create 2-symbol context
CPpmd_State *s = (CPpmd_State*)Ppmd7_AllocUnits(p, 0);
if (!s)
{
Ppmd7_RestartModel(p);
return;
}
{
unsigned freq = c->Union2.State2.Freq;
// s = *ONE_STATE(c);
s->Symbol = c->Union2.State2.Symbol;
s->Successor_0 = c->Union4.State4.Successor_0;
s->Successor_1 = c->Union4.State4.Successor_1;
// SetSuccessor(s, c->Union4.Stats); // call it only for debug purposes to check the order of
// (Successor_0 and Successor_1) in LE/BE.
c->Union4.Stats = REF(s);
if (freq < MAX_FREQ / 4 - 1)
freq <<= 1;
else
freq = MAX_FREQ - 4;
// (max(s->freq) == 120), when we convert from 1-symbol into 2-symbol context
s->Freq = (Byte)freq;
// max(InitEsc = PPMD7_kExpEscape[*]) is 25. So the max(escapeFreq) is 26 here
sum = freq + p->InitEsc + (ns > 3);
}
}
{
CPpmd_State *s = STATS(c) + ns1;
UInt32 cf = 2 * (sum + 6) * (UInt32)p->FoundState->Freq;
UInt32 sf = (UInt32)s0 + sum;
s->Symbol = p->FoundState->Symbol;
c->NumStats = (UInt16)(ns1 + 1);
SetSuccessor(s, maxSuccessor);
if (cf < 6 * sf)
{
cf = (UInt32)1 + (cf > sf) + (cf >= 4 * sf);
sum += 3;
/* It can add (0, 1, 2) to Escape_Freq */
}
else
{
cf = (UInt32)4 + (cf >= 9 * sf) + (cf >= 12 * sf) + (cf >= 15 * sf);
sum += cf;
}
c->Union2.SummFreq = (UInt16)sum;
s->Freq = (Byte)cf;
}
c = SUFFIX(c);
}
while (c != mc);
}
Z7_NO_INLINE
static void Ppmd7_Rescale(CPpmd7 *p)
{
unsigned i, adder, sumFreq, escFreq;
CPpmd_State *stats = STATS(p->MinContext);
CPpmd_State *s = p->FoundState;
/* Sort the list by Freq */
if (s != stats)
{
CPpmd_State tmp = *s;
do
s[0] = s[-1];
while (--s != stats);
*s = tmp;
}
sumFreq = s->Freq;
escFreq = p->MinContext->Union2.SummFreq - sumFreq;
/*
if (p->OrderFall == 0), adder = 0 : it's allowed to remove symbol from MAX Order context
if (p->OrderFall != 0), adder = 1 : it's NOT allowed to remove symbol from NON-MAX Order context
*/
adder = (p->OrderFall != 0);
#ifdef PPMD7_ORDER_0_SUPPPORT
adder |= (p->MaxOrder == 0); // we don't remove symbols from order-0 context
#endif
sumFreq = (sumFreq + 4 + adder) >> 1;
i = (unsigned)p->MinContext->NumStats - 1;
s->Freq = (Byte)sumFreq;
do
{
unsigned freq = (++s)->Freq;
escFreq -= freq;
freq = (freq + adder) >> 1;
sumFreq += freq;
s->Freq = (Byte)freq;
if (freq > s[-1].Freq)
{
CPpmd_State tmp = *s;
CPpmd_State *s1 = s;
do
{
s1[0] = s1[-1];
}
while (--s1 != stats && freq > s1[-1].Freq);
*s1 = tmp;
}
}
while (--i);
if (s->Freq == 0)
{
/* Remove all items with Freq == 0 */
CPpmd7_Context *mc;
unsigned numStats, numStatsNew, n0, n1;
i = 0; do { i++; } while ((--s)->Freq == 0);
/* We increase (escFreq) for the number of removed symbols.
