mirror of
https://github.com/ZDoom/gzdoom.git
synced 2025-01-22 17:32:05 +00:00
0442c51d54
- Also needed to comment out strtod declarations in gdtoaimp.h and gdtoa.h
685 lines
21 KiB
C
685 lines
21 KiB
C
/****************************************************************
|
|
|
|
The author of this software is David M. Gay.
|
|
|
|
Copyright (C) 1998-2000 by Lucent Technologies
|
|
All Rights Reserved
|
|
|
|
Permission to use, copy, modify, and distribute this software and
|
|
its documentation for any purpose and without fee is hereby
|
|
granted, provided that the above copyright notice appear in all
|
|
copies and that both that the copyright notice and this
|
|
permission notice and warranty disclaimer appear in supporting
|
|
documentation, and that the name of Lucent or any of its entities
|
|
not be used in advertising or publicity pertaining to
|
|
distribution of the software without specific, written prior
|
|
permission.
|
|
|
|
LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
|
|
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
|
|
IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
|
|
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
|
|
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
|
|
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
|
|
THIS SOFTWARE.
|
|
|
|
****************************************************************/
|
|
|
|
/* This is a variation on dtoa.c that converts arbitary binary
|
|
floating-point formats to and from decimal notation. It uses
|
|
double-precision arithmetic internally, so there are still
|
|
various #ifdefs that adapt the calculations to the native
|
|
double-precision arithmetic (any of IEEE, VAX D_floating,
|
|
or IBM mainframe arithmetic).
|
|
|
|
Please send bug reports to David M. Gay (dmg at acm dot org,
|
|
with " at " changed at "@" and " dot " changed to ".").
|
|
*/
|
|
|
|
/* On a machine with IEEE extended-precision registers, it is
|
|
* necessary to specify double-precision (53-bit) rounding precision
|
|
* before invoking strtod or dtoa. If the machine uses (the equivalent
|
|
* of) Intel 80x87 arithmetic, the call
|
|
* _control87(PC_53, MCW_PC);
|
|
* does this with many compilers. Whether this or another call is
|
|
* appropriate depends on the compiler; for this to work, it may be
|
|
* necessary to #include "float.h" or another system-dependent header
|
|
* file.
|
|
*/
|
|
|
|
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
|
|
*
|
|
* This strtod returns a nearest machine number to the input decimal
|
|
* string (or sets errno to ERANGE). With IEEE arithmetic, ties are
|
|
* broken by the IEEE round-even rule. Otherwise ties are broken by
|
|
* biased rounding (add half and chop).
|
|
*
|
|
* Inspired loosely by William D. Clinger's paper "How to Read Floating
|
|
* Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
|
|
*
|
|
* Modifications:
|
|
*
|
|
* 1. We only require IEEE, IBM, or VAX double-precision
|
|
* arithmetic (not IEEE double-extended).
|
|
* 2. We get by with floating-point arithmetic in a case that
|
|
* Clinger missed -- when we're computing d * 10^n
|
|
* for a small integer d and the integer n is not too
|
|
* much larger than 22 (the maximum integer k for which
|
|
* we can represent 10^k exactly), we may be able to
|
|
* compute (d*10^k) * 10^(e-k) with just one roundoff.
|
|
* 3. Rather than a bit-at-a-time adjustment of the binary
|
|
* result in the hard case, we use floating-point
|
|
* arithmetic to determine the adjustment to within
|
|
* one bit; only in really hard cases do we need to
|
|
* compute a second residual.
|
|
* 4. Because of 3., we don't need a large table of powers of 10
|
|
* for ten-to-e (just some small tables, e.g. of 10^k
|
|
* for 0 <= k <= 22).
|
|
*/
|
|
|
|
/*
|
|
* #define IEEE_8087 for IEEE-arithmetic machines where the least
|
|
* significant byte has the lowest address.
|
|
* #define IEEE_MC68k for IEEE-arithmetic machines where the most
|
|
* significant byte has the lowest address.
|
|
* #define Long int on machines with 32-bit ints and 64-bit longs.
|
|
* #define Sudden_Underflow for IEEE-format machines without gradual
|
|
* underflow (i.e., that flush to zero on underflow).
