gzdoom/src/xlat/xlat_parser.y
Christoph Oelckers 0869b51928 - Fixed: Parsing sector special bit masks must be done backwards so that later
definitions take precedence.
- Added base translation tables for UDMF compatibility maps which only should
  handle the native line and sector types of each game.
- Turned the inactive SILENT_INSTANT_FLOORS define into a compatibility option
  so that it can be (un)set in a map definition and the menu. 

SVN r966 (trunk)
2008-05-12 17:14:38 +00:00

514 lines
11 KiB
Text

%token_prefix XLAT_
%token_type {FParseToken}
%token_destructor {} // just to avoid a compiler warning
%name XlatParse
%extra_argument { FParseContext *context }
%syntax_error { context->PrintError("syntax error");}
main ::= translation_unit.
translation_unit ::= . /* empty */
translation_unit ::= translation_unit external_declaration.
external_declaration ::= define_statement.
external_declaration ::= enum_statement.
external_declaration ::= linetype_declaration.
external_declaration ::= boom_declaration.
external_declaration ::= sector_declaration.
external_declaration ::= sector_bitmask.
external_declaration ::= maxlinespecial_def.
external_declaration ::= NOP.
%left OR.
%left XOR.
%left AND.
%left MINUS PLUS.
%left MULTIPLY DIVIDE.
%left NEG.
%type exp {int}
exp(A) ::= NUM(B). { A = B.val; }
exp(A) ::= exp(B) PLUS exp(C). { A = B + C; }
exp(A) ::= exp(B) MINUS exp(C). { A = B - C; }
exp(A) ::= exp(B) MULTIPLY exp(C). { A = B * C; }
exp(A) ::= exp(B) DIVIDE exp(C). { if (C != 0) A = B / C; else context->PrintError("Division by Zero"); }
exp(A) ::= exp(B) OR exp(C). { A = B | C; }
exp(A) ::= exp(B) AND exp(C). { A = B & C; }
exp(A) ::= exp(B) XOR exp(C). { A = B ^ C; }
exp(A) ::= MINUS exp(B). [NEG] { A = -B; }
exp(A) ::= LPAREN exp(B) RPAREN. { A = B; }
//==========================================================================
//
// define
//
//==========================================================================
define_statement ::= DEFINE SYM(A) LPAREN exp(B) RPAREN.
{
context->AddSym (A.sym, B);
}
//==========================================================================
//
// enum
//
//==========================================================================
enum_statement ::= enum_open enum_list RBRACE.
enum_open ::= ENUM LBRACE.
{
context->EnumVal = 0;
}
enum_list ::= . /* empty */
enum_list ::= single_enum.
enum_list ::= enum_list COMMA single_enum.
single_enum ::= SYM(A).
{
context->AddSym (A.sym, context->EnumVal++);
}
single_enum ::= SYM(A) EQUALS exp(B).
{
context->AddSym (A.sym, B);
context->EnumVal = B+1;
}
//==========================================================================
//
// standard linetype
//
//==========================================================================
linetype_declaration ::= exp(linetype) EQUALS exp(flags) COMMA exp(special) LPAREN special_args(arg) RPAREN.
{
SimpleLineTranslations.SetVal(linetype,
FLineTrans(special&0xffff, flags+arg.addflags, arg.args[0], arg.args[1], arg.args[2], arg.args[3], arg.args[4]));
}
linetype_declaration ::= exp EQUALS exp COMMA SYM(S) LPAREN special_args RPAREN.
{
Printf ("%s, line %d: %s is undefined\n", context->SourceFile, context->SourceLine, S.sym);
}
%type special_args {SpecialArgs}
special_args(Z) ::= . /* empty */
{
Z.addflags = 0;
Z.args[0] = 0;
Z.args[1] = 0;
Z.args[2] = 0;
Z.args[3] = 0;
Z.args[4] = 0;
}
special_args(Z) ::= TAG.