So we will have (0.5) increase for Escape_Freq in avarage per
removed symbol after Escape_Freq halving */
escFreq += i;
mc = p->MinContext;
numStats = mc->NumStats;
numStatsNew = numStats - i;
mc->NumStats = (UInt16)(numStatsNew);
n0 = (numStats + 1) >> 1;
if (numStatsNew == 1)
{
/* Create Single-Symbol context */
unsigned freq = stats->Freq;
do
{
escFreq >>= 1;
freq = (freq + 1) >> 1;
}
while (escFreq > 1);
s = ONE_STATE(mc);
*s = *stats;
s->Freq = (Byte)freq; // (freq <= 260 / 4)
p->FoundState = s;
Ppmd7_InsertNode(p, stats, U2I(n0));
return;
}
n1 = (numStatsNew + 1) >> 1;
if (n0 != n1)
{
// p->MinContext->Union4.Stats = STATS_REF(ShrinkUnits(p, stats, n0, n1));
unsigned i0 = U2I(n0);
unsigned i1 = U2I(n1);
if (i0 != i1)
{
if (p->FreeList[i1] != 0)
{
void *ptr = Ppmd7_RemoveNode(p, i1);
p->MinContext->Union4.Stats = STATS_REF(ptr);
MEM_12_CPY(ptr, (const void *)stats, n1)
Ppmd7_InsertNode(p, stats, i0);
}
else
Ppmd7_SplitBlock(p, stats, i0, i1);
}
}
}
{
CPpmd7_Context *mc = p->MinContext;
mc->Union2.SummFreq = (UInt16)(sumFreq + escFreq - (escFreq >> 1));
// Escape_Freq halving here
p->FoundState = STATS(mc);
}
}
CPpmd_See *Ppmd7_MakeEscFreq(CPpmd7 *p, unsigned numMasked, UInt32 *escFreq)
{
CPpmd_See *see;
const CPpmd7_Context *mc = p->MinContext;
unsigned numStats = mc->NumStats;
if (numStats != 256)
{
unsigned nonMasked = numStats - numMasked;
see = p->See[(unsigned)p->NS2Indx[(size_t)nonMasked - 1]]
+ (nonMasked < (unsigned)SUFFIX(mc)->NumStats - numStats)
+ 2 * (unsigned)(mc->Union2.SummFreq < 11 * numStats)
+ 4 * (unsigned)(numMasked > nonMasked) +
p->HiBitsFlag;
{
// if (see->Summ) field is larger than 16-bit, we need only low 16 bits of Summ
unsigned summ = (UInt16)see->Summ; // & 0xFFFF
unsigned r = (summ >> see->Shift);
see->Summ = (UInt16)(summ - r);
*escFreq = r + (r == 0);
}
}
else
{
see = &p->DummySee;
*escFreq = 1;
}
return see;
}
static void Ppmd7_NextContext(CPpmd7 *p)
{
PPMD7_CTX_PTR c = CTX(SUCCESSOR(p->FoundState));
if (p->OrderFall == 0 && (const Byte *)c > p->Text)
p->MaxContext = p->MinContext = c;
else
Ppmd7_UpdateModel(p);
}
void Ppmd7_Update1(CPpmd7 *p)
{
CPpmd_State *s = p->FoundState;
unsigned freq = s->Freq;
freq += 4;
p->MinContext->Union2.SummFreq = (UInt16)(p->MinContext->Union2.SummFreq + 4);
s->Freq = (Byte)freq;
if (freq > s[-1].Freq)
{
SWAP_STATES(s)
p->FoundState = --s;
if (freq > MAX_FREQ)
Ppmd7_Rescale(p);
}
Ppmd7_NextContext(p);
}
void Ppmd7_Update1_0(CPpmd7 *p)
{
CPpmd_State *s = p->FoundState;
CPpmd7_Context *mc = p->MinContext;
unsigned freq = s->Freq;
unsigned summFreq = mc->Union2.SummFreq;
p->PrevSuccess = (2 * freq > summFreq);
p->RunLength += (int)p->PrevSuccess;
mc->Union2.SummFreq = (UInt16)(summFreq + 4);
freq += 4;
s->Freq = (Byte)freq;
if (freq > MAX_FREQ)
Ppmd7_Rescale(p);
Ppmd7_NextContext(p);
}
/*
void Ppmd7_UpdateBin(CPpmd7 *p)
{
unsigned freq = p->FoundState->Freq;
p->FoundState->Freq = (Byte)(freq + (freq < 128));
p->PrevSuccess = 1;
p->RunLength++;
Ppmd7_NextContext(p);
}
*/
void Ppmd7_Update2(CPpmd7 *p)
{
CPpmd_State *s = p->FoundState;
unsigned freq = s->Freq;
freq += 4;
p->RunLength = p->InitRL;
p->MinContext->Union2.SummFreq = (UInt16)(p->MinContext->Union2.SummFreq + 4);
s->Freq = (Byte)freq;
if (freq > MAX_FREQ)
Ppmd7_Rescale(p);
Ppmd7_UpdateModel(p);
}
/*
PPMd Memory Map:
{
[ 0 ] contains subset of original raw text, that is required to create context
records, Some symbols are not written, when max order context was reached
[ Text ] free area
[ UnitsStart ] CPpmd_State vectors and CPpmd7_Context records
[ LoUnit ] free area for CPpmd_State and CPpmd7_Context items
[ HiUnit ] CPpmd7_Context records
[ Size ] end of array
}
These addresses don't cross at any time.