|
|
* #define IBM for IBM mainframe-style floating-point arithmetic.
|
|
* #define VAX for VAX-style floating-point arithmetic (D_floating).
|
|
* #define No_leftright to omit left-right logic in fast floating-point
|
|
* computation of dtoa and gdtoa. This will cause modes 4 and 5 to be
|
|
* treated the same as modes 2 and 3 for some inputs.
|
|
* #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
|
|
* #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
|
|
* that use extended-precision instructions to compute rounded
|
|
* products and quotients) with IBM.
|
|
* #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
|
|
* that rounds toward +Infinity.
|
|
* #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
|
|
* rounding when the underlying floating-point arithmetic uses
|
|
* unbiased rounding. This prevent using ordinary floating-point
|
|
* arithmetic when the result could be computed with one rounding error.
|
|
* #define Inaccurate_Divide for IEEE-format with correctly rounded
|
|
* products but inaccurate quotients, e.g., for Intel i860.
|
|
* #define NO_LONG_LONG on machines that do not have a "long long"
|
|
* integer type (of >= 64 bits). On such machines, you can
|
|
* #define Just_16 to store 16 bits per 32-bit Long when doing
|
|
* high-precision integer arithmetic. Whether this speeds things
|
|
* up or slows things down depends on the machine and the number
|
|
* being converted. If long long is available and the name is
|
|
* something other than "long long", #define Llong to be the name,
|
|
* and if "unsigned Llong" does not work as an unsigned version of
|
|
* Llong, #define #ULLong to be the corresponding unsigned type.
|
|
* #define KR_headers for old-style C function headers.
|
|
* #define Bad_float_h if your system lacks a float.h or if it does not
|
|
* define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
|
|
* FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
|
|
* #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
|
|
* if memory is available and otherwise does something you deem
|
|
* appropriate. If MALLOC is undefined, malloc will be invoked
|
|
* directly -- and assumed always to succeed. Similarly, if you
|
|
* want something other than the system's free() to be called to
|
|
* recycle memory acquired from MALLOC, #define FREE to be the
|
|
* name of the alternate routine. (FREE or free is only called in
|
|
* pathological cases, e.g., in a gdtoa call after a gdtoa return in
|
|
* mode 3 with thousands of digits requested.)
|
|
* #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
|
|
* memory allocations from a private pool of memory when possible.
|
|
* When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes,
|
|
* unless #defined to be a different length. This default length
|
|
* suffices to get rid of MALLOC calls except for unusual cases,
|
|
* such as decimal-to-binary conversion of a very long string of
|
|
* digits. When converting IEEE double precision values, the
|
|
* longest string gdtoa can return is about 751 bytes long. For
|
|
* conversions by strtod of strings of 800 digits and all gdtoa
|
|
* conversions of IEEE doubles in single-threaded executions with
|
|
* 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
|
|
* 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
|
|
* #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
|
|
* #defined automatically on IEEE systems. On such systems,
|
|
* when INFNAN_CHECK is #defined, strtod checks
|
|
* for Infinity and NaN (case insensitively).
|
|
* When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
|
|
* strtodg also accepts (case insensitively) strings of the form
|
|
* NaN(x), where x is a string of hexadecimal digits (optionally
|
|
* preceded by 0x or 0X) and spaces; if there is only one string
|
|
* of hexadecimal digits, it is taken for the fraction bits of the
|
|
* resulting NaN; if there are two or more strings of hexadecimal
|
|
* digits, each string is assigned to the next available sequence
|
|
* of 32-bit words of fractions bits (starting with the most
|
|
* significant), right-aligned in each sequence.
|
|
* Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)"
|
|
* is consumed even when ... has the wrong form (in which case the
|
|
* "(...)" is consumed but ignored).
|
|
* #define MULTIPLE_THREADS if the system offers preemptively scheduled
|
|
* multiple threads. In this case, you must provide (or suitably
|
|
* #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
|
|
* by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed
|
|
* in pow5mult, ensures lazy evaluation of only one copy of high
|
|
* powers of 5; omitting this lock would introduce a small
|
|
* probability of wasting memory, but would otherwise be harmless.)
|
|
* You must also invoke freedtoa(s) to free the value s returned by
|
|
* dtoa. You may do so whether or not MULTIPLE_THREADS is #defined.