{
Z.addflags = LINETRANS_HASTAGAT1;
Z.args[0] = 0;
Z.args[1] = 0;
Z.args[2] = 0;
Z.args[3] = 0;
Z.args[4] = 0;
}
special_args(Z) ::= TAG COMMA exp(B).
{
Z.addflags = LINETRANS_HASTAGAT1;
Z.args[0] = 0;
Z.args[1] = B;
Z.args[2] = 0;
Z.args[3] = 0;
Z.args[4] = 0;
}
special_args(Z) ::= TAG COMMA exp(B) COMMA exp(C).
{
Z.addflags = LINETRANS_HASTAGAT1;
Z.args[0] = 0;
Z.args[1] = B;
Z.args[2] = C;
Z.args[3] = 0;
Z.args[4] = 0;
}
special_args(Z) ::= TAG COMMA exp(B) COMMA exp(C) COMMA exp(D).
{
Z.addflags = LINETRANS_HASTAGAT1;
Z.args[0] = 0;
Z.args[1] = B;
Z.args[2] = C;
Z.args[3] = D;
Z.args[4] = 0;
}
special_args(Z) ::= TAG COMMA exp(B) COMMA exp(C) COMMA exp(D) COMMA exp(E).
{
Z.addflags = LINETRANS_HASTAGAT1;
Z.args[0] = 0;
Z.args[1] = B;
Z.args[2] = C;
Z.args[3] = D;
Z.args[4] = E;
}
special_args(Z) ::= TAG COMMA TAG.
{
Z.addflags = LINETRANS_HAS2TAGS;
Z.args[0] = Z.args[1] = 0;
Z.args[2] = 0;
Z.args[3] = 0;
Z.args[4] = 0;
}
special_args(Z) ::= TAG COMMA TAG COMMA exp(C).
{
Z.addflags = LINETRANS_HAS2TAGS;
Z.args[0] = Z.args[1] = 0;
Z.args[2] = C;
Z.args[3] = 0;
Z.args[4] = 0;
}
special_args(Z) ::= TAG COMMA TAG COMMA exp(C) COMMA exp(D).
{
Z.addflags = LINETRANS_HAS2TAGS;
Z.args[0] = Z.args[1] = 0;
Z.args[2] = C;
Z.args[3] = D;
Z.args[4] = 0;
}
special_args(Z) ::= TAG COMMA TAG COMMA exp(C) COMMA exp(D) COMMA exp(E).
{
Z.addflags = LINETRANS_HAS2TAGS;
Z.args[0] = Z.args[1] = 0;
Z.args[2] = C;
Z.args[3] = D;
Z.args[4] = E;
}
special_args(Z) ::= exp(A).
{
Z.addflags = 0;
Z.args[0] = A;
Z.args[1] = 0;
Z.args[2] = 0;
Z.args[3] = 0;
Z.args[4] = 0;
}
special_args(Z) ::= exp(A) COMMA exp(B).
{
Z.addflags = 0;
Z.args[0] = A;
Z.args[1] = B;
Z.args[2] = 0;
Z.args[3] = 0;
Z.args[4] = 0;
}
special_args(Z) ::= exp(A) COMMA exp(B) COMMA exp(C).
{
Z.addflags = 0;
Z.args[0] = A;
Z.args[1] = B;
Z.args[2] = C;
Z.args[3] = 0;
Z.args[4] = 0;
}
special_args(Z) ::= exp(A) COMMA exp(B) COMMA exp(C) COMMA exp(D).
{
Z.addflags = 0;
Z.args[0] = A;
Z.args[1] = B;
Z.args[2] = C;
Z.args[3] = D;
Z.args[4] = 0;
}
special_args(Z) ::= exp(A) COMMA exp(B) COMMA exp(C) COMMA exp(D) COMMA exp(E).
{
Z.addflags = 0;
Z.args[0] = A;
Z.args[1] = B;
Z.args[2] = C;
Z.args[3] = D;
Z.args[4] = E;
}
special_args(Z) ::= exp(A) COMMA TAG.