And the following condtions is true for addresses:
(0 <= Text < UnitsStart <= LoUnit <= HiUnit <= Size)
Raw text is BYTE--aligned.
the data in block [ UnitsStart ... Size ] contains 12-bytes aligned UNITs.
Last UNIT of array at offset (Size - 12) is root order-0 CPpmd7_Context record.
The code can free UNITs memory blocks that were allocated to store CPpmd_State vectors.
The code doesn't free UNITs allocated for CPpmd7_Context records.
The code calls Ppmd7_RestartModel(), when there is no free memory for allocation.
And Ppmd7_RestartModel() changes the state to orignal start state, with full free block.
The code allocates UNITs with the following order:
Allocation of 1 UNIT for Context record
- from free space (HiUnit) down to (LoUnit)
- from FreeList[0]
- Ppmd7_AllocUnitsRare()
Ppmd7_AllocUnits() for CPpmd_State vectors:
- from FreeList[i]
- from free space (LoUnit) up to (HiUnit)
- Ppmd7_AllocUnitsRare()
Ppmd7_AllocUnitsRare()
- if (GlueCount == 0)
{ Glue lists, GlueCount = 255, allocate from FreeList[i]] }
- loop for all higher sized FreeList[...] lists
- from (UnitsStart - Text), GlueCount--
- ERROR
Each Record with Context contains the CPpmd_State vector, where each
CPpmd_State contains the link to Successor.
There are 3 types of Successor:
1) NULL-Successor - NULL pointer. NULL-Successor links can be stored
only in 0-order Root Context Record.
We use 0 value as NULL-Successor
2) RAW-Successor - the link to position in raw text,
that "RAW-Successor" is being created after first
occurrence of new symbol for some existing context record.
(RAW-Successor > 0).
3) RECORD-Successor - the link to CPpmd7_Context record of (Order+1),
that record is being created when we go via RAW-Successor again.
For any successors at any time: the following condtions are true for Successor links:
(NULL-Successor < RAW-Successor < UnitsStart <= RECORD-Successor)
---------- Symbol Frequency, SummFreq and Range in Range_Coder ----------
CPpmd7_Context::SummFreq = Sum(Stats[].Freq) + Escape_Freq
The PPMd code tries to fulfill the condition:
(SummFreq <= (256 * 128 = RC::kBot))
We have (Sum(Stats[].Freq) <= 256 * 124), because of (MAX_FREQ = 124)
So (4 = 128 - 124) is average reserve for Escape_Freq for each symbol.
If (CPpmd_State::Freq) is not aligned for 4, the reserve can be 5, 6 or 7.
SummFreq and Escape_Freq can be changed in Ppmd7_Rescale() and *Update*() functions.
Ppmd7_Rescale() can remove symbols only from max-order contexts. So Escape_Freq can increase after multiple calls of Ppmd7_Rescale() for
max-order context.
When the PPMd code still break (Total <= RC::Range) condition in range coder,
we have two ways to resolve that problem:
1) we can report error, if we want to keep compatibility with original PPMd code that has no fix for such cases.
2) we can reduce (Total) value to (RC::Range) by reducing (Escape_Freq) part of (Total) value.
*/
#undef MAX_FREQ
#undef UNIT_SIZE
#undef U2B
#undef U2I
#undef I2U
#undef I2U_UInt16
#undef REF
#undef STATS_REF
#undef CTX
#undef STATS
#undef ONE_STATE
#undef SUFFIX
#undef NODE
#undef EMPTY_NODE
#undef MEM_12_CPY
#undef SUCCESSOR
#undef SWAP_STATES