|
|
* #define IMPRECISE_INEXACT if you do not care about the setting of
|
|
* the STRTOG_Inexact bits in the special case of doing IEEE double
|
|
* precision conversions (which could also be done by the strtod in
|
|
* dtoa.c).
|
|
* #define NO_HEX_FP to disable recognition of C9x's hexadecimal
|
|
* floating-point constants.
|
|
* #define -DNO_ERRNO to suppress setting errno (in strtod.c and
|
|
* strtodg.c).
|
|
* #define NO_STRING_H to use private versions of memcpy.
|
|
* On some K&R systems, it may also be necessary to
|
|
* #define DECLARE_SIZE_T in this case.
|
|
* #define USE_LOCALE to use the current locale's decimal_point value.
|
|
*/
|
|
|
|
#ifndef GDTOAIMP_H_INCLUDED
|
|
#define GDTOAIMP_H_INCLUDED
|
|
#include "gdtoa.h"
|
|
|
|
#if defined(_MSC_VER)
|
|
/* [RH] Generating gd_qnan.h strikes me as too cumbersome under Visual
|
|
* Studio, so here's the equivalent, given the limited number of
|
|
* architectures that MSC can target. (Itanium? Who cares about that?)
|
|
*/
|
|
#define f_QNAN 0xffc00000
|
|
#define d_QNAN0 0x0
|
|
#define d_QNAN1 0xfff80000
|
|
#define ld_QNAN0 0x0
|
|
#define ld_QNAN1 0xfff80000
|
|
#define ld_QNAN2 0x0
|
|
#define ld_QNAN3 0x0
|
|
#define ldus_QNAN0 0x0
|
|
#define ldus_QNAN1 0x0
|
|
#define ldus_QNAN2 0x0
|
|
#define ldus_QNAN3 0xfff8
|
|
#define ldus_QNAN4 0x0
|
|
/* [RH] Interestingly, MinGW produces something different because
|
|
* it turns out that it has a true long double type. I thought that
|
|
* all ia32 compilers had phased out extended precision.
|
|
*/
|
|
#elif defined(__APPLE__)
|
|
#if defined(__x86_64__) || defined(__i386__)
|
|
#define f_QNAN 0xffc00000
|
|
#define d_QNAN0 0x0
|
|
#define d_QNAN1 0xfff80000
|
|
#define ld_QNAN0 0x0
|
|
#define ld_QNAN1 0xc0000000
|
|
#define ld_QNAN2 0xffff
|
|
#define ld_QNAN3 0x0
|
|
#define ldus_QNAN0 0x0
|
|
#define ldus_QNAN1 0x0
|
|
#define ldus_QNAN2 0x0
|
|
#define ldus_QNAN3 0xc000
|
|
#define ldus_QNAN4 0xffff
|
|
#else
|
|
#define f_QNAN 0xffc00000
|
|
#define d_QNAN0 0xfff80000
|
|
#define d_QNAN1 0x0
|
|
#define ld_QNAN0 0xfff80000
|
|
#define ld_QNAN1 0x0
|
|
#define ld_QNAN2 0x0
|
|
#define ld_QNAN3 0x0
|
|
#define ldus_QNAN0 0xfff8
|
|
#define ldus_QNAN1 0x0
|
|
#define ldus_QNAN2 0x0
|
|
#define ldus_QNAN3 0x0
|
|
#define ldus_QNAN4 0x0
|
|
#endif
|
|
#else
|
|
#include "gd_qnan.h"
|
|
#endif
|
|
|
|
#ifdef Honor_FLT_ROUNDS
|
|
#include <fenv.h>
|
|
#endif
|
|
|
|
#ifdef DEBUG
|
|
#include "stdio.h"
|
|
#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
|
|
#endif
|
|
|
|
#include "stdlib.h"
|
|
#include "string.h"
|
|
|
|
#ifdef KR_headers
|
|
#define Char char
|
|
#else
|
|
#define Char void
|
|
#endif
|
|
|
|
#ifdef MALLOC
|
|
extern Char *MALLOC ANSI((size_t));
|
|
#else
|
|
#define MALLOC malloc
|
|
#endif
|
|
|
|
#undef IEEE_Arith
|
|
#undef Avoid_Underflow
|
|