{
Z.addflags = LINETRANS_HASTAGAT2;
Z.args[0] = A;
Z.args[1] = 0;
Z.args[2] = 0;
Z.args[3] = 0;
Z.args[4] = 0;
}
special_args(Z) ::= exp(A) COMMA TAG COMMA exp(C).
{
Z.addflags = LINETRANS_HASTAGAT2;
Z.args[0] = A;
Z.args[1] = 0;
Z.args[2] = C;
Z.args[3] = 0;
Z.args[4] = 0;
}
special_args(Z) ::= exp(A) COMMA TAG COMMA exp(C) COMMA exp(D).
{
Z.addflags = LINETRANS_HASTAGAT2;
Z.args[0] = A;
Z.args[1] = 0;
Z.args[2] = C;
Z.args[3] = D;
Z.args[4] = 0;
}
special_args(Z) ::= exp(A) COMMA TAG COMMA exp(C) COMMA exp(D) COMMA exp(E).
{
Z.addflags = LINETRANS_HASTAGAT2;
Z.args[0] = A;
Z.args[1] = 0;
Z.args[2] = C;
Z.args[3] = D;
Z.args[4] = E;
}
special_args(Z) ::= exp(A) COMMA exp(B) COMMA TAG.
{
Z.addflags = LINETRANS_HASTAGAT3;
Z.args[0] = A;
Z.args[1] = B;
Z.args[2] = 0;
Z.args[3] = 0;
Z.args[4] = 0;
}
special_args(Z) ::= exp(A) COMMA exp(B) COMMA TAG COMMA exp(D).
{
Z.addflags = LINETRANS_HASTAGAT3;
Z.args[0] = A;
Z.args[1] = B;
Z.args[2] = 0;
Z.args[3] = D;
Z.args[4] = 0;
}
special_args(Z) ::= exp(A) COMMA exp(B) COMMA TAG COMMA exp(D) COMMA exp(E).
{
Z.addflags = LINETRANS_HASTAGAT3;
Z.args[0] = A;
Z.args[1] = B;
Z.args[2] = 0;
Z.args[3] = D;
Z.args[4] = E;
}
special_args(Z) ::= exp(A) COMMA exp(B) COMMA exp(C) COMMA TAG.
{
Z.addflags = LINETRANS_HASTAGAT4;
Z.args[0] = A;
Z.args[1] = B;
Z.args[2] = C;
Z.args[3] = 0;
Z.args[4] = 0;
}
special_args(Z) ::= exp(A) COMMA exp(B) COMMA exp(C) COMMA TAG COMMA exp(E).
{
Z.addflags = LINETRANS_HASTAGAT4;
Z.args[0] = A;
Z.args[1] = B;
Z.args[2] = C;
Z.args[3] = 0;
Z.args[4] = E;
}
special_args(Z) ::= exp(A) COMMA exp(B) COMMA exp(C) COMMA exp(D) COMMA TAG.
{
Z.addflags = LINETRANS_HASTAGAT5;
Z.args[0] = A;
Z.args[1] = B;
Z.args[2] = C;
Z.args[3] = D;
Z.args[4] = 0;
}
//==========================================================================
//
// boom generalized linetypes
//
//==========================================================================
%type list_val {ListFilter}
%type arg_list {MoreFilters *}
%type boom_args {ParseBoomArg}
%type boom_op {int}
%type boom_selector {int}
%type boom_line {FBoomArg}
%type boom_body {MoreLines *}
boom_declaration ::= LBRACKET exp(special) RBRACKET LPAREN exp(firsttype) COMMA exp(lasttype) RPAREN LBRACE boom_body(stores) RBRACE.
{
int i;
MoreLines *probe;
if (NumBoomish == MAX_BOOMISH)
{
MoreLines *probe = stores;
while (probe != NULL)
{
MoreLines *next = probe->next;
delete probe;
probe = next;
}
Printf ("%s, line %d: Too many BOOM translators\n", context->SourceFile, context->SourceLine);
}
else
{
Boomish[NumBoomish].FirstLinetype = firsttype;
Boomish[NumBoomish].LastLinetype = lasttype;
Boomish[NumBoomish].NewSpecial = special;
for (i = 0, probe = stores; probe != NULL; i++)
{
MoreLines *next = probe->next;
Boomish[NumBoomish].Args.Push(probe->arg);
delete probe;
probe = next;
}
NumBoomish++;
}
}
boom_body(A) ::= . /* empty */
{
A = NULL;
}
boom_body(A) ::= boom_line(B) boom_body(C).