#ifdef IEEE_MC68k
|
|
#define IEEE_Arith
|
|
#endif
|
|
#ifdef IEEE_8087
|
|
#define IEEE_Arith
|
|
#endif
|
|
|
|
#include "errno.h"
|
|
#ifdef Bad_float_h
|
|
|
|
#ifdef IEEE_Arith
|
|
#define DBL_DIG 15
|
|
#define DBL_MAX_10_EXP 308
|
|
#define DBL_MAX_EXP 1024
|
|
#define FLT_RADIX 2
|
|
#define DBL_MAX 1.7976931348623157e+308
|
|
#endif
|
|
|
|
#ifdef IBM
|
|
#define DBL_DIG 16
|
|
#define DBL_MAX_10_EXP 75
|
|
#define DBL_MAX_EXP 63
|
|
#define FLT_RADIX 16
|
|
#define DBL_MAX 7.2370055773322621e+75
|
|
#endif
|
|
|
|
#ifdef VAX
|
|
#define DBL_DIG 16
|
|
#define DBL_MAX_10_EXP 38
|
|
#define DBL_MAX_EXP 127
|
|
#define FLT_RADIX 2
|
|
#define DBL_MAX 1.7014118346046923e+38
|
|
#define n_bigtens 2
|
|
#endif
|
|
|
|
#ifndef LONG_MAX
|
|
#define LONG_MAX 2147483647
|
|
#endif
|
|
|
|
#else /* ifndef Bad_float_h */
|
|
#include "float.h"
|
|
#endif /* Bad_float_h */
|
|
|
|
#ifdef IEEE_Arith
|
|
#define Scale_Bit 0x10
|
|
#define n_bigtens 5
|
|
#endif
|
|
|
|
#ifdef IBM
|
|
#define n_bigtens 3
|
|
#endif
|
|
|
|
#ifdef VAX
|
|
#define n_bigtens 2
|
|
#endif
|
|
|
|
#ifndef __MATH_H__
|
|
#include "math.h"
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
|
|
Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
|
|
#endif
|
|
|
|
typedef union { double d; ULong L[2]; } U;
|
|
|
|
#ifdef IEEE_8087
|
|
#define word0(x) (x)->L[1]
|
|
#define word1(x) (x)->L[0]
|
|
#else
|
|
#define word0(x) (x)->L[0]
|
|
#define word1(x) (x)->L[1]
|
|
#endif
|
|
#define dval(x) (x)->d
|
|
|
|
/* The following definition of Storeinc is appropriate for MIPS processors.
|
|
* An alternative that might be better on some machines is
|
|
* #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
|
|
*/
|
|
#if defined(IEEE_8087) + defined(VAX)
|
|
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
|
|
((unsigned short *)a)[0] = (unsigned short)c, a++)
|
|
#else
|
|
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
|
|
((unsigned short *)a)[1] = (unsigned short)c, a++)
|
|
#endif
|
|
|
|
/* #define P DBL_MANT_DIG */
|
|
/* Ten_pmax = floor(P*log(2)/log(5)) */
|
|
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
|
|
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
|
|
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
|
|
|
|
#ifdef IEEE_Arith
|
|
#define Exp_shift 20
|
|
#define Exp_shift1 20
|
|
#define Exp_msk1 0x100000
|
|
#define Exp_msk11 0x100000
|
|
#define Exp_mask 0x7ff00000
|
|
#define P 53
|
|
#define Bias 1023
|
|
#define Emin (-1022)
|
|
#define Exp_1 0x3ff00000
|
|
#define Exp_11 0x3ff00000
|
|
#define Ebits 11
|
|
#define Frac_mask 0xfffff
|
|
#define Frac_mask1 0xfffff
|
|
#define Ten_pmax 22
|
|
#define Bletch 0x10
|
|
#define Bndry_mask 0xfffff
|
|
#define Bndry_mask1 0xfffff
|
|
#define LSB 1
|
|
#define Sign_bit 0x80000000
|
|
#define Log2P 1
|
|
#define Tiny0 0
|
|
#define Tiny1 1
|
|
#define Quick_max 14
|
|
#define Int_max 14
|
|
|
|
#ifndef Flt_Rounds
|
|
#ifdef FLT_ROUNDS
|
|
#define Flt_Rounds FLT_ROUNDS
|
|
#else
|
|
#define Flt_Rounds 1
|
|
#endif
|
|
#endif /*Flt_Rounds*/
|
|
|
|
#else /* ifndef IEEE_Arith */
|
|
#undef Sudden_Underflow
|
|
#define Sudden_Underflow
|
|
#ifdef IBM
|
|
#undef Flt_Rounds
|
|
#define Flt_Rounds 0
|
|
#define Exp_shift 24
|
|
#define Exp_shift1 24
|
|
#define Exp_msk1 0x1000000
|
|
#define Exp_msk11 0x1000000
|
|
#define Exp_mask 0x7f000000
|
|
#define P 14
|
|
#define Bias 65
|
|
#define Exp_1 0x41000000
|
|
#define Exp_11 0x41000000
|
|
#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
|
|
#define Frac_mask 0xffffff
|
|
#define Frac_mask1 0xffffff
|
|
#define Bletch 4
|
|
#define Ten_pmax 22
|
|
#define Bndry_mask 0xefffff
|
|
#define Bndry_mask1 0xffffff
|
|
#define LSB 1
|
|
#define Sign_bit 0x80000000
|
|
#define Log2P 4
|
|
#define Tiny0 0x100000
|
|
#define Tiny1 0
|
|
#define Quick_max 14
|
|
#define Int_max 15
|
|
#else /* VAX */
|
|
#undef Flt_Rounds
|
|
#define Flt_Rounds 1
|
|
#define Exp_shift 23
|
|
#define Exp_shift1 7
|
|
#define Exp_msk1 0x80
|
|
#define Exp_msk11 0x800000
|
|
#define Exp_mask 0x7f80
|
|
#define P 56
|
|
#define Bias 129
|
|
#define Exp_1 0x40800000
|
|
#define Exp_11 0x4080
|
|
#define Ebits 8
|
|
#define Frac_mask 0x7fffff
|
|
#define Frac_mask1 0xffff007f
|
|
#define Ten_pmax 24
|
|
#define Bletch 2
|
|
#define Bndry_mask 0xffff007f
|
|
#define Bndry_mask1 0xffff007f
|
|
#define LSB 0x10000
|
|
#define Sign_bit 0x8000
|
|
#define Log2P 1
|
|
#define Tiny0 0x80
|
|
#define Tiny1 0
|
|
#define Quick_max 15
|
|
#define Int_max 15
|
|
#endif /* IBM, VAX */
|
|
#endif /* IEEE_Arith */
|
|
|
|
#ifndef IEEE_Arith
|
|
#define ROUND_BIASED
|
|
#else
|
|
#ifdef ROUND_BIASED_without_Round_Up
|
|
#undef ROUND_BIASED
|
|
#define ROUND_BIASED
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef RND_PRODQUOT
|
|
#define rounded_product(a,b) a = rnd_prod(a, b)
|
|
#define rounded_quotient(a,b) a = rnd_quot(a, b)
|
|
#ifdef KR_headers
|
|
extern double rnd_prod(), rnd_quot();
|
|
#else
|
|
extern double rnd_prod(double, double), rnd_quot(double, double);
|
|
#endif
|
|
#else
|
|
#define rounded_product(a,b) a *= b
|
|
#define rounded_quotient(a,b) a /= b
|
|
#endif
|
|
|
|
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
|
|
#define Big1 0xffffffff
|
|
|
|
#undef Pack_16
|
|
#ifndef Pack_32
|
|
#define Pack_32
|
|
#endif
|
|
|
|
#ifdef NO_LONG_LONG
|
|
#undef ULLong
|
|
#ifdef Just_16
|
|
#undef Pack_32
|
|
#define Pack_16
|
|
/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
|
|
* This makes some inner loops simpler and sometimes saves work
|
|
* during multiplications, but it often seems to make things slightly
|
|
* slower. Hence the default is now to store 32 bits per Long.