{
A = new MoreLines;
A->next = C;
A->arg = B;
}
boom_line(A) ::= boom_selector(sel) boom_op(op) boom_args(args).
{
A.bOrExisting = (op == OR_EQUAL);
A.bUseConstant = (args.filters == NULL);
A.ArgNum = sel;
A.ConstantValue = args.constant;
A.AndValue = args.mask;
if (args.filters != NULL)
{
int i;
MoreFilters *probe;
for (i = 0, probe = args.filters; probe != NULL; i++)
{
MoreFilters *next = probe->next;
if (i < 15)
{
A.ResultFilter[i] = probe->filter.filter;
A.ResultValue[i] = probe->filter.value;
}
else if (i == 15)
{
context->PrintError ("Lists can only have 15 elements");
}
delete probe;
probe = next;
}
A.ListSize = i > 15 ? 15 : i;
}
}
boom_selector(A) ::= FLAGS. { A = 4; }
boom_selector(A) ::= ARG2. { A = 0; }
boom_selector(A) ::= ARG3. { A = 1; }
boom_selector(A) ::= ARG4. { A = 2; }
boom_selector(A) ::= ARG5. { A = 3; }
boom_op(A) ::= EQUALS. { A = '='; }
boom_op(A) ::= OR_EQUAL. { A = OR_EQUAL; }
boom_args(A) ::= exp(B).
{
A.constant = B;
A.filters = NULL;
}
boom_args(A) ::= exp(B) LBRACKET arg_list(C) RBRACKET.
{
A.mask = B;
A.filters = C;
}
arg_list(A) ::= list_val(B).
{
A = new MoreFilters;
A->next = NULL;
A->filter = B;
}
arg_list(A) ::= list_val(B) COMMA arg_list(C).
{
A = new MoreFilters;
A->next = C;
A->filter = B;
}
list_val(A) ::= exp(B) COLON exp(C).
{
A.filter = B;
A.value = C;
}
//==========================================================================
//
// max line special
//
//==========================================================================
maxlinespecial_def ::= MAXLINESPECIAL EQUALS exp(mx) SEMICOLON.
{
// Just kill all specials higher than the max.
// If the translator wants to redefine some later, just let it.s
SimpleLineTranslations.Resize(mx+1);
}
//==========================================================================
//
// sector types
//
//==========================================================================
%type sector_op {int}
sector_declaration ::= SECTOR exp(from) EQUALS exp(to) SEMICOLON.
{
FSectorTrans tr(to, true);
SectorTranslations.SetVal(from, tr);
}
sector_declaration ::= SECTOR exp EQUALS SYM(sy) SEMICOLON.
{
Printf("Unknown constant '%s'\n", sy.sym);
}
sector_declaration ::= SECTOR exp(from) EQUALS exp(to) NOBITMASK SEMICOLON.
{
FSectorTrans tr(to, false);
SectorTranslations.SetVal(from, tr);
}
sector_bitmask ::= SECTOR BITMASK exp(mask) sector_op(op) exp(shift) SEMICOLON.
{
FSectorMask sm = { mask, op, shift};
SectorMasks.Push(sm);
}
sector_bitmask ::= SECTOR BITMASK exp(mask) SEMICOLON.
{
FSectorMask sm = { mask, 0, 0};
SectorMasks.Push(sm);
}
sector_bitmask ::= SECTOR BITMASK exp(mask) CLEAR SEMICOLON.
{
FSectorMask sm = { mask, 0, 1};
SectorMasks.Push(sm);
}
sector_op(A) ::= LSHASSIGN. { A = 1; }
sector_op(A) ::= RSHASSIGN. { A = -1; }