|
|
*/
|
|
#endif
|
|
#else /* long long available */
|
|
#ifndef Llong
|
|
#define Llong long long
|
|
#endif
|
|
#ifndef ULLong
|
|
#define ULLong unsigned Llong
|
|
#endif
|
|
#endif /* NO_LONG_LONG */
|
|
|
|
#ifdef Pack_32
|
|
#define ULbits 32
|
|
#define kshift 5
|
|
#define kmask 31
|
|
#define ALL_ON 0xffffffff
|
|
#else
|
|
#define ULbits 16
|
|
#define kshift 4
|
|
#define kmask 15
|
|
#define ALL_ON 0xffff
|
|
#endif
|
|
|
|
//#ifndef MULTIPLE_THREADS
|
|
#define ACQUIRE_DTOA_LOCK(n) /*nothing*/
|
|
#define FREE_DTOA_LOCK(n) /*nothing*/
|
|
//#endif
|
|
|
|
#define Kmax 9
|
|
|
|
struct
|
|
Bigint {
|
|
struct Bigint *next;
|
|
int k, maxwds, sign, wds;
|
|
ULong x[1];
|
|
};
|
|
|
|
typedef struct Bigint Bigint;
|
|
|
|
#ifdef NO_STRING_H
|
|
#ifdef DECLARE_SIZE_T
|
|
typedef unsigned int size_t;
|
|
#endif
|
|
extern void memcpy_D2A ANSI((void*, const void*, size_t));
|
|
#define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
|
|
#else /* !NO_STRING_H */
|
|
#define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
|
|
#endif /* NO_STRING_H */
|
|
|
|
#define Balloc Balloc_D2A
|
|
#define Bfree Bfree_D2A
|
|
#define InfName InfName_D2A
|
|
#define NanName NanName_D2A
|
|
#define ULtoQ ULtoQ_D2A
|
|
#define ULtof ULtof_D2A
|
|
#define ULtod ULtod_D2A
|
|
#define ULtodd ULtodd_D2A
|
|
#define ULtox ULtox_D2A
|
|
#define ULtoxL ULtoxL_D2A
|
|
#define add_nanbits add_nanbits_D2A
|
|
#define any_on any_on_D2A
|
|
#define b2d b2d_D2A
|
|
#define bigtens bigtens_D2A
|
|
#define cmp cmp_D2A
|
|
#define copybits copybits_D2A
|
|
#define d2b d2b_D2A
|
|
#define decrement decrement_D2A
|
|
#define diff diff_D2A
|
|
#define dtoa_result dtoa_result_D2A
|
|
#define g__fmt g__fmt_D2A
|
|
#define gethex gethex_D2A
|
|
#define hexdig hexdig_D2A
|
|
#define hexnan hexnan_D2A
|
|
#define hi0bits(x) hi0bits_D2A((ULong)(x))
|
|
#define i2b i2b_D2A
|
|
#define increment increment_D2A
|
|
#define lo0bits lo0bits_D2A
|
|
#define lshift lshift_D2A
|
|
#define match match_D2A
|
|
#define mult mult_D2A
|
|
#define multadd multadd_D2A
|
|
#define nrv_alloc nrv_alloc_D2A
|
|
#define pow5mult pow5mult_D2A
|
|
#define quorem quorem_D2A
|
|
#define ratio ratio_D2A
|
|
#define rshift rshift_D2A
|
|
#define rv_alloc rv_alloc_D2A
|
|
#define s2b s2b_D2A
|
|
#define set_ones set_ones_D2A
|
|
#define strcp strcp_D2A
|
|
#define strtoIg strtoIg_D2A
|
|
#define sum sum_D2A
|
|
#define tens tens_D2A
|
|
#define tinytens tinytens_D2A
|
|
#define tinytens tinytens_D2A
|
|
#define trailz trailz_D2A
|
|
#define ulp ulp_D2A
|
|
|
|
extern char *add_nanbits ANSI((char*, size_t, ULong*, int));
|
|
extern char *dtoa_result;
|
|
extern CONST double bigtens[], tens[], tinytens[];
|
|
extern unsigned char hexdig[];
|
|
extern const char *InfName[6], *NanName[3];
|
|
|
|
extern Bigint *Balloc ANSI((int));
|
|
extern void Bfree ANSI((Bigint*));
|
|
extern void ULtof ANSI((ULong*, ULong*, Long, int));
|
|
extern void ULtod ANSI((ULong*, ULong*, Long, int));
|
|
extern void ULtodd ANSI((ULong*, ULong*, Long, int));
|
|
extern void ULtoQ ANSI((ULong*, ULong*, Long, int));
|
|
extern void ULtox ANSI((UShort*, ULong*, Long, int));
|
|
extern void ULtoxL ANSI((ULong*, ULong*, Long, int));
|
|
extern ULong any_on ANSI((Bigint*, int));
|
|
extern double b2d ANSI((Bigint*, int*));
|
|
extern int cmp ANSI((Bigint*, Bigint*));
|
|
extern void copybits ANSI((ULong*, int, Bigint*));
|
|
extern Bigint *d2b ANSI((double, int*, int*));
|
|
extern void decrement ANSI((Bigint*));
|
|
extern Bigint *diff ANSI((Bigint*, Bigint*));
|
|
extern char *dtoa ANSI((double d, int mode, int ndigits,
|
|
int *decpt, int *sign, char **rve));
|
|
extern char *g__fmt ANSI((char*, char*, char*, int, ULong, size_t));
|
|
extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int));
|
|
extern void hexdig_init_D2A(Void);
|
|
extern int hexnan ANSI((CONST char**, FPI*, ULong*));
|
|
extern int hi0bits_D2A ANSI((ULong));
|
|
extern Bigint *i2b ANSI((int));
|
|
extern Bigint *increment ANSI((Bigint*));
|
|
extern int lo0bits ANSI((ULong*));
|
|
extern Bigint *lshift ANSI((Bigint*, int));
|
|
extern int match ANSI((CONST char**, char*));
|
|
extern Bigint *mult ANSI((Bigint*, Bigint*));
|
|
extern Bigint *multadd ANSI((Bigint*, int, int));
|
|
extern char *nrv_alloc ANSI((char*, char **, int));
|
|
extern Bigint *pow5mult ANSI((Bigint*, int));
|
|
extern int quorem ANSI((Bigint*, Bigint*));
|
|
extern double ratio ANSI((Bigint*, Bigint*));
|
|
extern void rshift ANSI((Bigint*, int));
|
|
extern char *rv_alloc ANSI((int));
|
|
extern Bigint *s2b ANSI((CONST char*, int, int, ULong, int));
|
|
extern Bigint *set_ones ANSI((Bigint*, int));
|
|
extern char *strcp ANSI((char*, const char*));
|
|
extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*));
|
|
// extern double strtod ANSI((const char *s00, char **se));
|
|
extern Bigint *sum ANSI((Bigint*, Bigint*));
|
|
extern int trailz ANSI((Bigint*));
|
|
extern double ulp ANSI((U*));
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
/*
|
|
* NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to
|
|
* 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
|
|
* respectively), but now are determined by compiling and running
|
|
* qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
|
|
* Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
|
|
* and -DNAN_WORD1=... values if necessary. This should still work.
|
|
* (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
|
|
*/
|
|
#ifdef IEEE_Arith
|
|
#ifndef NO_INFNAN_CHECK
|
|
#undef INFNAN_CHECK
|
|
#define INFNAN_CHECK
|
|
#endif
|
|
#ifdef IEEE_MC68k
|
|
#define _0 0
|
|
#define _1 1
|
|
#ifndef NAN_WORD0
|
|
#define NAN_WORD0 d_QNAN0
|
|
#endif
|
|
#ifndef NAN_WORD1
|
|
#define NAN_WORD1 d_QNAN1
|
|
#endif
|
|
#else
|
|
#define _0 1
|
|
#define _1 0
|
|
#ifndef NAN_WORD0
|
|
#define NAN_WORD0 d_QNAN1
|
|
#endif
|
|
#ifndef NAN_WORD1
|
|
#define NAN_WORD1 d_QNAN0
|
|
#endif
|
|
#endif
|
|
#else
|
|
#undef INFNAN_CHECK
|
|
#endif
|
|
|
|
#undef SI
|
|
#ifdef Sudden_Underflow
|
|
#define SI 1
|
|
#else
|
|
#define SI 0
|
|
#endif
|
|
|
|
#endif /* GDTOAIMP_H_INCLUDED */
|